1
|
Wu J, Ji D, Jiao W, Jia J, Zhu J, Hang T, Chen X, Ding Y, Xu Y, Chang X, Li L, Liu Q, Cao Y, Zhong Y, Sun X, Guo Q, Wang T, Wang Z, Ling Y, Xiao W, Huang Z, Zhang Y. A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement. Acta Pharm Sin B 2025; 15:1070-1083. [PMID: 40177546 PMCID: PMC11959975 DOI: 10.1016/j.apsb.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 04/05/2025] Open
Abstract
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jiayi Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuwen Xu
- Crystal Pharmatech Co., Ltd., Suzhou 215123, China
| | - Xinglong Chang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Liang Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Qiu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Yumei Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Yan Zhong
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Xia Sun
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Qingming Guo
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Tuanjie Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Ya Ling
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Imasawa T, Murayama K, Hirano D, Nozu K. Comprehensive review of mitochondrial nephropathy-a renal phenotype in mitochondrial disease: causative genes, clinical and pathological features, diagnosis, prognosis, and treatment. Clin Exp Nephrol 2025; 29:39-56. [PMID: 39625678 PMCID: PMC11928409 DOI: 10.1007/s10157-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Mitochondrial nephropathy is a genetic renal disease characterized by oxidative phosphorylation abnormalities in the mitochondrial respiratory chain in kidney cells, caused by pathogenic gene variants located on mitochondrial or nuclear DNA. Recent advancements in genetic diagnostic techniques and their widespread adoption have led to the identification of various genes associated with mitochondrial nephropathy. This review investigates the causative genes and clinicopathological features of mitochondrial nephropathy, including the various phenotypes and associated complications, and suggests potential pathogenic mechanisms. Furthermore, the diagnostic methods of the disease are explained with particular emphasis on characteristic pathological findings and genetic analysis. We also analyze the available long-term observational prognostic data. Although there is currently no evidence-based treatment for mitochondrial nephropathy, an overview of the existing treatment options is discussed, including future expectations. The choice of renal replacement therapy in cases with progression to end-stage renal disease has also been discussed. Overall, this review highlights the importance of raising awareness about mitochondrial nephropathy and establishing appropriate diagnostic systems to facilitate rapid and effective treatment.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba, 206-8712, Japan.
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
3
|
Fukunari A, Matsushita H, Furukawa T, Matsuzaki H, Tanaka H, Ogawa Y, Sugimura Y, Inoue F, Ueda M, Ando Y. Arginine: A potential prophylactic supplement for transthyretin amyloidosis. Biochem Biophys Res Commun 2024; 737:150770. [PMID: 39500040 DOI: 10.1016/j.bbrc.2024.150770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 11/13/2024]
Abstract
Transthyretin (TTR) is an amyloidogenic protein associated with TTR amyloidosis (ATTR). Dissociation of TTR tetramers into TTR monomers causes TTR misfolding, resulting in amyloid fibril formation and triggering the onset of ATTR. Low-molecular-weight tetrameric TTR stabilizers are potential therapeutic agents to delay ATTR progression. However, the currently available drugs are expensive and cannot be used for prophylaxis. Therefore, in this study, we aimed to identify a prophylactic supplement that suppresses TTR amyloid formation. We investigated whether arginine, an amyloidogenic protein aggregation inhibitor, stabilizes tetrameric TTR, thereby preventing amyloid fibril formation. Immunoblotting showed that arginine mixed with wild-type TTR (TTRwt), amyloidogenic TTR Val30Met (ATTR V30M), and human serum samples reduced the amount of monomeric TTR but increased the tetramer/monomer ratio of TTR compared to those in the samples without arginine. Additionally, oral administration of arginine (5000 mg for 5 days) to healthy volunteers effectively increased the tetramer/monomer ratio of TTR in the serum. Thioflavin T test, a quantitative analysis method for amyloid fibril formation, showed that amyloid fibril formation was significantly suppressed with arginine compared to that without arginine. As arginine is a common supplement and non-toxic amino acid, it can be used as a promising prophylactic supplement to suppress amyloid fibril formation in ATTR.
Collapse
Affiliation(s)
- Atsushi Fukunari
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan.
| | - Hiroaki Matsushita
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Tamon Furukawa
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Haruya Matsuzaki
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Hiromitsu Tanaka
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Yukiko Ogawa
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Yusuke Sugimura
- Department of Amyloidosis Supporting Center, Sugimura Hospital, Honjo, Chuo-ku, Kumamoto, Japan
| | - Fumika Inoue
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan; Department of Amyloidosis Supporting Center, Sugimura Hospital, Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
4
|
Gunawardena K, Praveenan S, Dissanayake VHW, Ratnayake P. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes with coexisting nemaline myopathy: a case report. J Med Case Rep 2024; 18:420. [PMID: 39252049 PMCID: PMC11385988 DOI: 10.1186/s13256-024-04723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and nemaline myopathy are two rare genetic conditions. We report the first case reported in world literature with coexistence of both these rare disorders. CASE PRESENTATION A 11-year-old previously healthy Sri Lankan male child, product of a nonconsanguineous marriage with normal development presented with acute onset short lasting recurring episodes of right-sided eye deviation with impaired consciousness. In between episodes he regained consciousness. Family history revealed a similar presentation in the mother at 36 years of age. Examination was significant for short stature and proximal upper and lower limb weakness. His plasma and cerebrospinal fluid lactate were elevated. Magnetic resonance imaging brain had evidence of an acute infarction in the right occipital territory. Sanger sequencing for common mitochondrial variants of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes confirmed this diagnosis. Whole exome sequencing revealed pathogenic compound heterozygous variants in NEB gene implicating in coexisting nemaline myopathy. Acute presentation was managed with supportive care, antiepileptics, and mitochondrial supplementation. Currently he is stable on daily supplementation of arginine and limb-strengthening physiotherapy. He is being monitored closely clinically and with serum lactate level. CONCLUSION Genetic diseases are rare. Coexistence of two genetic conditions is even rarer. Genetic confirmation of diagnosis is imperative for prediction of complications, accurate management, and genetic counseling.
