1
|
Lila E, Hunt D, Child DD, Latimer C, Le B, Davis M, Jayadev S, Bird TD, Shojaie A, Mac Donald CL. Asymmetric brain atrophy in Huntington's disease: A postmortem MRI study. J Huntingtons Dis 2025:18796397251333334. [PMID: 40221975 DOI: 10.1177/18796397251333334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BackgroundHuntington's disease is a progressive, autosomal dominant, neurodegenerative disease caused by a CAG repeat expansion in the HTT gene. Medium spiny neurons of the striatum are especially vulnerable to the disease, and atrophy of the caudate and putamen can be documented by neuroimaging years before the onset of symptoms.ObjectiveIn this study, we aimed to characterize region-specific gray and white matter differences between Huntington's disease patients and controls.MethodsWe conducted a postmortem MRI study of the brains of 15 adults diagnosed with symptomatic Huntington's disease and 26 control subjects, aiming to compare the differences in regional grey and white matter volumes between the two groups.ResultsThe study revealed decreased volumes in both grey and white matter in patients with Huntington's disease, with the largest effect sizes observed in caudate and putamen. Notably, the atrophy predominantly affected the left hemisphere, particularly impacting grey and white matter regions adjacent to the pars opercularis, precentral, supramarginal, and pars orbitalis gyri, and the lateral orbitofrontal cortex. In the control group, asymmetry stems from larger left hemisphere regions compared to right, whereas an opposite pattern is observed in the Huntington's disease group.ConclusionsThese results suggest progressive, diffuse, and asymmetric grey and white matter atrophy occurs in Huntington's disease. The reasons for this asymmetry remain unknown; however, our study provides a more detailed characterization of previously reported grey and white matter changes in Huntington's disease, as observed through postmortem histopathological and MRI studies.
Collapse
Affiliation(s)
- Eardi Lila
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David Hunt
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Bianca Le
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Marie Davis
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
2
|
Azman KF, Zakaria R. Brain-Derived Neurotrophic Factor (BDNF) in Huntington's Disease: Neurobiology and Therapeutic Potential. Curr Neuropharmacol 2025; 23:384-403. [PMID: 40123457 DOI: 10.2174/1570159x22666240530105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2025] Open
Abstract
Huntington's disease is a hereditary neurodegenerative disorder marked by severe neurodegeneration in the striatum and cortex. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It plays a crucial role in maintaining the survival and proper function of striatal neurons. Depletion of BDNF has been linked to impairment and death of striatal neurons, leading to the manifestation of motor, cognitive, and behavioral dysfunctions characteristic of Huntington's disease. This review highlights the current update on the neurobiology of BDNF in the pathogenesis of Huntington's disease. The molecular evidence and the affected signaling pathways are also discussed. In addition, the impact of experimental manipulation of BDNF levels and its pharmaceutical potential for Huntington's disease treatment are explicitly reviewed.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
3
|
Ríos-Anillo MR, Ahmad M, Acosta-López JE, Cervantes-Henríquez ML, Henao-Castaño MC, Morales-Moreno MT, Espitia-Almeida F, Vargas-Manotas J, Sánchez-Barros C, Pineda DA, Sánchez-Rojas M. Brain Volumetric Analysis Using Artificial Intelligence Software in Premanifest Huntington's Disease Individuals from a Colombian Caribbean Population. Biomedicines 2024; 12:2166. [PMID: 39457479 PMCID: PMC11504451 DOI: 10.3390/biomedicines12102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background and objectives: The premanifest phase of Huntington's disease (HD) is characterized by the absence of motor symptoms and exhibits structural changes in imaging that precede clinical manifestation. This study aimed to analyze volumetric changes identified through brain magnetic resonance imaging (MRI) processed using artificial intelligence (AI) software in premanifest HD individuals, focusing on the relationship between CAG triplet expansion and structural biomarkers. Methods: The study included 36 individuals descending from families affected by HD in the Department of Atlántico. Sociodemographic data were collected, followed by peripheral blood sampling to extract genomic DNA for quantifying CAG trinucleotide repeats in the Huntingtin gene. Brain volumes were evaluated using AI software (Entelai/IMEXHS, v4.3.4) based on MRI volumetric images. Correlations between brain volumes and variables such as age, sex, and disease status were determined. All analyses were conducted using SPSS (v. IBM SPSS Statistics 26), with significance set at p < 0.05. Results: The analysis of brain volumes according to CAG repeat expansion shows that individuals with ≥40 repeats evidence significant increases in cerebrospinal fluid (CSF) volume and subcortical structures such as the amygdalae and left caudate nucleus, along with marked reductions in cerebral white matter, the cerebellum, brainstem, and left pallidum. In contrast, those with <40 repeats show minimal or moderate volumetric changes, primarily in white matter and CSF. Conclusions: These findings suggest that CAG expansion selectively impacts key brain regions, potentially influencing the progression of Huntington's disease, and that AI in neuroimaging could identify structural biomarkers long before clinical symptoms appear.
Collapse
Affiliation(s)
- Margarita R. Ríos-Anillo
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
- Médico Residente de Neurología, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.C.H.-C.); (M.T.M.-M.)
| | - Mostapha Ahmad
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
| | - Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.L.C.-H.)
| | - Martha L. Cervantes-Henríquez
- Facultad de Ciencias Jurídicas y Sociales, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.L.C.-H.)
| | - Maria C. Henao-Castaño
- Médico Residente de Neurología, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.C.H.-C.); (M.T.M.-M.)
| | - Maria T. Morales-Moreno
- Médico Residente de Neurología, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.C.H.-C.); (M.T.M.-M.)
| | - Fabián Espitia-Almeida
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia;
| | - José Vargas-Manotas
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
| | - Cristian Sánchez-Barros
- Departamento de Neurofisiología Clínica Palma de Mallorca, Hospital Juaneda Miramar, 07001 Palma, Spain;
| | - David A. Pineda
- Grupo Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín 050021, Colombia;
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín 050010, Colombia
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.A.); (J.V.-M.); (M.S.-R.)
| |
Collapse
|
4
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
5
|
Iskusnykh IY, Zakharova AA, Kryl’skii ED, Popova TN. Aging, Neurodegenerative Disorders, and Cerebellum. Int J Mol Sci 2024; 25:1018. [PMID: 38256091 PMCID: PMC10815822 DOI: 10.3390/ijms25021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
An important part of the central nervous system (CNS), the cerebellum is involved in motor control, learning, reflex adaptation, and cognition. Diminished cerebellar function results in the motor and cognitive impairment observed in patients with neurodegenerative disorders such as Alzheimer's disease (AD), vascular dementia (VD), Parkinson's disease (PD), Huntington's disease (HD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Friedreich's ataxia (FRDA), and multiple sclerosis (MS), and even during the normal aging process. In most neurodegenerative disorders, impairment mainly occurs as a result of morphological changes over time, although during the early stages of some disorders such as AD, the cerebellum also serves a compensatory function. Biological aging is accompanied by changes in cerebellar circuits, which are predominantly involved in motor control. Despite decades of research, the functional contributions of the cerebellum and the underlying molecular mechanisms in aging and neurodegenerative disorders remain largely unknown. Therefore, this review will highlight the molecular and cellular events in the cerebellum that are disrupted during the process of aging and the development of neurodegenerative disorders. We believe that deeper insights into the pathophysiological mechanisms of the cerebellum during aging and the development of neurodegenerative disorders will be essential for the design of new effective strategies for neuroprotection and the alleviation of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anastasia A. Zakharova
- Department of Medical Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov St. 1, Moscow 117997, Russia
| | - Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| |
Collapse
|
6
|
Sun Y, Tong H, Yang T, Liu L, Li XJ, Li S. Insights into White Matter Defect in Huntington's Disease. Cells 2022; 11:3381. [PMID: 36359783 PMCID: PMC9656068 DOI: 10.3390/cells11213381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 08/05/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited progressive neurodegenerative disorder. It is caused by a CAG repeat expansion in the Huntingtin gene that is translated to an expanded polyglutamine (PolyQ) repeat in huntingtin protein. HD is characterized by mood swings, involuntary movement, and cognitive decline in the late disease stage. HD patients often die 15-20 years after disease onset. Currently, there is no cure for HD. Due to the striking neuronal loss in HD, most studies focused on the investigation of the predominantly neuronal degeneration in specific brain regions. However, the pathology of the white matter area in the brains of HD patients was also reported by clinical imaging studies, which showed white matter abnormalities even before the clinical onset of HD. Since oligodendrocytes form myelin sheaths around the axons in the brain, white matter lesions are likely attributed to alterations in myelin and oligodendrocyte-associated changes in HD. In this review, we summarized the evidence for white matter, myelin, and oligodendrocytes alterations that were previously observed in HD patients and animal models. We also discussed potential mechanisms for white matter changes and possible treatment to prevent glial dysfunction in HD.
