1
|
Cywinska MA, Bystrzejewski M, Poplawska M, Kosmider A, Zdanowski R, Lewicki S, Fijalek Z, Ostrowska A, Bamburowicz M, Cieszanowski A, Grudzinski IP. Internalization and cytotoxicity effects of carbon-encapsulated iron nanoparticles in murine endothelial cells: Studies on internal dosages due to loaded mass agglomerates. Toxicol In Vitro 2016; 34:229-236. [DOI: 10.1016/j.tiv.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
2
|
Current Evidence on VEGF+405G/C Polymorphism and Malignancy Susceptibility: A Meta-Analysis Involving 30 Studies. Twin Res Hum Genet 2012; 15:496-502. [DOI: 10.1017/thg.2012.34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association of VEGF+405G/C (where VEGF is vascular endothelial growth factor) polymorphism and malignancy susceptibility attracts considerable attention because VEGF is one of the most potent angiogenic factors and plays a critical role in the onset and development of malignancy. However, the published findings remain inconclusive. In order to derive a more precise assessment of the association, we performed a meta-analysis including 30 published case-control studies from PubMed, Embase, and Ovid databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association. In the pooled analyses, no significant association was found between VEGF+405G/C polymorphism and malignancy susceptibility in different genetic models (G-allele vs. C-allele: OR = 1.00, 95% CI: 0.93–1.07; CC vs. GG: OR = 1.01, 95% CI: 0.88–1.15; GC+CC vs. GG: OR = 1.00, 95% CI: 0.91–1.10; CC vs. GC+GG: OR = 1.01, 95% CI: 0.90–1.13). When stratified by ethnicity, a weak association between this polymorphism and malignancy susceptibility was found in African under allelic frequency comparison (OR = 0.65, 95% CI: 0.43–0.98) and dominant genetic model comparison (OR = 1.95, 95% CI: 1.09–3.50). In summary, although our meta-analysis indicated a weak association of VEGF+405G/C polymorphism with malignancy susceptibility in African, no persuasive evidence of association between the polymorphism and malignancy susceptibility was detected in the pooled analyses. Therefore, more studies with larger scale of participants, especially Africans, are required to further evaluate gene-environment interaction on this polymorphism and malignancy susceptibility.
Collapse
|
3
|
Gomes AJ, Lunardi LO, Caetano FH, Machado AEH, Oliveira-Campos AMF, Bendhack LM, Lunardi CN. Biodegradable nanoparticles containing benzopsoralens: An attractive strategy for modifying vascular function in pathological skin disorders. J Appl Polym Sci 2011. [DOI: 10.1002/app.33427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Abstract
It is now common knowledge that for a solid tumour to become life-threatening clinically, an adequate blood supply to the neoplasm has to be established. Although neovascularisation via angiogenesis leads to a subsequent rapid growth of the tumour mass, it provides the most reliable route by which neoplastic cells may be reached by cytotoxics. In addition, for a majority of tumours, the lesion's vasculature is more permeable and tortuous than that of the surrounding healthy host tissue. Such deviation potentiates selective delivery of drugs to be achieved. This review examines, from various viewpoints, the area of tumour angiogenesis and vascularisation, currently one of the most fertile and active fields of cancer research.
Collapse
|
5
|
Dass CR, Tran TMN, Choong PFM. Angiogenesis inhibitors and the need for anti-angiogenic therapeutics. J Dent Res 2007; 86:927-36. [PMID: 17890668 DOI: 10.1177/154405910708601005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vessels to form capillary networks, which, among other diseases, such as diabetic retinopathy and macular degeneration, is particularly important for tumor growth and metastasis. Thus, depriving a tumor of its vascular supply by means of anti-angiogenic agents has been of great interest since its proposal in the 1970s. This review looks at the common angiogenic inhibitors (angiostatin, endostatin, maspin, pigment epithelium-derived factor, bevacizumab and other monoclonal antibodies, and zoledronic acid) and their current status in clinical trials.