Collapse
Affiliation(s)
- Kawmadi Gunawardena
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka.
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| | - Somasundaram Praveenan
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Pyara Ratnayake
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka
| |
Collapse
|
5
|
Cai H, Li LM, Zhang M, Zhou Y, Li P. Case report: Late-onset MELAS syndrome with mtDNA 5783G>A mutation diagnosed by urinary sediment genetic testing. Front Genet 2024; 15:1367716. [PMID: 38881794 PMCID: PMC11176442 DOI: 10.3389/fgene.2024.1367716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Background Patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) usually present with multisystemic dysfunction with a wide range of clinical manifestations. When the tests for common mitochondrial DNA (mtDNA) point mutations are negative and the mtDNA defects hypothesis remains, urine epithelial cells can be used to screen the mitochondrial genome for unknown mutations to confirm the diagnosis. Case presentation A 66-year-old Chinese woman presented with symptoms of MELAS and was initially misdiagnosed with acute encephalitis at another institution. Although genetic analysis of blood lymphocyte DNA was negative, brain imaging, including magnetic resonance imaging, magnetic resonance spectroscopy, and clinical and laboratory findings, were all suggestive of MELAS. Finally, the patient was eventually diagnosed with MELAS with the mtDNA 5783G>A mutation in the MT-TC gene with a urinary sediment genetic test. Conclusion This case report expands the genetic repertoire associated with MELAS syndrome and highlights the importance that full mtDNA sequencing should be warranted beside the analysis of classical variants when a mitochondrial disorder is highly suspected. Furthermore, urine sediment genetic testing has played a crucial role in the diagnosis of MELAS.
Collapse
Affiliation(s)
- Hao Cai
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Huanhu Hospital Affiliated to Tianjin University Huanhu Hospital, Tianjin, China
| | - Li-Min Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Huanhu Hospital Affiliated to Tianjin University Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Huanhu Hospital Affiliated to Tianjin University Huanhu Hospital, Tianjin, China
| | - Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Huanhu Hospital Affiliated to Tianjin University Huanhu Hospital, Tianjin, China
| |
Collapse
|
6
|
Barros CDS, Coutinho A, Tengan CH. Arginine Supplementation in MELAS Syndrome: What Do We Know about the Mechanisms? Int J Mol Sci 2024; 25:3629. [PMID: 38612442 PMCID: PMC11011289 DOI: 10.3390/ijms25073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
MELAS syndrome, characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, represents a devastating mitochondrial disease, with the stroke-like episodes being its primary manifestation. Arginine supplementation has been used and recommended as a treatment for these acute attacks; however, insufficient evidence exists to support this treatment for MELAS. The mechanisms underlying the effect of arginine on MELAS pathophysiology remain unclear, although it is hypothesized that arginine could increase nitric oxide availability and, consequently, enhance blood supply to the brain. A more comprehensive understanding of these mechanisms is necessary to improve treatment strategies, such as dose and regimen adjustments; identify which patients could benefit the most; and establish potential markers for follow-up. This review aims to analyze the existing evidence concerning the mechanisms through which arginine supplementation impacts MELAS pathophysiology and provide the current scenario and perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Celia H. Tengan
- Division of Neurology, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (C.D.S.B.); (A.C.)
| |
Collapse
|
7
|
Feizolahi F, Arabzadeh E, Sarshin A, Falahi F, Dehghannayeri Z, Ali Askari A, Wong A, Aghaei F, Zargani M. Effects of Exercise Training and L-Arginine Loaded Chitosan Nanoparticles on Hippocampus Histopathology, β-Secretase Enzyme Function, APP, Tau, Iba1and APOE-4 mRNA in Aging Rats. Neurotox Res 2024; 42:21. [PMID: 38441819 DOI: 10.1007/s12640-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, β-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aβ peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aβ plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.
Collapse
Affiliation(s)
- Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Farshad Falahi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zahra Dehghannayeri
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ali Ali Askari
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Fariba Aghaei
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
8
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Geravand S, Karami M, Sahraei H, Rahimi F. Protective effects of L-arginine on Alzheimer's disease: Modulating hippocampal nitric oxide levels and memory deficits in aluminum chloride-induced rat model. Eur J Pharmacol 2023; 958:176030. [PMID: 37660966 DOI: 10.1016/j.ejphar.2023.176030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
There is evidence that high daily intake of aluminum (Al) is associated with an increased risk of dementia or cognitive decline. We injected L-arginine into the dorsal hippocampus (DH) of an AlCl3-induced Alzheimer's model and studied memory deficit, β-amyloid (βA) accumulation, neurodegeneration, and molecular changes. Male Wistar rats were cannulated unilaterally in the DH under a stereotaxic apparatus and a dose of AlCl3 (1-200 μg/rat) was injected into the CA1. After recovery, L-arginine and L-NAME (0.05-25 μg/rat) were injected into CA1 and animals were tested in novelty seeking task. One group received βA (2 μg/rat, intra CA1) as a reference group. Control groups received saline (1 μL/rat, intra-CA1) and galantamine (25 μg/rat, intra-CA1), respectively. Finally, rats were anesthetized and hippocampal tissues were isolated on ice. Levels of neuronal NO synthase (nNOS), β-secretase and soluble guanylyl cyclase (sGC) were measured by western blotting. βA formation and the number of CA1 neurons were assessed by Congo red and Nissl staining. NOS activation by NADPH-diaphorase (NADPH-d) was investigated. All data were analyzed using analysis of variance (ANOVA) at α = 0.05 level. Like βA, AlCl3 (25 μg/rat) caused accumulation of βA in the DH and increased stopping of the animal on the novel side (indicating a recall deficit). CA1 neurons decreased, and nNOS and β-secretase, but not sGC, showed a change consistent with Alzheimer's. However, prophylactic intervention of L-arginine at 3-9 μg/rat was protective, probably by nNOS stimulation in DH, as shown by NADPH-d assay. L-arginine may protect against Alzheimer's by increasing hippocampal NO levels.