Collapse
|
7
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
8
|
Xu YL, Wang XY, Chen J, Kang M, Wang YX, Zhang LJ, Shu HY, Liao XL, Zou J, Wei H, Ling Q, Shao Y. Altered Spontaneous Brain Activity Patterns of Meibomian Gland Dysfunction in Severely Obese Population Measured Using the Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2022; 13:914039. [PMID: 35633781 PMCID: PMC9130486 DOI: 10.3389/fpsyt.2022.914039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Utilizing the fractional amplitude of low-frequency fluctuations (fALFF) technique, this study sought to correlate spontaneous cerebral abnormalities with the clinical manifestations of meibomian gland dysfunction (MGD) in severely obese (SO) population. SUBJECTS AND METHODS Twelve MGD patients in SO population (PATs) (4 males and 8 females) and twelve healthy controls (HCs) (6 males and 6 females) matched by gender and age were enrolled. Every participant underwent resting-state functional magnetic resonance imaging (rs-MRI) scanning. Spontaneous cerebral activity alterations were examined using the fALFF method. Receiver operating characteristic (ROC) curves were utilized to classify the medial fALFF values of the PATs and HCs. PATs were also asked to complete anxiety and depression score forms, permitting a correlation analysis. RESULTS In contrast with HCs, PATs had prominently increased fALFF values in the left lingual gyrus, the right globus pallidus, the right anterior cingulate and paracingulate gyri and the left middle occipital lobe (P < 0.05), and decreased fALFF values in the right cerebellum, the left fusiform gyrus, the right medial orbitofrontal gyrus, the left triangle inferior frontal gyrus and the left inferior parietal gyrus (P < 0.05). The results of the ROC curve indicated that changes in regional fALFF values might help diagnose MGD in SO population. Moreover, fALFF values in the right cerebellum of PATs were positively correlated with hospital anxiety and depression scores (HADS) (r = 0.723, P = 0.008). The fALFF values in the left triangle inferior frontal gyrus of PAT were negatively correlated with HADS (r = -0.651, P = 0.022). CONCLUSIONS Aberrant spontaneous activity was observed in multiple regions of the cerebrum, offering helpful information about the pathology of MGD in SO population. Aberrant fALFF values in these regions likely relates to the latent pathologic mechanisms of anomalous cerebral activities in PATs.
Collapse
Affiliation(s)
- Yu-Ling Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Yu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Xin Wang
- Department of Ophthalmology and Visual Sciences, Cardiff University, Cardiff, United Kingdom
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Phillips GR, Saville JT, Hancock SE, Brown SHJ, Jenner AM, McLean C, Fuller M, Newell KA, Mitchell TW. The long and the short of Huntington’s disease: how the sphingolipid profile is shifted in the caudate of advanced clinical cases. Brain Commun 2021; 4:fcab303. [PMID: 35169703 PMCID: PMC8833324 DOI: 10.1093/braincomms/fcab303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Huntington’s disease is a devastating neurodegenerative disorder that onsets in late adulthood as progressive and terminal cognitive, psychiatric and motor deficits. The disease is genetic, triggered by a CAG repeat (polyQ) expansion mutation in the Huntingtin gene and resultant huntingtin protein. Although the mutant huntingtin protein is ubiquitously expressed, the striatum degenerates early and consistently in the disease. The polyQ mutation at the N-terminus of the huntingtin protein alters its natural interactions with neural phospholipids in vitro, suggesting that the specific lipid composition of brain regions could influence their vulnerability to interference by mutant huntingtin; however, this has not yet been demonstrated in vivo. Sphingolipids are critical cell signalling molecules, second messengers and membrane components. Despite evidence of sphingolipid disturbance in Huntington’s mouse and cell models, there is limited knowledge of how these lipids are affected in human brain tissue. Using post-mortem brain tissue from five brain regions implicated in Huntington’s disease (control n = 13, Huntington’s n = 13), this study aimed to identify where and how sphingolipid species are affected in the brain of clinically advanced Huntington’s cases. Sphingolipids were extracted from the tissue and analysed using targeted mass spectrometry analysis; proteins were analysed by western blot. The caudate, putamen and cerebellum had distinct sphingolipid changes in Huntington’s brain whilst the white and grey frontal cortex were spared. The caudate of Huntington’s patients had a shifted sphingolipid profile, favouring long (C13–C21) over very-long-chain (C22–C26) ceramides, sphingomyelins and lactosylceramides. Ceramide synthase 1, which synthesizes the long-chain sphingolipids, had a reduced expression in Huntington’s caudate, correlating positively with a younger age at death and a longer CAG repeat length of the Huntington’s patients. The expression of ceramide synthase 2, which synthesizes very-long-chain sphingolipids, was not different in Huntington’s brain. However, there was evidence of possible post-translational modifications in the Huntington’s patients only. Post-translational modifications to ceramide synthase 2 may be driving the distinctive sphingolipid profile shifts of the caudate in advanced Huntington’s disease. This shift in the sphingolipid profile is also found in the most severely affected brain regions of several other neurodegenerative conditions and may be an important feature of region-specific cell dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Gabrielle R. Phillips
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Sarah E. Hancock
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon H. J. Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Chemistry and Molecular Biosciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew M. Jenner
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health and Florey Neuroscience, Parkville, VIC 3052, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
10
|
Guo S, Nguyen L, Ranum LPW. RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Curr Opin Neurobiol 2021; 72:160-170. [PMID: 34953315 DOI: 10.1016/j.conb.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA; Genetics Institute, University of Florida, USA; McKnight Brain Institute, University of Florida, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, USA.
| |
Collapse
|
11
|
Aslan DH, Hernandez ME, Frechette ML, Gephart AT, Soloveychik IM, Sosnoff JJ. The neural underpinnings of motor learning in people with neurodegenerative diseases: A scoping review. Neurosci Biobehav Rev 2021; 131:882-898. [PMID: 34624367 DOI: 10.1016/j.neubiorev.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/02/2021] [Accepted: 10/02/2021] [Indexed: 11/25/2022]
Abstract
Chronic progressive neurodegenerative diseases (NDD) cause mobility and cognitive impairments that disrupt quality of life. The learning of new motor skills, motor learning, is a critical component of rehabilitation efforts to counteract these chronic progressive impairments. In people with NDD, there are impairments in motor learning which appear to scale with the severity of impairment. Compensatory cortical activity plays a role in counteracting motor learning impairments in NDD. Yet, the functional and structural brain alterations associated with motor learning have not been synthesized in people with NDD. The purpose of this scoping review is to explore the neural alterations of motor learning in NDD. Thirty-five peer-reviewed original articles met the inclusion criteria. Participant demographics, motor learning results, and brain imaging results were extracted. Distinct motor learning associated compensatory processes were identified across NDD populations. Evidence from this review suggests the success of motor learning in NDD populations depends on the neural alterations and their interaction with motor learning networks, as well as the progression of disease.
Collapse
Affiliation(s)
- Daniel H Aslan
- Department of Kinesiology and Community Health, United States.
| | | | - Mikaela L Frechette
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| | - Aaron T Gephart
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| | - Isaac M Soloveychik
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| | - Jacob J Sosnoff
- Department of Molecular and Cellular Biology, University of Illinois, Urbana Champaign, United States
| |
Collapse
|
12
|
Wayne NJ, Dembny KE, Pease T, Saba F, Zhao X, Masison DC, Greene LE. Huntingtin Polyglutamine Fragments Are a Substrate for Hsp104 in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0012221. [PMID: 34424055 PMCID: PMC8547424 DOI: 10.1128/mcb.00122-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.