Collapse
Affiliation(s)
- C R Dass
- Department of Orthopaedics, University of Melbourne, St. Vincent's Health, P.O. Box 2900, Fitzroy, 3065, Melbourne, Australia.
| | | | | |
Collapse
|
6
|
Heng BC, Cao T. Milieu-based versus gene-modulatory strategies for directing stem cell differentiation--A major issue of contention in transplantation medicine. In Vitro Cell Dev Biol Anim 2006; 42:51-3. [PMID: 16759147 DOI: 10.1290/0504025.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Dass CR, Choong PFM. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 2006; 113:155-63. [PMID: 16764960 DOI: 10.1016/j.jconrel.2006.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Targeted gene therapy is essential if cancer treatment is to become a reality with this form of therapy. In the past few years, cationic liposomes, discovered 2 decades ago, and at present, the most commonly used class of transfection reagents, have been tested in various clinical trials for diseases not restricted to cancer. They have been shown to be selective for tumour vascular endothelial cells raising hopes for antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are also being targeted to the tumour in various parts of the body by using advanced liposomal systems such as antibody-antigen and ligand-receptor combinations. This review looks at the state of play in this rapidly growing field.
Collapse
Affiliation(s)
- Crispin R Dass
- Department of Orthopaedics, University of Melbourne, St. Vincent's Hospital Melbourne, P.O. Box 2900, Fitzroy 3065, Australia.
| | | |
Collapse
|
8
|
Dutour A, Monteil J, Paraf F, Charissoux JL, Kaletta C, Sauer B, Naujoks K, Rigaud M. Endostatin cDNA/cationic liposome complexes as a promising therapy to prevent lung metastases in osteosarcoma: study in a human-like rat orthotopic tumor. Mol Ther 2005; 11:311-9. [PMID: 15668143 DOI: 10.1016/j.ymthe.2004.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 10/05/2004] [Indexed: 11/24/2022] Open
Abstract
Antiangiogenesis or destruction of tumor neovessels is an effective strategy to prevent tumor growth. Endostatin, one of the many inhibitors of angiogenesis that have been discovered, has shown conflicting results in preclinical assays. We studied the therapeutic potential of lipid/DNA complexes consisting of cationic liposomes and an endostatin-coding plasmid (Endo cDNA/CLP) in an orthotopic osteosarcoma model in rats. Empty plasmid without the endostatin gene complexed with cationic liposomes served as control. Animals were treated intravenously three times a week starting on the day tumors were detectable by (18)FDG tomoscintigraphy. During treatment, tumor progression was followed by PET scan and angioscintigraphy, and the effects of antivascular therapy on primary tumor, metastases, and tumor vascular density were confirmed by histologic analysis. Our results demonstrate that therapy using Endo cDNA/CLP is associated with pronounced delay in tumor growth. Moreover, it effectively prevented the occurrence of lung metastases, the major reason for bad prognosis and death in osteosarcoma patients. This approach could be used as an adjuvant therapy for osteosarcoma.
Collapse
Affiliation(s)
- Aurélie Dutour
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Limoges, 87025 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dass CR. Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumour vasculature. Int J Pharm 2004; 267:1-12. [PMID: 14602379 DOI: 10.1016/j.ijpharm.2003.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past three decades, two very important findings regarding tumour vasculature have been made. Firstly, it has been known a solid tumour has to establish an adequate blood supply to grow beyond a critical mass. Secondly, it has been proven that the tumour vasculature is relatively more aberrant, dynamic and permeable than healthy host tissue. This review discusses the potential of delivering therapeutic nucleic acids to tumour vasculature using cationic liposomes, vehicles recently demonstrated to be selectively delivered to tumour vasculature.