Collapse
Affiliation(s)
- Samira Geravand
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Manizheh Karami
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Hedayat Sahraei
- Department of Physiology, School of Medicine, Baghiyatallah University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Kim DR, Martin S, Desai K. The effects of a comparatively higher dose of 1000 mg/kg/d of oral L- or D-arginine on the L-arginine metabolic pathways in male Sprague-Dawley rats. PLoS One 2023; 18:e0289476. [PMID: 37527267 PMCID: PMC10393177 DOI: 10.1371/journal.pone.0289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Oral L-arginine supplements are popular mainly for their nitric oxide mediated vasodilation, but their physiological impact is not fully known. L-arginine is a substrate of several enzymes including arginase, nitric oxide synthase, arginine decarboxylase, and arginine: glycine amidinotransferase (AGAT). We have published a study on the physiological impact of oral L- and D-arginine at 500 mg/kg/day for 4 wks in male Sprague-Dawley rats. We investigated the effects of oral L-arginine and D-arginine at a higher dose of 1000 mg/kg/d for a longer treatment duration of 16 wks in 9-week-old male Sprague-Dawley rats. We measured the expression and activity of L-arginine metabolizing enzymes, and levels of their metabolites in the plasma and various organs. L-arginine did not affect the levels of L-arginine and L-lysine in the plasma and various organs. L-arginine decreased arginase protein expression in the upper small intestine, and arginase activity in the plasma. It also decreased AGAT protein expression in the liver, and creatinine levels in the urine. L-arginine altered arginine decarboxylase protein expression in the upper small intestine and liver, with increased total polyamines plasma levels. Endothelial nitric oxide synthase protein was increased with D-arginine, the presumed metabolically inert isomer, but not L-arginine. In conclusion, oral L-arginine and D-arginine at a higher dose and longer treatment duration significantly altered various enzymes and metabolites in the arginine metabolic pathways, which differed from alterations produced by a lower dose shorter duration treatment published earlier. Further studies with differing doses and duration would allow for a better understanding of oral L-arginine uses, and evidence based safe and effective dose range and duration.
Collapse
Affiliation(s)
- Dain Raina Kim
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah Martin
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik Desai
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Khasminsky V, Auriel E, Luckman J, Eliahou R, Inbar E, Pardo K, Landau Y, Barnea R, Mermelstein M, Shelly S, Naftali J, Peretz S. Clinicoradiologic Criteria for the Diagnosis of Stroke-like Episodes in MELAS. Neurol Genet 2023; 9:e200082. [PMID: 37426458 PMCID: PMC10323819 DOI: 10.1212/nxg.0000000000200082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Background and Objectives Stroke-like episodes (SLEs) in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome are often misdiagnosed as acute ischemic stroke (AIS). We aimed to determine unique clinical and neuroimaging features for SLEs and formulate diagnostic criteria. Methods We retrospectively identified patients with MELAS admitted for SLEs between January 2012 and December 2021. Clinical features and imaging findings were compared with a cohort of patients who presented with AIS and similar lesion topography. A set of criteria was formulated and then tested by a blinded rater to evaluate diagnostic performance. Results Eleven MELAS patients with 17 SLE and 21 AISs were included. Patients with SLEs were younger (median 45 [37-60] vs 77 [68-82] years, p < 0.01) and had a lower body mass index (18 ± 2.6 vs 29 ± 4, p < 0.01), more commonly reported hearing loss (91% vs 5%, p < 0.01), and more commonly presented with headache and/or seizures (41% vs 0%, p < 0.01). The earliest neuroimaging test performed at presentation was uniformly a noncontrast CT. Two main patterns of lesion topography with a stereotypical spatiotemporal evolution were identified-an anterior pattern (7/21, 41%) starting at the temporal operculum and spreading to the peripheral frontal cortex and a posterior pattern (10/21, 59%) starting at the cuneus/precuneus and spreading to the lateral occipital and parietal cortex. Other distinguishing features for SLEs vs AIS were cerebellar atrophy (91% vs 19%, p < 0.01), previous cortical lesions with typical SLE distribution (46% vs 9%, p = 0.03), acute lesion tissue hyperemia and venous engorgement on CT angiography (CTA) (45% vs 0%, p < 0.01), and no large vessel occlusion on CTA (0% vs 100%, p < 0.01). Based on these clinicoradiologic features, a set of diagnostic criteria were constructed for possible SLE (sensitivity 100%, specificity 81%, AUC 0.905) and probable SLE (sensitivity 88%, specificity 95%, AUC 0.917). Discussion Clinicoradiologic criteria based on simple anamnesis and a CT scan at presentation can accurately diagnose SLE and lead to early administration of appropriate therapy. Classification of Evidence This study provides Class III evidence that an algorithm using clinical and imaging features can differentiate stroke-like episodes due to MELAS from acute ischemic strokes.