Collapse
Affiliation(s)
- Nicole J. Wayne
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E. Dembny
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler Pease
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Farrin Saba
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Delva A, Michiels L, Koole M, Van Laere K, Vandenberghe W. Synaptic Damage and Its Clinical Correlates in People With Early Huntington Disease: A PET Study. Neurology 2021; 98:e83-e94. [PMID: 34663644 DOI: 10.1212/wnl.0000000000012969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Synaptic damage has been proposed to play a major role in the pathophysiology of Huntington's disease (HD), but in vivo evidence in humans is lacking. We performed a PET imaging study to assess synaptic damage and its clinical correlates in early HD in vivo. METHODS: In this cross-sectional study, premanifest and early manifest (Shoulson-Fahn stage 1 and 2) HD mutation carriers and age- and gender-matched healthy controls underwent clinical assessment of motor and non-motor manifestations and time-of-flight PET with 11C-UCB-J, a radioligand targeting the ubiquitous presynaptic terminal marker SV2A. We also performed 18F-FDG PET in all subjects, as regional cerebral glucose consumption is thought to largely reflect synaptic activity. Volumes of interest were delineated based on individual 3D T1 MRI. Standardized uptake value ratio (SUVR)-1 images were calculated for 11C-UCB-J with the centrum semiovale as reference region. 18F-FDG PET activity was normalized to the pons. All PET data were corrected for partial volume effects. Volume of interest- and voxel-based analyses were performed. Correlations between clinical scores and 11C-UCB-J PET data were calculated. RESULTS 18 HD mutation carriers (51.4 ± 11.6 years; 6 female; 7 premanifest, 11 early manifest) and 15 healthy controls (52.3 ± 3.5 years; 4 female) were included. In the HD group, significant loss of SV2A binding was found in putamen, caudate, pallidum, cerebellum, parietal, temporal and frontal cortex, whereas reduced 18F-FDG uptake was restricted to caudate and putamen. In the premanifest subgroup, 11C-UCB-J and 18F-FDG PET showed significant reductions in putamen and caudate only. In the total HD group, SV2A loss in the putamen correlated with motor impairment. DISCUSSION Our data reveal loss of presynaptic terminal integrity in early HD, which begins in the striatum in the premanifest phase, spreads extensively to extrastriatal regions in the early manifest phase, and correlates with motor impairment. 11C-UCB-J PET is more sensitive than 18F-FDG PET for detection of extrastriatal changes in early HD. CLASSIFICATION OF EVIDENCE This study provides class III evidence that 11C-UCB-J PET accurately identifies HD from normal controls.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Belgium; .,Department of Neurology, University Hospitals Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, KU Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Belgium.,VIB, Center for Brain & Disease Research, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Belgium
| |
Collapse
|
14
|
De Silva M, Sadeghinezhad J, Nyengaard JR, Aghabalazadeh Asl M, Saeidi A, De Sordi N, Chiocchetti R, Grandis A. Design-based stereological study of the guinea-pig (Cavia porcellus) cerebellum. J Anat 2021; 239:517-528. [PMID: 33763861 PMCID: PMC8273595 DOI: 10.1111/joa.13434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
Guinea pigs have proved useful as experimental animal models in studying cerebellar anatomical and structural alterations in human neurological disease; however, they are also currently acquiring increasing veterinary interest as companion animals. The morphometric features of the normal cerebellum in guinea pigs have not been previously investigated using stereology. The objective of the present work was to establish normal volumetric and quantitative stereological parameters for cerebellar tissues in guinea pigs, by means of unbiased design-based stereology. Cerebellar total volume, gray and white matter volume fractions, molecular and granular layers volume fractions, cerebellar surface area, Purkinje cellular and nuclear volumes, and the Purkinje cell total count were stereologically estimated. For this purpose, cerebellar hemispheres from six adult male guinea pigs were employed. Isotropic, uniform random sections were obtained by applying the orientator method, and subsequently processed for light microscopy. The cerebellar total volume, the white and grey matter volume fractions, and the molecular and granular layer volumes were estimated using the Cavalieri's principle and the point counting system. The cerebellar surface area was estimated through the use of test lines; Purkinje cellular and nuclear volumes were analysed using the nucleator technique, whereas the Purkinje cell total count was obtained by means of the optical disector technique. The mean ± standard deviation total volume of a guinea-pig cerebellar hemisphere was 0.11 ± 0.01 cm3 . The mean volumetric proportions occupied by the gray and white matters were, respectively, 78.0 ± 2.6% and 22.0 ± 2.6%, whereas their mean absolute volumes were found to be 0.21 ± 0.02 cm3 and 0.059 ± 0.006 cm3 . The volumes of the molecular and granular layers were estimated at 112.4 ± 20.6 mm3 and 104.4 ± 7.3 mm3 , whereas their mean thicknesses were calculated to be 0.184 ± 0.020 mm and 0.17 ± 0.02 mm. The molecular and granular layers accounted for 40.7 ± 3.9% and 37.4 ± 1.8% of total cerebellar volume respectively. The surface area of the cerebellum measured 611.4 ± 96.8 mm2 . Purkinje cells with a cellular volume of 3210.1 µm3 and with a nuclear volume of 470.9 µm3 had a higher incidence of occurrence. The mean total number of Purkinje cells for a cerebellar hemisphere was calculated to be 253,090 ± 34,754. The morphometric data emerging from the present study provide a set of reference data which might prove valuable as basic anatomical contribution for practical applications in veterinary neurology.
Collapse
Affiliation(s)
- Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Mahdi Aghabalazadeh Asl
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ava Saeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nadia De Sordi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Padron-Rivera G, Diaz R, Vaca-Palomares I, Ochoa A, Hernandez-Castillo CR, Fernandez-Ruiz J. Cerebellar Degeneration Signature in Huntington's Disease. THE CEREBELLUM 2021; 20:942-945. [PMID: 33723707 DOI: 10.1007/s12311-021-01256-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 12/16/2022]
Abstract
Recent findings suggest a significant effect of the cerebellar circuit deterioration on the clinical manifestation of Huntington's disease, calling for a better understanding of the cerebellar degeneration in this disorder. Recent brain imaging analyses have provided conflicting results regarding the cerebellar changes during the progression of this disease. To help in resolving this controversy, we examined the cerebellar gray matter structural integrity from a cohort of HD patients. Whole brain voxel-based morphometry (VBM) and spatially unbiased atlas template of the human cerebellum (SUIT) analyses were done from T1-weighted brain images. Our results showed a significant cerebellar degeneration without any sign of volume increase. The highest cerebellar degeneration was identified in Crus I right lobule, Crus II bilaterally, and left VIIb, and left VIIIa lobules. The cerebellar degeneration signature, which controls for severity of degeneration, showed a degeneration pattern that included regions I-IV, Crus II, VIIb, VIIIa, VIIIb and X.
Collapse
Affiliation(s)
- Gustavo Padron-Rivera
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4 ° piso, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
| | - Rosalinda Diaz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4 ° piso, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México
| | - Israel Vaca-Palomares
- Ciencias Cognitivas y del Comportamiento, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana Ochoa
- Departamento de Neurogenética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | | | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4 ° piso, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México.
| |
Collapse
|
16
|
Bocci T, Baloscio D, Ferrucci R, Sartucci F, Priori A. Cerebellar Direct Current Stimulation (ctDCS) in the Treatment of Huntington's Disease: A Pilot Study and a Short Review of the Literature. Front Neurol 2020; 11:614717. [PMID: 33343504 PMCID: PMC7744723 DOI: 10.3389/fneur.2020.614717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: In recent years, a growing body of literature has investigated the use of non-invasive brain stimulation (NIBS) techniques as a putative treatment in Huntington's Disease (HD). Our aim was to evaluate the effects of cerebellar transcranial Direct Current Simulation (ctDCS) on the motor outcome in patients affected by HD, encompassing at the same time the current knowledge about the effects of NIBS both on motor and non-motor dysfunctions in HD. Materials and Methods: Four patients (two females) were enrolled and underwent ctDCS (both anodal or sham, elapsed by at least 3 months: 2.0 mA, 20 min per day, 5 days a week). Clinical scores were assessed by using the Unified Huntington's Disease Rating Scale - part I (UHDRS-I), immediately before ctDCS (T0), at the end of the 5-days treatment (T1) and 4 weeks later (T2). Results: Anodal ctDCS improved motor scores compared to baseline (p = 0.0046), whereas sham stimulation left them unchanged (p = 0.33, Friedman test). In particular, following anodal ctDCS, UHDRS-I score significantly improved, especially regarding the subitem "dystonia," both at T1 and T2 compared to sham condition (p < 0.05; Wilcoxon matched-pairs signed test). Conclusions: ctDCS improved motor scores in HD, with effects lasting for about 4 weeks after tDCS completion. This is the first study discussing the putative role of cerebellar non-invasive simulation for the treatment of HD.