Collapse
Affiliation(s)
- Crispin R Dass
- Johnson & Johnson Research, Box 4555, Strawberry Hills 2012, Australia.
| |
Collapse
|
10
|
Dass CR. Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumour gene therapy. Int J Pharm 2002; 241:1-25. [PMID: 12086717 DOI: 10.1016/s0378-5173(02)00194-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cationic liposomes have become the reagent of choice for transfer of nucleic acids such as plasmids and oligodeoxynucleotides to cells in culture and in vivo. Whilst these reagents have several advantages over other forms of nucleic acid transfer methods, toxicity remains a significant problem, especially in vivo. Recent studies have also highlighted the immunostimulatory nature of these cationic vesicles when complexed to plasmid DNA, a phenomenon that may be harnessed for efficacious usage against tumours. Current research in this dynamic technological field is aimed at the development of cationic lipids that have negligible toxic effects and enhanced transfection capabilities.
Collapse
Affiliation(s)
- Crispin R Dass
- Johnson & Johnson Research, 1 Central Avenue, Australian Technology Park, 1430, Eveleigh, Australia.
| |
Collapse
|
11
|
Abstract
Cationic liposomes bind with nucleic acids such as plasmids and oligodeoxynucleotides to form complexes known as lipoplexes. Although these lipoplexes have several advantages over other forms of nucleic acid transfer methods in cell culture and in-vivo, toxicity remains a problem, especially in-vivo. Nevertheless, these carriers have been used in clinical trials against cystic fibrosis and cancer and their usage is attributed mainly to their versatility, especially when it comes to the range of routes available for administration of nucleic-acid-based drugs in-vivo.
Collapse
Affiliation(s)
- Crispin R Dass
- Johnson & Johnson Research, Eveleigh, New South Wales, Australia.
| |
Collapse
|
12
|
Abstract
Endothelium is an important target for drug or gene therapy because of its important role in the biological system. In this paper, we have characterized nanoparticle uptake by endothelial cells in cell culture. Nanoparticles were formulated using poly DL-lactide-co-glycolide polymer containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker. It was observed that the cellular uptake of nanoparticles depends on the time of incubation and the concentration of nanoparticles in the medium. The uptake of nanoparticles was rapid with confocal microscopy demonstrating their localization mostly in the cytoplasm. The mitogenic study demonstrated biocompatability of nanoparticles with the cells. The study thus demonstrates that nanoparticles could be used for localizing therapeutic agents or gene into endothelial cells. Nanoparticles localized in the endothelium could provide prolonged drug effects because of their sustained release characterics, and also could protect the encapsulated agent from enzymatic degradation.
Collapse
Affiliation(s)
- Jasmine Davda
- Department of Pharmaceutical Sciences, College of Pharmacy, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | |
Collapse
|
13
|
Abstract
The vasculature of a tumour provides the most effective route by which neoplastic cells may be reached and eradicated by drugs. The fact that a tumour's vasculature is relatively more permeable than healthy host tissue should enable selective delivery of drugs to tumour tissue. Such delivery is relevant to carrier-mediated delivery of genetic medicine to tumours. This review discusses the potential of delivering therapeutic oligonucleotides (ONs) to tumours using cationic liposomes and cyclodextrins (CyDs), and the major hindrances posed by the tumour itself on such delivery. Cationic liposomes are generally 100-200 nm in diameter, whereas CyDs typically span 1.5 nm across. Cationic liposomes have been used for the introduction of nucleic acids into mammalian cells for more than a decade. CyD molecules are routinely used as agents that engender cholesterol efflux from lipid-laden cells, thus having an efficacious potential in the management of atherosclerosis. A recent trend is to employ these oligosaccharide molecules for delivering nucleic acids in cells both in-vitro and in-vivo. Comparisons are made with other ON delivery agents, such as porphyrin derivatives (< 1 nm), branched chain dendrimers (approximately 10 nm), polyethylenimine polymers (approximately 10 nm), nanoparticles (20-1,000 nm) and microspheres (> 1 microm), in the context of delivery to solid tumours. A discourse on how the chemical and physical properties of these carriers may affect the uptake of ONs into cells, particularly in-vivo, forms a major basis of this review.
Collapse
Affiliation(s)
- Crispin R Dass
- Johnson & Johnson Research, Strawberry Hills, Australia.
| |
Collapse
|