Collapse
Affiliation(s)
- Vadim Khasminsky
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Eitan Auriel
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Judith Luckman
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Ruth Eliahou
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Edna Inbar
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Keshet Pardo
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Yuval Landau
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Rani Barnea
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Maor Mermelstein
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Shahar Shelly
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Jonathan Naftali
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Shlomi Peretz
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Wang Y, Zhang E, Ye C, Wu B. Refractory Hypotension in a Late-Onset Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) Male with m.3243 A>G Mutation: A Case Report. Brain Sci 2023; 13:1080. [PMID: 37509011 PMCID: PMC10377322 DOI: 10.3390/brainsci13071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Introduction: Symptom spectrum can be of great diversity and heterogeneity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients in clinical practice. Here, we report a case of MELAS presenting asymptomatic refractory hypotension with m.3243 A>G mutation. (2) Case representation: A 51-year-old male patient presented with a headache, vertigo, and difficulty in expression and understanding. The magnetic resonance imaging of the brain revealed an acute stroke-like lesion involving the left temporoparietal lobe. A definitive diagnosis of MELAS was given after the genetic test identified the chrM-3243 A>G mutation. The patient suffered recurrent stroke-like episodes in the 1-year follow-up. Notably, refractory hypotension was observed during hospitalizations, and no significant improvement in blood pressure was found after continuous use of vasopressor drugs and fluid infusion therapy. (3) Conclusions: We report a case of refractory hypotension which was unresponsive to fluid infusion therapy found in a patient with MELAS. Our case suggests that comprehensive management should be paid attention to during treatment. A further study on the pathological mechanism of the multisystem symptoms in MELAS would be beneficial to the treatment of patients.
Collapse
Affiliation(s)
- Youjie Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Enhui Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Southwell N, Primiano G, Nadkarni V, Attarwala N, Beattie E, Miller D, Alam S, Liparulo I, Shurubor YI, Valentino ML, Carelli V, Servidei S, Gross SS, Manfredi G, Chen Q, D'Aurelio M. A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy. EMBO Mol Med 2023; 15:e16951. [PMID: 37222423 PMCID: PMC10331581 DOI: 10.15252/emmm.202216951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy-dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation-like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed-forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention.
Collapse
Affiliation(s)
- Nneka Southwell
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Guido Primiano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Viraj Nadkarni
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Emelie Beattie
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Dawson Miller
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Sumaitaah Alam
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Irene Liparulo
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Maria Lucia Valentino
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Valerio Carelli
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Serenella Servidei
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Steven S Gross
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Giovanni Manfredi
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Qiuying Chen
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | | |
Collapse
|
14
|
Meng L, Wu G. Recent advances in small molecules for improving mitochondrial disorders. RSC Adv 2023; 13:20476-20485. [PMID: 37435377 PMCID: PMC10331567 DOI: 10.1039/d3ra03313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
Mitochondrial disorders are observed in various human diseases, including rare genetic disorders and complex acquired pathologies. Recent advances in molecular biological techniques have dramatically expanded the understanding of multiple pathomechanisms involving mitochondrial disorders. However, the therapeutic methods for mitochondrial disorders are limited. For this reason, there is increasing interest in identifying safe and effective strategies to mitigate mitochondrial impairments. Small-molecule therapies hold promise for improving mitochondrial performance. This review focuses on the latest advances in developing bioactive compounds for treating mitochondrial disease, aiming to provide a broader perspective of fundamental studies that have been carried out to evaluate the effects of small molecules in regulating mitochondrial function. Novel-designed small molecules ameliorating mitochondrial functions are urgent for further research.
Collapse
Affiliation(s)
- Liying Meng
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Qingdao China
| | - Guanzhao Wu
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University Qingdao China
| |
Collapse
|
15
|
Girard A, Heindl B, Clarkson S, Litovsky S, Ubogu E, Schwartzlow C, Tallaj J. Cardiogenic shock in a woman with a mitochondrial cardiomyopathy: a case report. Eur Heart J Case Rep 2023; 7:ytad183. [PMID: 37123653 PMCID: PMC10133997 DOI: 10.1093/ehjcr/ytad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Background Mitochondrial cardiomyopathy (MCM) is an alteration in cardiac structure and function caused by gene mutations or deletions affecting components of the mitochondrial respiratory chain. We report a case of MCM presenting as cardiogenic shock, ultimately requiring left ventricular assist device (LVAD) placement. Case summary A 35-year-old woman with chronic weakness and non-ischaemic cardiomyopathy, on home dobutamine, was referred to our institution for heart transplantation evaluation. She was admitted to the hospital for suspected cardiogenic shock after laboratory tests revealed a lactate level of 5.4 mmol/L (ref: 0.5-2.2 mmol/L). Her hospital course was complicated by persistently undulating lactate levels (0.2-8.6 mmol/L) that increased with exertion and did not correlate with mixed venous oxygen saturation measurements obtained from a pulmonary artery catheter. Electrodiagnostic testing demonstrated a proximal appendicular and axial myopathy. A left deltoid muscle biopsy was performed that demonstrated evidence of a mitochondrial disease on light and electron microscopy. Muscle genetic testing revealed two large-scale mitochondrial deoxyribonucleic acid sequence deletions, confirming the diagnosis of MCM. She subsequently underwent LVAD placement, which was complicated by significant right ventricular failure requiring early mechanical support. She was ultimately discharged home with chronic inotropic support. Discussion Mitochondrial cardiomyopathy in adults is a diagnostic and therapeutic challenge. Prompt diagnosis should be made in patients with unknown causes of heart failure via skeletal muscle histopathology guided by electrodiagnostic studies, and targeted genetic testing in affected tissue. Outcomes in adult MCM patients who receive an LVAD are unknown and warrant further investigation.