Collapse
Affiliation(s)
- Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Davide Baloscio
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
17
|
Franklin GL, Camargo CHF, Meira AT, Pavanelli GM, Milano SS, Germiniani FB, Lima NSC, Raskin S, Barsottini OGP, Pedroso JL, Maggi FA, Tumas V, de Carvalho PM, de Oliveira AC, Braga B, Souza LC, Guimarães RP, Piovesana LG, Lopes-Cendes ÍT, de Azevedo PC, França MC, Martinez ARM, Teive HAG. Is Ataxia an Underestimated Symptom of Huntington's Disease? Front Neurol 2020; 11:571843. [PMID: 33281707 PMCID: PMC7689004 DOI: 10.3389/fneur.2020.571843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Huntington's disease (HD) is a progressive disorder characterized by motor, cognitive and psychiatric features. Cerebellar ataxia is classically considered as uncommon in HD clinical spectrum. Objective: To determine the prevalence of cerebellar ataxia in patients with HD, both in the early and in the late stages of HD. Methods: Seventy-two individuals considered eligible were assessed by two trained doctors, applying the Scale for Assessment and Rating of Ataxia (SARA) and Brief Ataxia Rating Scale (BARS) for ataxia, the Unified Huntington's Disease Rating Scale (UHDRS) and also, Barthel Index (BI), in order to evaluate functional capacity. Results: Fifty-one patients (70.8%) presented with clinical ataxia at the time of examination (mean time of disease was 9.1 years). Six (8.33%) patients presented with cerebellar ataxia as first symptom. When stratified according to time of disease, a decline in the presence of chorea (p = 0.032) and an increase in cognitive deficit (p = 0.023) were observed in the patients as the disease progressed. The presence of ataxia was associated with longer duration of illness and severity of illness (UHDRS) (p < 0.0001), and shorter Barthel (less functionality) (p = 0.001). Conclusions: Cerebellar involvement may play an important role in natural history of brain degeneration in HD. The presence of cerebellar ataxia in HD is relevant and it may occur even in early stages, and should be included as part of the motor features of the disease.
Collapse
Affiliation(s)
- Gustavo L. Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Henrique F. Camargo
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Alex T. Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Giovana M. Pavanelli
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Sibele S. Milano
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Francisco B. Germiniani
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Nayra S. C. Lima
- Faculdade de Medicina, Universidade de Vila Velha, Espirito Santo, Brazil
| | - Salmo Raskin
- Genetika – Centro de Aconselhamento e Laboratório de Genética, Curitiba, Brazil
| | | | - José Luiz Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Fernanda Aparecida Maggi
- Division of General Neurology and Ataxia Unit, Department of Neurology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil
| | - Vitor Tumas
- Movement Disorders and Behavioral Neurology Section, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Brazil
| | - Pedro Manzke de Carvalho
- Movement Disorders and Behavioral Neurology Section, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Brazil
| | - Ana Carolina de Oliveira
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Bárbara Braga
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Laura Cristina Souza
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Rachel Paes Guimarães
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luiza Gonzaga Piovesana
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Íscia Teresinha Lopes-Cendes
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Paula Christina de Azevedo
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Marcondes Cavalcante França
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Alberto Rolim Muro Martinez
- Departments of Neurology and Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Hélio A. G. Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
18
|
Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG. The Role of the Cerebellum in Huntington's Disease: a Systematic Review. THE CEREBELLUM 2020; 20:254-265. [PMID: 33029762 DOI: 10.1007/s12311-020-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a rare neurological disorder characterized by progressive motor, cognitive, and psychiatric disturbances. Although striatum degeneration might justify most of the motor symptoms, there is an emerging evidence of involvement of extra-striatal structures, such as the cerebellum. To elucidate the cerebellar involvement and its afferences with motor, psychiatric, and cognitive symptoms in HD. A systematic search in the literature was performed in MEDLINE, LILACS, and Google Scholar databases. The research was broadened to include the screening of reference lists of review articles for additional studies. Studies available in the English language, dating from 1993 through May 2020, were included. Clinical presentation of patients with HD may not be considered as the result of an isolated primary striatal dysfunction. There is evidence that cerebellar involvement is an early event in HD and may occur independently of striatal degeneration. Also, the loss of the compensation role of the cerebellum in HD may be an explanation for the clinical onset of HD. Although more studies are needed to elucidate this association, the current literature supports that the cerebellum may integrate the natural history of neurodegeneration in HD.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alex T Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
| | - Nayra S C Lima
- Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Zhang C, Wu Q, Liu H, Cheng L, Hou Z, Mori S, Hua J, Ross CA, Zhang J, Nopoulos PC, Duan W. Abnormal Brain Development in Huntington' Disease Is Recapitulated in the zQ175 Knock-In Mouse Model. Cereb Cortex Commun 2020; 1:tgaa044. [PMID: 32984817 PMCID: PMC7501464 DOI: 10.1093/texcom/tgaa044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/29/2023] Open
Abstract
Emerging cellular and molecular studies are providing compelling evidence that altered brain development contributes to the pathogenesis of Huntington's disease (HD). There has been lacking longitudinal system-level data obtained from in vivo HD models supporting this hypothesis. Our human MRI study in children and adolescents with HD indicates that striatal development differs between the HD and control groups, with initial hypertrophy and more rapid volume decline in HD group. In this study, we aimed to determine whether brain development recapitulates the human HD during the postnatal period. Longitudinal structural MRI scans were conducted in the heterozygous zQ175 HD mice and their littermate controls. We found that male zQ175 HD mice recapitulated the region-specific abnormal volume development in the striatum and globus pallidus, with early hypertrophy and then rapidly decline in the regional volume. In contrast, female zQ175 HD mice did not show significant difference in brain volume development with their littermate controls. This is the first longitudinal study of brain volume development at the system level in HD mice. Our results suggest that altered brain development may contribute to the HD pathogenesis. The potential effect of gene therapies targeting on neurodevelopmental event is worth to consider for HD therapeutic intervention.
Collapse
Affiliation(s)
- Chuangchuang Zhang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qian Wu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liam Cheng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun Hua
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21285, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Deaprtment of Radiology, New York University Grossman School of Medicine, New York City, NY 10016, USA
| | - Peggy C Nopoulos
- Departments of Psychiatry, Neurology, Pediatrics, University of Iowa Carver College of Medicine, Iowa city, IA 52242, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21285, USA
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Cook AA, Fields E, Watt AJ. Losing the Beat: Contribution of Purkinje Cell Firing Dysfunction to Disease, and Its Reversal. Neuroscience 2020; 462:247-261. [PMID: 32554108 DOI: 10.1016/j.neuroscience.2020.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The cerebellum is a brain structure that is highly interconnected with other brain regions. There are many contributing factors to cerebellar-related brain disease, such as altered afferent input, local connectivity, and/or cerebellar output. Purkinje cells (PC) are the principle cells of the cerebellar cortex, and fire intrinsically; that is, they fire spontaneous action potentials at high frequencies. This review paper focuses on PC intrinsic firing activity, which is altered in multiple neurological diseases, including ataxia, Huntington Disease (HD) and autism spectrum disorder (ASD). Notably, there are several cases where interventions that restore or rescue PC intrinsic activity also improve impaired behavior in these mouse models of disease. These findings suggest that rescuing PC firing deficits themselves may be sufficient to improve impairment in cerebellar-related behavior in disease. We propose that restoring PC intrinsic firing represents a good target for drug development that might be of therapeutic use for several disorders.
Collapse
Affiliation(s)
- Anna A Cook
- Department of Biology, McGill University, Montreal, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, Canada.
| |
Collapse
|
21
|
Sadeghinezhad J, Aghabalazadeh Asl M, Saeidi A, De Silva M. Morphometrical study of the cat cerebellum using unbiased design‐based stereology. Anat Histol Embryol 2020; 49:788-797. [DOI: 10.1111/ahe.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Mahdi Aghabalazadeh Asl
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Ava Saeidi
- Department of Basic Sciences Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008) University of Bologna Bologna Italy
| |
Collapse
|
22
|
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020; 170:106981. [PMID: 30630042 PMCID: PMC6612482 DOI: 10.1016/j.nlm.2019.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates unknown factors that may slow or even reverse neurodegenerative pathology in animal models of Alzheimer's Disease (AD). Cerebellum shows increased activity in early AD and Parkinson's disease (PD), suggesting a compensatory function that may mitigate early symptoms of neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate neuropathological markers of AD in a recognized progression and generally, cerebellum is the last brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain neurodegenerative mechanisms. On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum appears to be one of the most susceptible brain regions to injury and one of the first to exhibit signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, it may contribute to pathological behavioral outcomes. The cerebellum is well known for comparing internal representations of information with observed outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, and required for cognitive domains such as working memory. While cerebellum has reciprocal connections with non-motor brain regions and likely plays a role in complex, goal-directed behaviors, it has proven difficult to establish what it does mechanistically to modulate these behaviors. Due to this lack of understanding, it's not surprising to see the cerebellum reflexively dismissed or even ignored in basic and translational neuropsychiatric literature. The overarching goals of this review are to answer the following questions from primary literature: When the cerebellum is affected by pathology, is it associated with decreased cognitive function? When it is intact, does it play a compensatory or protective role in maintaining cognitive function? Are there theoretical frameworks for understanding the role of cerebellum in cognition, and perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, and not often treated.