Collapse
Affiliation(s)
| | - Brittain Heindl
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stephen Clarkson
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Silvio Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eroboghene Ubogu
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Coreen Schwartzlow
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
16
|
Ng YS, Gorman GS. Stroke-like episodes in adult mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:65-78. [PMID: 36813321 DOI: 10.1016/b978-0-12-821751-1.00005-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
17
|
Mitochondrial Dysfunction: The Hidden Player in the Pathogenesis of Atherosclerosis? Int J Mol Sci 2023; 24:ijms24021086. [PMID: 36674602 PMCID: PMC9861427 DOI: 10.3390/ijms24021086] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a multifactorial inflammatory pathology that involves metabolic processes. Improvements in therapy have drastically reduced the prognosis of cardiovascular disease. Nevertheless, a significant residual risk is still relevant, and is related to unmet therapeutic targets. Endothelial dysfunction and lipid infiltration are the primary causes of atherosclerotic plaque progression. In this contest, mitochondrial dysfunction can affect arterial wall cells, in particular macrophages, smooth muscle cells, lymphocytes, and endothelial cells, causing an increase in reactive oxygen species (ROS), leading to oxidative stress, chronic inflammation, and intracellular lipid deposition. The detection and characterization of mitochondrial DNA (mtDNA) is crucial for assessing mitochondrial defects and should be considered the goal for new future therapeutic interventions. In this review, we will focus on a new idea, based on the analysis of data from many research groups, namely the link between mitochondrial impairment and endothelial dysfunction and, in particular, its effect on atherosclerosis and aging. Therefore, we discuss known and novel mitochondria-targeting therapies in the contest of atherosclerosis.
Collapse
|
18
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Nozuma S, Matsuura E, Tashiro Y, Nagata R, Ando M, Hiramatsu Y, Higuchi Y, Sakiyama Y, Hashiguchi A, Michizono K, Higashi K, Matsuzaki T, Kodama D, Tanaka M, Yamano Y, Moritoyo T, Kubota R, Takashima H. Efficacy of l-Arginine treatment in patients with HTLV-1-associated neurological disease. Ann Clin Transl Neurol 2022; 10:237-245. [PMID: 36547017 PMCID: PMC9930431 DOI: 10.1002/acn3.51715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE HTLV-1 infection causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), resulting in loss of motor function. In this Phase 2 trial, we assessed the efficacy and safety of l-arginine in patients with HAM/TSP. METHODS This open-label, single-arm, Phase 2 study enrolled patients diagnosed with HAM/TSP. Patients received l-arginine at a dose of 20 g orally for 1 week and were followed-up for 3 weeks. The primary endpoint was change in walking speed in the 10-m walk test (10MWT). The main secondary endpoints were change in Timed Up and Go Test (TUGT) time, improvement in inflammatory markers in cerebrospinal fluid (CSF), safety, and tolerability. RESULTS The study enrolled 20 patients (13 [65%] female) with a mean age of 67.8 years (95% CI 62.3 to 73.3). Although the primary endpoint, the changes in 10MWT time between baseline (Day 0) and Day 7, did not reach statistical significance (mean percent change in time -3.5%, 95% CI -10.8% to 3.7%; P = 0.32), a significant improvement was detected between baseline and Day 14 (-9.4%, 95% CI -16.6% to -2.2%; P = 0.01). Significant improvements were also observed in selected secondary endpoints, including in TUGT time (-9.1%, 95% CI -15.5% to -2.7%; P < 0.01), and in neopterin concentration in CSF (-2.1 pmol/mL, 95% CI -3.8 to -0.5; P = 0.01). Adverse events were infrequent, mild, and resolved rapidly. INTERPRETATION l-arginine therapy improved motor function and decreased CSF inflammatory markers. l-arginine thus represents a promising therapeutic option for patients with HAM/TSP. TRIAL REGISTRATION NUMBER UMIN000023854.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Eiji Matsuura
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yuichi Tashiro
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Ryusei Nagata
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Masahiro Ando
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yu Hiramatsu
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yujiro Higuchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Yusuke Sakiyama
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Akihiro Hashiguchi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Kumiko Michizono
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Keiko Higashi
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Yoshihisa Yamano
- Division of Neurology, Department of Internal MedicineSt. Marianna University School of MedicineKawasakiJapan
| | - Takashi Moritoyo
- Clinical Research Promotion CenterThe University of Tokyo HospitalBunkyo‐kuJapan
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus InfectionKagoshima UniversityKagoshimaJapan
| | - Hiroshi Takashima
- Department of Neurology and GeriatricsKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| |
Collapse
|
20
|
Argudo JM, Astudillo Moncayo OM, Insuasti W, Garofalo G, Aguirre AS, Encalada S, Villamarin J, Oña S, Tenemaza MG, Eissa-Garcés A, Matcheswalla S, Ortiz JF. Arginine for the Treatment of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes: A Systematic Review. Cureus 2022; 14:e32709. [PMID: 36686069 PMCID: PMC9848692 DOI: 10.7759/cureus.32709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disease that lacks a definitive treatment. Lately, there has been an increased interest in the scientific community about the role of arginine in the short and long-term settings of the disease. We aim to conduct a systematic review of the clinical use of arginine in the management of MELAS and explore the role of arginine in the pathophysiology of the disease. We used PubMed advanced-strategy searches and only included full-text clinical trials on humans written in the English language. After applying the inclusion/exclusion criteria, four clinical trials were reviewed. We used the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for this systematic review. We used the Cochrane Collaboration risk-of-bias tool to assess the bias encountered in each study. Overall, IV arginine seems to be effective in improving symptoms during acute attacks of MELAS, while oral arginine supplementation increases endothelial function, preventing further stroke-like episodes.
Collapse
Affiliation(s)
| | | | - Walter Insuasti
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | | | - Alex S Aguirre
- School of Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | - Jose Villamarin
- School of Medicine, Universidad Central del Ecuador, Quito, ECU
| | - Sebastian Oña
- School of Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | | | | | - Juan Fernando Ortiz
- Department of Neurology, Corewell Health, Michigan State University, Grand Rapids, USA
| |
Collapse
|
21
|
Alenezi AF, Almelahi MA, Fekih-Romdhana F, Jahrami HA. Delay in diagnosing a patient with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome who presented with status epilepticus and lactic acidosis: a case report. J Med Case Rep 2022; 16:361. [PMID: 36210452 PMCID: PMC9549677 DOI: 10.1186/s13256-022-03613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome is a rare mitochondrial genetic disorder that can present with a variety of clinical manifestations, including stroke, hearing loss, seizures, and lactic acidosis. The most common genetic mutation associated with this syndrome is M.3243A>G. The main underlying mechanism of the disease relates to protein synthesis, energy depletion, and nitric oxide deficiency. Controlling disease complications and improving patient quality of life are the primary aims of treatment options. Case presentation A 28-year-old Arabic female visited Al-Amiri Hospital in Kuwait. The patient was newly diagnosed with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome following her admission as a case of status epilepticus requiring further investigation. The patient’s seizures were controlled, and she was evaluated to rule out the most serious complications by carrying out appropriate clinical, laboratory, and radiological imaging. The patient was discharged from the hospital after 2 weeks with a follow-up plan. Conclusion This case report emphasizes the importance of considering mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome as a potential cause of status epilepticus with lactic acidosis in a young female patient with a past history of stroke-like episodes. It also stresses the most important workup to rule out every possible life-threatening complication to improve patients’ lives.
Collapse
|
22
|
Belal S, Goudenège D, Bocca C, Dumont F, Chao De La Barca JM, Desquiret-Dumas V, Gueguen N, Geffroy G, Benyahia R, Kane S, Khiati S, Bris C, Aranyi T, Stockholm D, Inisan A, Renaud A, Barth M, Simard G, Reynier P, Letournel F, Lenaers G, Bonneau D, Chevrollier A, Procaccio V. Glutamate-Induced Deregulation of Krebs Cycle in Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-Like Episodes (MELAS) Syndrome Is Alleviated by Ketone Body Exposure. Biomedicines 2022; 10:biomedicines10071665. [PMID: 35884972 PMCID: PMC9312837 DOI: 10.3390/biomedicines10071665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.
Collapse
Affiliation(s)
- Sophie Belal
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Cinzia Bocca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, University of Paris-Saclay, 92296 Châtenay-Malabry, France;
| | - Juan Manuel Chao De La Barca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Valérie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Guillaume Geffroy
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Rayane Benyahia
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Salim Khiati
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Tamas Aranyi
- Institute of Enzymology, Research Center for Natural Sciences, H-1519 Budapest, Hungary;
- Department of Molecular Biology, Semmelweis University of Medicine, H-1519 Budapest, Hungary
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France;
- Centre de Recherche Saint-Antoine, UMRS-938, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Aurore Inisan
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Aurélie Renaud
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Magalie Barth
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Gilles Simard
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Franck Letournel
- Department of Neurobiology-Neuropathology, Angers Hospital, 49933 Angers, France;
- UMR INSERM 1066-CNRS 6021, MINT Laboratory, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Service de Neurologie, CHU d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
- Correspondence:
| |
Collapse
|
23
|
Stefanetti R, Ng Y, Errington L, Blain A, McFarland R, Gorman GS. L-arginine in Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes: A Systematic Review. Neurology 2022; 98:e2318-e2328. [PMID: 35428733 PMCID: PMC9202525 DOI: 10.1212/wnl.0000000000200299] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives Stroke management in the context of primary mitochondrial disease is clinically challenging, and the best treatment options for patients with stroke-like episodes remain uncertain. We sought to perform a systematic review of the safety and efficacy of l-arginine use in the acute and prophylactic management of stroke-like episodes in patients with mitochondrial disease. Methods The systematic review was registered in PROSPERO (CRD42020181230). We searched 6 databases from inception to January 15, 2021: MEDLINE, Embase, Scopus, Web of Science, CINAHL, and ClinicalTrials.gov. Original articles and registered trials available, in English, reporting l-arginine use in the acute or prophylactic management of stroke-like episodes in patients with genetically confirmed mitochondrial disease were eligible for inclusion. Data on safety and treatment response were extracted and summarized by multiple observers. Risk of bias was assessed by the methodologic quality of case reports, case series, and a risk-of-bias checklist for nonrandomized studies. Quality of evidence was synthesized with the Oxford Centre for Evidence-Based Medicine Levels of Evidence and Grade of Recommendations. The predetermined main outcome measures were clinical response to l-arginine treatment, adverse events, withdrawals, and deaths (on treatment and/or during follow-up), as defined by the author. Results Thirty-seven articles met inclusion criteria (0 randomized controlled trials; 3 open-label; 1 retrospective cohort; 33 case reports/case series) (N = 91 patients; 86% m.3243A>G). In the case reports, 54% of patients reported a positive clinical response to acute l-arginine, of which 40% were concomitantly treated with antiepileptic drugs. Improved headache at 24 hours was the greatest reported benefit in response to IV l-arginine in the open-label trials (31 of 39, 79%). In 15 of 48 patients (31%) who positively responded to prophylactic l-arginine, antiepileptic drugs were either used (7 of 15) or unreported (8 of 15). Moderate adverse events were reported in the follow-up of both IV and oral l-arginine treatment, and 11 patients (12%) died during follow-up or while on prophylactic treatment. Discussion The available evidence is of poor methodologic quality and classified as Level 5. IV and oral l-arginine confers no demonstrable clinical benefit in either the acute or prophylactic treatment of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes, with more robust controlled trials required to assess its efficacy and safety profile.