Collapse
Affiliation(s)
- Katharine J Liang
- University of Washington School of Medicine, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Erik S Carlson
- University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
23
|
Diehl SK, Mefferd AS, Lin YC, Sellers J, McDonell KE, de Riesthal M, Claassen DO. Motor speech patterns in Huntington disease. Neurology 2019; 93:e2042-e2052. [PMID: 31662494 PMCID: PMC6913327 DOI: 10.1212/wnl.0000000000008541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/10/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Dysarthric speech of persons with Huntington disease (HD) is typically described as hyperkinetic; however, studies suggest that dysarthria can vary and resemble patterns in other neurologic conditions. To test the hypothesis that distinct motor speech subgroups can be identified within a larger cohort of patients with HD, we performed a cluster analysis on speech perceptual characteristics of patient audio recordings. METHODS Audio recordings of 48 patients with mild to moderate dysarthria due to HD were presented to 6 trained raters. Raters provided scores for various speech features (e.g., voice, articulation, prosody) of audio recordings using the classic Mayo Clinic dysarthria rating scale. Scores were submitted to an unsupervised k-means cluster analysis to determine the most salient speech features of subgroups based on motor speech patterns. RESULTS Four unique subgroups emerged from the cohort of patients with HD. Subgroup 1 was characterized by an abnormally fast speaking rate among other unique speech features, whereas subgroups 2 and 3 were defined by an abnormally slow speaking rate. Salient speech features for subgroup 2 overlapped with subgroup 3; however, the severity of dysarthria differed. Subgroup 4 was characterized by mild deviations of speech features with typical speech rate. Length of CAG repeats, Unified Huntington's Disease Rating Scale total motor score, and percent intelligibility were significantly different for pairwise comparisons of subgroups. CONCLUSION This study supports the existence of distinct presentations of dysarthria in patients with HD, which may be due to divergent pathologic processes. The findings are discussed in relation to previous literature and clinical implications.
Collapse
Affiliation(s)
- Sarah K Diehl
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Antje S Mefferd
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Ya-Chen Lin
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Jessie Sellers
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Katherine E McDonell
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Michael de Riesthal
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN
| | - Daniel O Claassen
- From Hearing and Speech Sciences (S.K.D., A.M., M.d.R.), Biostatistics (Y.-C.L.), and Neurology (J.S., K.M., D.O.C.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
24
|
Human Huntington's Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and Maturation. Cell Rep 2019; 25:1081-1096.e6. [PMID: 30355486 DOI: 10.1016/j.celrep.2018.09.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the Huntingtin (HTT) gene. Induced pluripotent stem cell (iPSC) models of HD provide an opportunity to study the mechanisms underlying disease pathology in disease-relevant patient tissues. Murine studies have demonstrated that HTT is intricately involved in corticogenesis. However, the effect of mutant Hungtintin (mtHTT) in human corticogenesis has not yet been thoroughly explored. This examination is critical, due to inherent differences in cortical development and timing between humans and mice. We therefore differentiated HD and non-diseased iPSCs into functional cortical neurons. While HD patient iPSCs can successfully differentiate toward a cortical fate in culture, the resulting neurons display altered transcriptomics, morphological and functional phenotypes indicative of altered corticogenesis in HD.
Collapse
|
25
|
Naphade S, Tshilenge KT, Ellerby LM. Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics 2019; 16:979-998. [PMID: 31792895 PMCID: PMC6985408 DOI: 10.1007/s13311-019-00810-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyglutamine expansion disorders, which include Huntington's disease, have expanded CAG repeats that result in polyglutamine expansions in affected proteins. How this specific feature leads to distinct neuropathies in 11 different diseases is a fascinating area of investigation. Most proteins affected by polyglutamine expansions are ubiquitously expressed, yet their mechanisms of selective neurotoxicity are unknown. Induced pluripotent stem cells have emerged as a valuable tool to model diseases, understand molecular mechanisms, and generate relevant human neural and glia subtypes, cocultures, and organoids. Ideally, this tool will generate specific neuronal populations that faithfully recapitulate specific polyglutamine expansion disorder phenotypes and mimic the selective vulnerability of a given disease. Here, we review how induced pluripotent technology is used to understand the effects of the disease-causing polyglutamine protein on cell function, identify new therapeutic targets, and determine how polyglutamine expansion affects human neurodevelopment and disease. We will discuss ongoing challenges and limitations in our use of induced pluripotent stem cells to model polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Swati Naphade
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
26
|
Kindler J, Michel C, Schultze-Lutter F, Felber G, Hauf M, Schimmelmann BG, Kaess M, Hubl D, Walther S. Functional and structural correlates of abnormal involuntary movements in psychosis risk and first episode psychosis. Schizophr Res 2019; 212:196-203. [PMID: 31405623 DOI: 10.1016/j.schres.2019.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Abnormal involuntary movements (AIM) may occur throughout the course of psychosis. While AIM are thought to indicate striatal abnormalities, the functional and structural correlates of increased AIM remain elusive. Here, we examined the prevalence of AIM in patients with clinical high risk for psychosis (CHR), first episode psychosis (FEP) and clinical controls (CC). Furthermore, we tested the association of AIM with regional cerebral blood flow (rCBF), grey matter volume (GMV), and premorbid IQ. METHODS We conducted a video-based analysis of AIM in patients with CHR (n = 45), FEP (n = 10) and CC (n = 39), recruited in the Early Detection and Intervention Center, Bern. Premorbid intelligence was evaluated using the Peabody Picture Vocabulary test. Additionally, arterial spin labeling MRIs and structural MRIs were acquired in a subgroup of the sample to investigate the association of AIM with rCBF and GMV. RESULTS Higher total AIM scores were detected in CHR (p = 0.02) and FEP (p = 0.04) as compared to CC. When separated for different muscle groups, lips and perioral movements were significantly increased in CHR patients as compared to CC (p = 0.009). AIM scores correlated positively with rCBF in the premotor cortex, Brodmann area 6 (p < 0.05, FWE corrected). Negative correlations were found between AIM and GMV of the corresponding caudal middle frontal gyrus (p = 0.04, FWE corrected) and premorbid intelligence (p = 0.02). CONCLUSIONS AIM were more frequent in the psychosis spectrum than in clinical controls. Neuroimaging findings indicate an involvement of cortical motor areas in abnormal motor behavior, instead of pure basal ganglia pathology.
Collapse
Affiliation(s)
- Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland.
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Frauke Schultze-Lutter
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gwendolin Felber
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Martinus Hauf
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland
| | - Benno G Schimmelmann
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; University Hospital of Child and Adolescent Psychiatry, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Switzerland; Section for Translational Psychobiology in Child and Adolescent Psychiatry, Clinic for Child and Adolescent Psychiatry, University Hospital Heidelberg, Germany
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
28
|
D'Aurizio G, Migliore S, Curcio G, Squitieri F. Safer Attitude to Risky Decision-Making in Premanifest Huntington's Disease Subjects. Front Psychol 2019; 10:846. [PMID: 31057466 PMCID: PMC6477566 DOI: 10.3389/fpsyg.2019.00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/29/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disorder characterized by involuntary, jerky movements, incoordination, behavioral changes and subtle executive and cognitive impairment starting before motor symptoms. Our study aimed to assess the risky decision-making process in premanifest (pre) HD subjects, by means Game of Dice Task (GDT). As dependent variables, several GDT outcomes have been taken into consideration. We recruited 30 subjects (15 females) with preHD (i.e., Diagnosis Confidence Level < 4; Total Motor Score < 10), and 21 age, gender and education matched neurologically normal subjects (11 females). GDT is a computer-guided task where subjects are invited to watch the digits on which to bet and to evaluate the related potential risk to win or loss. Our results showed that decision and feedback times were longer in preHD than in neurologically normal group in both disadvantageous and advantageous choices. PreHD subjects provided a greater number of “safe” strategies, taken with longer decision-making time than neurologically normal subjects, showing a reduced propensity to risk. Such behavior, characterized by increased slowness in acting and providing answers, might contribute to delineate a behavioral and cognitive profile in preHD.