Collapse
|
24
|
Mitochondrial stroke-like episodes: the search for new therapies. Pharmacol Res 2022; 180:106228. [DOI: 10.1016/j.phrs.2022.106228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
|
25
|
Mastrangelo M, Ricciardi G, Giordo L, Michele MD, Toni D, Leuzzi V. Stroke and stroke-like episodes in inborn errors of metabolism: Pathophysiological and clinical implications. Mol Genet Metab 2022; 135:3-14. [PMID: 34996714 DOI: 10.1016/j.ymgme.2021.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
Inborn errors of metabolism causing stroke (ischemic or haemorrhagic) or stroke-like episodes (e.g., that are also called "metabolic strokes" and include acute brain lesions not related with alterations of blood flow) cover a wide range of diseases in which acute metabolic decompensations after trigger events (e.g., fever, dehydration, sepsis etc.) may have a variable frequency. The early diagnosis of these conditions is essential because, despite their rarity, effective symptomatic treatments may be available for acute settings (e.g., arginine for Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes- MELAS) while in other cases disease modifying therapies may be useful to prevent stroke occurrence, recurrence, or relapse (e.g., Fabry disease). The detection of a non-vascular distribution of lesions and the diffuse use of 1HMRS are often diriment in the differential of ischemic and metabolic strokes. This review summarized the main clinical features and the pathophysiological mechanisms of stroke and stroke-like episodes in inborn errors of metabolism presenting with stroke as part of natural history of the disease. These conditions belong to different etiological groups, such as organic acidurias, mitochondrial encephalopathies, homocystinuria and remethylation disorders, urea cycle disorders, lysosomal diseases (e.g. Fabry disease, glycogen storage disease), congenital disorders of glycosylation, neurotransmitter disorders, adenosine deaminase 2 deficiency and few other neurometabolic disorders.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit - Department of Human Neuroscience-Sapienza, Università di Roma, Italy
| | - Giacomina Ricciardi
- Child Neurology and Psychiatry Unit - Department of Human Neuroscience-Sapienza, Università di Roma, Italy
| | - Laura Giordo
- Child Neurology and Psychiatry Unit - Department of Human Neuroscience-Sapienza, Università di Roma, Italy
| | - Manuela De Michele
- Emergency Department Stroke Unit, Department of Human Neuroscience, Sapienza, Università di Roma, Italy
| | - Danilo Toni
- Emergency Department Stroke Unit, Department of Human Neuroscience, Sapienza, Università di Roma, Italy
| | - Vincenzo Leuzzi
- Child Neurology and Psychiatry Unit - Department of Human Neuroscience-Sapienza, Università di Roma, Italy.
| |
Collapse
|
26
|
Evangelisti S, Gramegna LL, La Morgia C, Di Vito L, Maresca A, Talozzi L, Bianchini C, Mitolo M, Manners DN, Caporali L, Valentino ML, Liguori R, Carelli V, Lodi R, Testa C, Tonon C. Molecular biomarkers correlate with brain grey and white matter changes in patients with mitochondrial m.3243A > G mutation. Mol Genet Metab 2022; 135:72-81. [PMID: 34916127 DOI: 10.1016/j.ymgme.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The mitochondrial DNA (mtDNA) m.3243A > G mutation in the MT-TL1 gene results in a multi-systemic disease, that is commonly associated with neurodegenerative changes in the brain. METHODS Seventeen patients harboring the m3243A > G mutation were enrolled (age 43.1 ± 11.4 years, 10 M/7F). A panel of plasma biomarkers including lactate acid, alanine, L-arginine, fibroblast growth factor 21 (FGF-21), growth/differentiation factor 15 (GDF-15) and circulating cell free -mtDNA (ccf-mtDNA), as well as blood, urine and muscle mtDNA heteroplasmy were evaluated. Patients also underwent a brain standardized MR protocol that included volumetric T1-weighted images and diffusion-weighted MRI. Twenty sex- and age-matched healthy controls were included. Voxel-wise analysis was performed on T1-weighted and diffusion imaging, respectively with VBM (voxel-based morphometry) and TBSS (Tract-based Spatial Statistics). Ventricular lactate was also evaluated by 1H-MR spectroscopy. RESULTS A widespread cortical gray matter (GM) loss was observed, more severe (p < 0.001) in the bilateral calcarine, insular, frontal and parietal cortex, along with infratentorial cerebellar cortex. High urine mtDNA mutation load, high levels of plasma lactate and alanine, low levels of plasma arginine, high levels of serum FGF-21 and ventricular lactate accumulation significantly (p < 0.05) correlated with the reduced brain GM density. Widespread microstructural alterations were highlighted in the white matter, significantly (p < 0.05) correlated with plasma alanine and arginine levels, with mtDNA mutation load in urine, with high level of serum GDF-15 and with high content of plasma ccf-mtDNA. CONCLUSIONS Our results suggest that the synergy of two pathogenic mechanisms, mtDNA-related mitochondrial respiratory deficiency and defective nitric oxide metabolism, contributes to the brain neurodegeneration in m.3243A > G patients.