Collapse
Affiliation(s)
- Giulia D'Aurizio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
29
|
Singh-Bains MK, Mehrabi NF, Sehji T, Austria MDR, Tan AYS, Tippett LJ, Dragunow M, Waldvogel HJ, Faull RLM. Cerebellar degeneration correlates with motor symptoms in Huntington disease. Ann Neurol 2019; 85:396-405. [PMID: 30635944 PMCID: PMC6590792 DOI: 10.1002/ana.25413] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by variable motor and behavioral symptoms attributed to major neuropathology of mainly the basal ganglia and cerebral cortex. The role of the cerebellum, a brain region involved in the coordination of movements, in HD neuropathology has been controversial. This study utilizes postmortem human brain tissue to investigate whether Purkinje cell degeneration in the neocerebellum is present in HD, and how this relates to disease symptom profiles. METHODS Unbiased stereological counting methods were used to quantify the total number of Purkinje cells in 15 HD cases and 8 neurologically normal control cases. Based on their predominant symptoms, the HD cases were categorized into 2 groups: "motor" or "mood." RESULTS The results demonstrated a significant 43% loss of Purkinje cells in HD cases with predominantly motor symptoms, and no cell loss in cases showing a major mood phenotype. There was no significant correlation between Purkinje cell loss and striatal neuropathological grade, postmortem delay, CAG repeat in the IT15 gene, or age at death. INTERPRETATION This study shows a compelling relationship between Purkinje cell loss in the HD neocerebellum and the HD motor symptom phenotype, which, together with our previous human brain studies on the same HD cases, provides novel perspectives interrelating and correlating the variable cerebellar, basal ganglia, and neocortical neuropathology with the variability of motor/mood symptom profiles in the human HD brain. ANN NEUROL 2019;85:396-405.
Collapse
Affiliation(s)
- Malvindar K Singh-Bains
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Tvesa Sehji
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Micah D R Austria
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Adelie Y S Tan
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Ciarochi JA, Johnson HJ, Calhoun VD, Liu J, Espinoza FA, Bockholt HJ, Misiura M, Caprihan A, Plis S, Paulsen JS, Turner JA. Concurrent Cross-Sectional and Longitudinal Analyses of Multivariate White Matter Profiles and Clinical Functioning in Pre-Diagnosis Huntington Disease. J Huntingtons Dis 2019; 8:199-219. [PMID: 30932891 DOI: 10.3233/jhd-180332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gray matter (GM) atrophy in the striatum and across the brain is a consistently reported feature of the Huntington Disease (HD) prodrome. More recently, widespread prodromal white matter (WM) degradation has also been detected. However, longitudinal WM studies are limited and conflicting, and most analyses comparing WM and clinical functioning have also been cross-sectional. OBJECTIVE We simultaneously assessed changes in WM and cognitive and motor functioning at various prodromal HD stages. METHODS Data from 1,336 (1,047 prodromal, 289 control) PREDICT-HD participants were analyzed (3,700 sessions). MRI images were used to create GM, WM, and cerebrospinal fluid probability maps. Using source-based morphometry, independent component analysis was applied to WM probability maps to extract covarying spatial patterns and their subject profiles. WM profiles were analyzed in two sets of linear mixed model (LMM) analyses: one to compare WM profiles across groups cross-sectionally and longitudinally, and one to concurrently compare WM profiles and clinical variables cross-sectionally and longitudinally within each group. RESULTS Findings illustrate widespread prodromal changes in GM-adjacent-WM, with premotor, supplementary motor, middle frontal and striatal changes early in the prodrome that subsequently extend sub-gyrally with progression. Motor functioning agreed most with WM until the near-onset prodromal stage, when Stroop interference was the best WM indicator. Across groups, Trail-Making Test part A outperformed other cognitive variables in its similarity to WM, particularly cross-sectionally. CONCLUSIONS Results suggest that distinct regions coincide with cognitive compared to motor functioning. Furthermore, at different prodromal stages, distinct regions appear to align best with clinical functioning. Thus, the informativeness of clinical measures may vary according to the type of data available (cross-sectional or longitudinal) as well as age and CAG-number.
Collapse
Affiliation(s)
| | - Hans J Johnson
- Department of Electrical and Computer Engineering, 1402 Seamans Center for the Engineering Arts and Science, The University of Iowa, Iowa City, IA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM, USA
| | | | | | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Sergey Plis
- The Mind Research Network, Albuquerque, NM, USA
| | - Jane S Paulsen
- Department of Psychiatry, Iowa Mental Health Clinical Research Center, University of Iowa, IA, USA
- Departments of Neurology and Psychology, University of Iowa, IA, USA
| | - Jessica A Turner
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
31
|
Rowley CD, Tabrizi SJ, Scahill RI, Leavitt BR, Roos RAC, Durr A, Bock NA. Altered Intracortical T 1-Weighted/T 2-Weighted Ratio Signal in Huntington's Disease. Front Neurosci 2018; 12:805. [PMID: 30455625 PMCID: PMC6230564 DOI: 10.3389/fnins.2018.00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by neuronal cell death. Although medium spiny neurons in the striatum are predominantly affected, other brain regions including the cerebral cortex also degenerate. Previous structural imaging studies have reported decreases in cortical thickness in HD. Here we aimed to further investigate changes in cortical tissue composition in vivo in HD using standard clinical T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance images (MRIs). 326 subjects from the TRACK-HD dataset representing healthy controls and four stages of HD progression were analyzed. The intracortical T1W/T2W intensity was sampled in the middle depth of the cortex over 82 regions across the cortex. While these previously collected images were not optimized for intracortical analysis, we found a significant increase in T1W/T2W intensity (p < 0.05 Bonferroni-Holm corrected) beginning with HD diagnosis. Increases in ratio intensity were found in the insula, which then spread to ventrolateral frontal cortex, superior temporal gyrus, medial temporal gyral pole, and cuneus with progression into the most advanced HD group studied. Mirroring past histological reports, this increase in the ratio image intensity may reflect disease-related increases in myelin and/or iron in the cortex. These findings suggest that future imaging studies are warranted with imaging optimized to more sensitively and specifically assess which features of cortical tissue composition are abnormal in HD to better characterize disease progression.
Collapse
Affiliation(s)
- Christopher D. Rowley
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University, Hamilton, ON, Canada
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Rachael I. Scahill
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Blair R. Leavitt
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Raymund A. C. Roos
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Durr
- INSERM U1127, CNRS UMR7225, UMR_S1127, UPMC Université Paris VI, Institut du Cerveau et de la Moelle Epinière, Sorbonne University, Paris, France
- APHP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Nicholas A. Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
32
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
33
|
Migliore S, D'Aurizio G, Curcio G, Squitieri F. Task-switching abilities in pre-manifest Huntington's disease subjects. Parkinsonism Relat Disord 2018; 60:111-117. [PMID: 30201420 DOI: 10.1016/j.parkreldis.2018.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Huntington's Disease (HD) cognitive dysfunction occurs before unequivocal motor signs become apparent. The predominant early cognitive abnormal domains may include deficits in psychomotor speed, negative emotion recognition and executive functioning. Our study is aimed to investigate the executive control of cognition in pre-manifest (pre) HD subjects, by means of a task-switching protocol. METHODS We recruited 30 pre-HD subjects and 18 age-, sex- and education-matched Healthy Controls (HC). Subjects were assigned to two experimental groups: 15 pre-HD1 with a Total Motor Score (TMS) ≤4 (far from onset) and 15 pre-HD2 with a 5 ≤ TMS≤9 (near to onset and Diagnostic Confidence Level (DCL) still<4). Two different tasks were performed in rapid and random succession, so that the task was either changed from one trial to the next one (switch trials) or repeated (repetition trials). Switch trials are usually slower than repetitions, causing a so-called Switch Cost (SC). RESULTS Pre-HD subjects had worse performance than HC in the switch and repetition trials, as indicated by increased SC and reaction times. In particular, pre-HD2 showed impaired switching abilities with reaction times slower than pre-HD1 and HC. CONCLUSIONS Our study highlighted a task-switching impairment since HD was still at a pre-manifest stage. Such abnormalities worsen when pre-HD subjects start to show subtle motor manifestations, still nonspecific and insufficient to define the clinical diagnosis of HD (DCL<4). Considering that such abilities have obvious implications for activities of daily living, early cognitive rehabilitation programs addressing such deficits might be useful in the premanifest stage of the disease.
Collapse
Affiliation(s)
- Simone Migliore
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza Hospital (Rome CSS-Mendel), Viale Cappuccini, 1, 71013, San Giovanni Rotondo, Italy.
| | - Giulia D'Aurizio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, AQ, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, AQ, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza Hospital (Rome CSS-Mendel), Viale Cappuccini, 1, 71013, San Giovanni Rotondo, Italy
| |
Collapse
|
34
|
Morphological features in juvenile Huntington disease associated with cerebellar atrophy - magnetic resonance imaging morphometric analysis. Pediatr Radiol 2018; 48:1463-1471. [PMID: 29926145 DOI: 10.1007/s00247-018-4167-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND The imaging features of Huntington disease are well known in adults, unlike in juvenile-onset Huntington disease. OBJECTIVE To conduct a morphometric magnetic resonance imaging (MRI) analysis in three juvenile Huntington disease patients (ages 2, 4 and 6 years old) to determine whether quantitative cerebral and cerebellar morphological metrics may provide diagnostically interesting patterns of cerebellar and cerebellar atrophy. MATERIALS AND METHODS We report the cases of three siblings with extremely early presentations of juvenile Huntington disease associated with dramatic expansions of the morbid paternal allele from 43 to more than 100 CAG trinucleotide repeats. Automatic segmentation of MRI images of the cerebrum and cerebellum was performed and volumes of cerebral substructures and cerebellar lobules of juvenile Huntington disease patients were compared to those of 30 normal gender- and age-matched controls. Juvenile Huntington disease segmented volumes were compared to those of age-matched controls by using a z-score. RESULTS Three cerebral substructures (caudate nucleus, putamen and globus pallidus) demonstrated a reduction in size of more than three standard deviations from the normal mean although it was not salient in one of them at clinical reading and was not diagnosed. The size of cerebellum lobules, cerebellum grey matter and cerebellum cortex was reduced by more than two standard deviations in the three patients. The cerebellar atrophy was predominant in the posterior lobe. CONCLUSION Our study sheds light on atrophic cerebral and cerebellar structures in juvenile Huntington disease. Automatic segmentations of the cerebellum provide patterns that may be of diagnostic interest in this disease.
Collapse
|
35
|
Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant SGN. Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes 2018; 6:proteomes6030031. [PMID: 30071621 PMCID: PMC6161190 DOI: 10.3390/proteomes6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.
Collapse
Affiliation(s)
- Marcia Roy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Colin McLean
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Silvia Tapia-González
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
36
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
37
|
Wu D, Faria AV, Younes L, Mori S, Brown T, Johnson H, Paulsen JS, Ross CA, Miller MI. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease. Hum Brain Mapp 2017; 38:5035-5050. [PMID: 28657159 PMCID: PMC5766002 DOI: 10.1002/hbm.23713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Andreia V. Faria
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Applied Mathematics and StatisticsJohns Hopkins UniversityBaltimoreMaryland
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimoreMaryland
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
| | - Hans Johnson
- Department of Electrical and Computer EngineeringUniversity of IowaIowa CityIowa
| | - Jane S. Paulsen
- Departments of Psychiatry, Neurology, Psychology and NeurosciencesUniversity of IowaIowa CityIowa
| | - Christopher A. Ross
- Division of Neurobiology, Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Michael I. Miller
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMaryland
| | | |
Collapse
|
38
|
Cleary JD, Ranum LP. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 2017; 44:125-134. [PMID: 28365506 PMCID: PMC5951168 DOI: 10.1016/j.gde.2017.03.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Since the discovery of repeat-associated non-ATG (RAN) translation, and more recently its association with amyotrophic lateral sclerosis/frontotemporal dementia, there has been an intense focus to understand how this process works and the downstream effects of these novel proteins. RAN translation across several different types of repeat expansions mutations (CAG, CTG, CCG, GGGGCC, GGCCCC) results in the production of proteins in all three reading frames without an ATG initiation codon. The combination of bidirectional transcription and RAN translation has been shown to result in the accumulation of up to six mutant expansion proteins in a growing number of diseases. This process is complex mechanistically and also complex from the perspective of the downstream consequences in disease. Here we review recent developments in RAN translation and their implications on our basic understanding of neurodegenerative disease and gene expression.
Collapse
Affiliation(s)
- John Douglas Cleary
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Laura Pw Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
39
|
de Azevedo PC, Guimarães RP, Piccinin CC, Piovesana LG, Campos LS, Zuiani JR, Tamashiro EM, Pinheiro G, Amato-Filho AC, Cendes F, Lopes-Cendes I, D’Abreu A. Cerebellar Gray Matter Alterations in Huntington Disease: A Voxel-Based Morphometry Study. THE CEREBELLUM 2017; 16:923-928. [DOI: 10.1007/s12311-017-0865-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study. Sci Rep 2017; 7:46526. [PMID: 28417971 PMCID: PMC5394485 DOI: 10.1038/srep46526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/14/2017] [Indexed: 11/22/2022] Open
Abstract
Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities.
Collapse
|
41
|
Gelderblom H, Wüstenberg T, McLean T, Mütze L, Fischer W, Saft C, Hoffmann R, Süssmuth S, Schlattmann P, van Duijn E, Landwehrmeyer B, Priller J. Bupropion for the treatment of apathy in Huntington's disease: A multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial. PLoS One 2017; 12:e0173872. [PMID: 28323838 PMCID: PMC5360242 DOI: 10.1371/journal.pone.0173872] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/28/2017] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of bupropion in the treatment of apathy in Huntington's disease (HD). METHODS In this phase 2b multicentre, double-blind, placebo-controlled crossover trial, individuals with HD and clinical signs of apathy according to the Structured Clinical Interview for Apathy-Dementia (SCIA-D), but not depression (n = 40) were randomized to receive either bupropion 150/300mg or placebo daily for 10 weeks. The primary outcome parameter was a significant change of the Apathy Evaluation Scale (AES) score after ten weeks of treatment as judged by an informant (AES-I) living in close proximity with the study participant. The secondary outcome parameters included changes of 1. AES scores determined by the patient (AES-S) or the clinical investigator (AES-C), 2. psychiatric symptoms (NPI, HADS-SIS, UHDRS-Behavior), 3. cognitive performance (SDMT, Stroop, VFT, MMSE), 4. motor symptoms (UHDRS-Motor), 5. activities of daily function (TFC, UHDRS-Function), and 6. caregiver distress (NPI-D). In addition, we investigated the effect of bupropion on brain structure as well as brain responses and functional connectivity during reward processing in a gambling task using magnetic resonance imaging (MRI). RESULTS At baseline, there were no significant treatment group differences in the clinical primary and secondary outcome parameters. At endpoint, there was no statistically significant difference between treatment groups for all clinical primary and secondary outcome variables. Study participation, irrespective of the intervention, lessened symptoms of apathy according to the informant and the clinical investigator. CONCLUSION Bupropion does not alleviate apathy in HD. However, study participation/placebo effects were observed, which document the need for carefully controlled trials when investigating therapeutic interventions for the neuropsychiatric symptoms of HD. TRIAL REGISTRATION ClinicalTrials.gov 01914965.
Collapse
Affiliation(s)
- Harald Gelderblom
- Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tim McLean
- European Huntington’s Disease Network, Ulm, Germany
| | | | | | - Carsten Saft
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Ruhr-University, Bochum, Germany
| | - Rainer Hoffmann
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Ruhr-University, Bochum, Germany
| | | | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena Universityhospital, Jena, Germany
| | - Erik van Duijn
- Department of Psychiatry, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bernhard Landwehrmeyer
- European Huntington’s Disease Network, Ulm, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Josef Priller
- Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, DZNE and BIH, Berlin, Germany
| |
Collapse
|
42
|
The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers. ADVANCES IN NEUROBIOLOGY 2017; 15:129-161. [PMID: 28674980 DOI: 10.1007/978-3-319-57193-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.
Collapse
|
43
|
Singh‐Bains MK, Waldvogel HJ, Faull RLM. The role of the human globus pallidus in Huntington's disease. Brain Pathol 2016; 26:741-751. [PMID: 27529459 PMCID: PMC8029019 DOI: 10.1111/bpa.12429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease (HD) is characterized by pronounced pathology of the basal ganglia, with numerous studies documenting the pattern of striatal neurodegeneration in the human brain. However, a principle target of striatal outflow, the globus pallidus (GP), has received limited attention in comparison, despite being a core component of the basal ganglia. The external segment (GPe) is a major output of the dorsal striatum, connecting widely to other basal ganglia nuclei via the indirect motor pathway. The internal segment (GPi) is a final output station of both the direct and indirect motor pathways of the basal ganglia. The ventral pallidum (VP), in contrast, is a primary output of the limbic ventral striatum. Currently, there is a lack of consensus in the literature regarding the extent of GPe and GPi neurodegeneration in HD, with a conflict between pallidal neurons being preserved, and pallidal neurons being lost. In addition, no current evidence considers the fate of the VP in HD, despite it being a key structure involved in reward and motivation. Understanding the involvement of these structures in HD will help to determine their involvement in basal ganglia pathway dysfunction in the disease. A clear understanding of the impact of striatal projection loss on the main neurons that receive striatal input, the pallidal neurons, will aid in the understanding of disease pathogenesis. In addition, a clearer picture of pallidal involvement in HD may contribute to providing a morphological basis to the considerable variability in the types of motor, behavioral, and cognitive symptoms in HD. This review aims to highlight the importance of the globus pallidus, a critical component of the cortical-basal ganglia circuits, and its role in the pathogenesis of HD. This review also summarizes the current literature relating to human studies of the globus pallidus in HD.
Collapse
Affiliation(s)
- Malvindar K. Singh‐Bains
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
44
|
Di Pardo A, Amico E, Maglione V. Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models. Front Neurosci 2016; 10:457. [PMID: 27766070 PMCID: PMC5052274 DOI: 10.3389/fnins.2016.00457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease.
Collapse
Affiliation(s)
- Alba Di Pardo
- Istituto Neurologico Mediterraneo (IRCCS) Neuromed Pozzilli, Italy
| | - Enrico Amico
- Istituto Neurologico Mediterraneo (IRCCS) Neuromed Pozzilli, Italy
| | | |
Collapse
|
45
|
Melkani GC. Huntington's Disease-Induced Cardiac Disorders Affect Multiple Cellular Pathways. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:325-338. [PMID: 29963642 PMCID: PMC6022757 DOI: 10.20455/ros.2016.859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a rare, inherited, progressive, and fatal neurological disorder resulting from expanded polyglutamine repeats in the huntingtin protein. While HD is predominately characterized as a disease of the central nervous system, mortality surveys and epidemiological studies reveal heart disease as one of the leading causes of death in HD patients. Emerging evidence supports a link between HD and cardiovascular disease, such as cardiac amyloidosis (accumulation of aggregates in the heart). Experimental animal and clinical studies have attempted to explain the mechanisms of HD-induced cardiac pathology in the association of protein misfolding, autophagic defects, oxidative stress, mitochondrial dysfunction, and cell death. HD is increasingly understood as a complex disease with peripheral components of cardiac and skeletal muscle pathophysiology. While the discovery of these linkages and apparent pathological markers is promising, the mechanism of HD-induced cardiac pathology and the nature of its cell autonomy remain elusive. Further study of the wide-ranging cardiac function in HD patients is needed. This review highlights published literature on the pathological factors associated with HD-induced cardiac amyloidosis and other cardiovascular diseases, and addresses gaps in this expanding area of study. Through comprehensive experimental and clinical studies, potential drugs can be tested to attenuate and/or ameliorate HD-induced cardiac pathology and mortality.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
46
|
Sakai K, Ishida C, Morinaga A, Takahashi K, Yamada M. Case Study: Somatic Sprouts and Halo-Like Amorphous Materials of the Purkinje Cells in Huntington's Disease. THE CEREBELLUM 2016; 14:707-10. [PMID: 25962893 DOI: 10.1007/s12311-015-0678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We described a 63-year-old Japanese female with genetically confirmed Huntington's disease who showed unusual pathological findings in the cerebellum. This case exhibited typical neuropathological features as Huntington's disease, including severe degeneration of the neostriatum and widespread occurrence of ubiquitin and expanded polyglutamine-positive neuronal intranuclear and intracytoplasmic inclusions. The cerebellum was macroscopically unremarkable; however, somatic sprouts and halo-like amorphous materials of Purkinje cell with a large amount of torpedoes were noteworthy. Furthermore, the Purkinje cells were found to have granular cytoplasmic inclusions. Somatic sprouting is a form of degenerated Purkinje cell exhibited in several specific conditions. Although this finding usually appeared in developmental brains, several neurodegenerative disorders, including Menkes kinky hair disease, familial spinocerebellar ataxia, acute encephalopathy linked to familial hemiplegic migraine, and several other conditions, have been reported showing sprouting from the soma of Purkinje cell. We propose that Huntington's disease is another degenerative condition associated with these distinct neuropathological findings of Purkinje cell. Abnormally accumulated huntingtin protein in the cytoplasm could be related to the development of these structures.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Chiho Ishida
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Akiyoshi Morinaga
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.,Department of Neurology, National Hospital Organization Nanao Hospital, Nanao, Japan
| | - Kazuya Takahashi
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
47
|
Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, Pletnikova O, Borchelt DR, Ross CA, Margolis RL, Yachnis AT, Troncoso JC, Ranum LPW. RAN Translation in Huntington Disease. Neuron 2016; 88:667-77. [PMID: 26590344 DOI: 10.1016/j.neuron.2015.10.038] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/05/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022]
Abstract
Huntington disease (HD) is caused by a CAG ⋅ CTG expansion in the huntingtin (HTT) gene. While most research has focused on the HTT polyGln-expansion protein, we demonstrate that four additional, novel, homopolymeric expansion proteins (polyAla, polySer, polyLeu, and polyCys) accumulate in HD human brains. These sense and antisense repeat-associated non-ATG (RAN) translation proteins accumulate most abundantly in brain regions with neuronal loss, microglial activation and apoptosis, including caudate/putamen, white matter, and, in juvenile-onset cases, also the cerebellum. RAN protein accumulation and aggregation are length dependent, and individual RAN proteins are toxic to neural cells independent of RNA effects. These data suggest RAN proteins contribute to HD and that therapeutic strategies targeting both sense and antisense genes may be required for efficacy in HD patients. This is the first demonstration that RAN proteins are expressed across an expansion located in an open reading frame and suggests RAN translation may also contribute to other polyglutamine diseases.
Collapse
Affiliation(s)
- Monica Bañez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Fatma Ayhan
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Alex D Tarabochia
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Tao Zu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Barbara A Perez
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Olga Pletnikova
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Borchelt
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Christopher A Ross
- Division of Neurobiology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Baltimore Huntington's Disease Center, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Russell L Margolis
- Division of Neurobiology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Baltimore Huntington's Disease Center, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juan C Troncoso
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
48
|
Svetozarskiy SN, Kopishinskaya SV, Gustov AV, Radyuk MA, Antonova VA, Smetankin IG, Svetozarskiy SN, Kopishinskaya SV, Gustov AV, Radyuk MA, Antonova VA, Smetankin IG. [Ophthalmic manifestations of Huntington's disease]. Vestn Oftalmol 2015; 131:82-86. [PMID: 26845877 DOI: 10.17116/oftalma2015131582-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin gene. The whole nervous system, including visual analyzer, is involved in the pathogenesis of the disease. Various ocular sings can be found in both preclinical and clinical stages of HD. Specific retinal damage, namely, abnormal proteins formation, photoreceptor degeneration and retinal remodeling, has been studied in animal models. Functional changes in occipital lobe activity and its atrophy as well as degeneration of visual pathways can already be present in the early stages of the disease. Oculomotor symptoms of HD include disturbed visual fixation, slower tracking eye movements and saccades, and suppressed vestibulo-ocular reflex. Visual perceptual disorders, such as visuospatial difficulties, problems of stimulus identification and motion perception, along with decreased contrast sensitivity, have also been described. The possibility of using certain ophthalmic parameters as biomarkers of HD is being discussed.
Collapse
Affiliation(s)
- S N Svetozarskiy
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - S V Kopishinskaya
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - A V Gustov
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - M A Radyuk
- Volgograd State Medical University, Ministry of Health of the Russian Federation, 1 Pavshikh Bortsov Sq., Volgograd, Russian Federation, 400131
| | - V A Antonova
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - I G Smetankin
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - S N Svetozarskiy
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - S V Kopishinskaya
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - A V Gustov
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - M A Radyuk
- Volgograd State Medical University, Ministry of Health of the Russian Federation, 1 Pavshikh Bortsov Sq., Volgograd, Russian Federation, 400131
| | - V A Antonova
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - I G Smetankin
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| |
Collapse
|
49
|
Douvaras P, Fossati V. Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc 2015; 10:1143-54. [PMID: 26134954 DOI: 10.1038/nprot.2015.075] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the CNS, oligodendrocytes act as the myelinating cells. Oligodendrocytes have been identified to be key players in several neurodegenerative disorders. This protocol describes a robust, fast and reproducible differentiation protocol to generate human oligodendrocytes from pluripotent stem cells (PSCs) using a chemically defined, growth factor-rich medium. Within 8 d, PSCs differentiate into paired box 6-positive (PAX6(+)) neural stem cells, which give rise to OLIG2(+) progenitors by day 12. Oligodendrocyte lineage transcription factor 2-positive (OLIG2(+)) cells begin to express the transcription factor NKX2.2 around day 18, followed by SRY-box 10 (SOX10) around day 40. Oligodendrocyte progenitor cells (OPCs) that are positive for the cell surface antigen recognized by the O4 antibody (O4(+)) appear around day 50 and reach, on average, 43% of the cell population after 75 d of differentiation. O4(+) OPCs can be isolated by cell sorting for myelination studies, or they can be terminally differentiated to myelin basic protein-positive (MBP(+)) oligodendrocytes. This protocol also describes an alternative strategy for markedly reducing the length and the costs of the differentiation and generating ∼30% O4(+) cells after only 55 d of culture.
Collapse
Affiliation(s)
- Panagiotis Douvaras
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| |
Collapse
|
50
|
Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 2015; 85:1212-26. [PMID: 25789755 DOI: 10.1016/j.neuron.2015.02.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/27/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022]
Abstract
Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target.
Collapse
|