Collapse
Affiliation(s)
- Stefania Evangelisti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Bianchini
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - David Neil Manners
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria Lucia Valentino
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Claudia Testa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.
| |
Collapse
|
27
|
Treatment and Management of Hereditary Metabolic Myopathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Cucchiara BL, Kasner SE. Treatment of “Other” Stroke Etiologies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Tetsuka S, Ogawa T, Hashimoto R, Kato H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metab Brain Dis 2021; 36:2181-2193. [PMID: 34118021 DOI: 10.1007/s11011-021-00772-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a disease that should be considered as a differential diagnosis to acute ischemic stroke taking into account its onset pattern and neurological symptoms, which are similar to those of an ischemic stroke. Technological advancements in neuroimaging modalities have greatly facilitated differential diagnosis between stroke and MELAS on diagnostic imaging. Stroke-like episodes in MELAS have the following features: (1) symptoms are neurolocalized according to lesion site; (2) epileptic seizures are often present; (3) lesion distribution is inconsistent with vascular territory; (4) lesions are common in the posterior brain regions; (5) lesions continuously develop in adjacent sites over several weeks or months; (6) neurological symptoms and stroke-like lesions tend to be reversible, as presented on magnetic resonance imaging; (7) the rate of recurrence is high; and; (8) brain dysfunction and atrophy are slowly progressive. The m.3243ANG mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu(UUR) is most commonly associated with MELAS. Although the precise pathophysiology is still unclear, one possible hypothesis for these episodes is a neuronal hyperexcitability theory, including neuron-astrocyte uncoupling. Supplementation, such as with L-arginine or taurine, has been proposed as preventive treatments for stroke-like episodes. As this disease is still untreatable and devastating, numerous drugs are being tested, and new gene therapies hold great promise for the future. This article contributes to the understanding of MELAS and its implications for clinical practice, by deepening their insight into the latest pathophysiological hypotheses and therapeutic developments.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan.
| | - Tomoko Ogawa
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Ritsuo Hashimoto
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Hiroyuki Kato
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| |
Collapse
|
30
|
Keith KA, Reed LK, Nguyen A, Qaiser R. Neurovascular Syndromes. Neurosurg Clin N Am 2021; 33:135-148. [PMID: 34801137 DOI: 10.1016/j.nec.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with cerebrovascular syndromes are at risk for additional concerns associated with their syndrome. A wide variety of syndromes are associated with cerebrovascular diseases. Multidisciplinary care is helpful to ensure comprehensive evaluation and management. Precise diagnosis and appreciation for the underlying syndrome is critical for effective cerebrovascular and broader care. This text focuses on these conditions with a focus on underlying pathophysiology and associated genetics, presentation, diagnosis, and management of each disease.
Collapse
Affiliation(s)
- Kristin A Keith
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Laura K Reed
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Anthony Nguyen
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Rabia Qaiser
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA.
| |
Collapse
|
31
|
Marullo R, Castro M, Yomtoubian S, Calvo-Vidal MN, Revuelta MV, Krumsiek J, Cho A, Morgado PC, Yang S, Medina V, Roth BM, Bonomi M, Keshari KR, Mittal V, Navigante A, Cerchietti L. The metabolic adaptation evoked by arginine enhances the effect of radiation in brain metastases. SCIENCE ADVANCES 2021; 7:eabg1964. [PMID: 34739311 PMCID: PMC8570607 DOI: 10.1126/sciadv.abg1964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Selected patients with brain metastases (BM) are candidates for radiotherapy. A lactatogenic metabolism, common in BM, has been associated with radioresistance. We demonstrated that BM express nitric oxide (NO) synthase 2 and that administration of its substrate l-arginine decreases tumor lactate in BM patients. In a placebo-controlled trial, we showed that administration of l-arginine before each fraction enhanced the effect of radiation, improving the control of BM. Studies in preclinical models demonstrated that l-arginine radiosensitization is a NO-mediated mechanism secondary to the metabolic adaptation induced in cancer cells. We showed that the decrease in tumor lactate was a consequence of reduced glycolysis that also impacted ATP and NAD+ levels. These effects were associated with NO-dependent inhibition of GAPDH and hyperactivation of PARP upon nitrosative DNA damage. These metabolic changes ultimately impaired the repair of DNA damage induced by radiation in cancer cells while greatly sparing tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Rossella Marullo
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Monica Castro
- Translational Research Unit, Angel Roffo Cancer Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Shira Yomtoubian
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - M. Nieves Calvo-Vidal
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Maria Victoria Revuelta
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Cho
- Department of Biochemistry and Structural Biology, Weill Cornell Graduate School, New York, NY, USA
| | - Pablo Cresta Morgado
- Translational Research Unit, Angel Roffo Cancer Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - ShaoNing Yang
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vanina Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research, School of Medical Sciences, Pontifical Catholic University of Argentina and National Scientific and Technical Research Council, Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Berta M. Roth
- Radiation and Imaging Department, Angel Roffo Cancer Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Bonomi
- Hematology and Oncology Division, The Ohio State University, Columbus, OH, USA
| | - Kayvan R. Keshari
- Department of Biochemistry and Structural Biology, Weill Cornell Graduate School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alfredo Navigante
- Translational Research Unit, Angel Roffo Cancer Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Leandro Cerchietti
- Hematology and Oncology Division, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Corresponding author.
| |
Collapse
|
32
|
Fan HC, Lee HF, Yue CT, Chi CS. Clinical Characteristics of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Life (Basel) 2021; 11:life11111111. [PMID: 34832987 PMCID: PMC8617702 DOI: 10.3390/life11111111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, a maternally inherited mitochondrial disorder, is characterized by its genetic, biochemical and clinical complexity. The most common mutation associated with MELAS syndrome is the mtDNA A3243G mutation in the MT-TL1 gene encoding the mitochondrial tRNA-leu(UUR), which results in impaired mitochondrial translation and protein synthesis involving the mitochondrial electron transport chain complex subunits, leading to impaired mitochondrial energy production. Angiopathy, either alone or in combination with nitric oxide (NO) deficiency, further contributes to multi-organ involvement in MELAS syndrome. Management for MELAS syndrome is amostly symptomatic multidisciplinary approach. In this article, we review the clinical presentations, pathogenic mechanisms and options for management of MELAS syndrome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chen-Tang Yue
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Correspondence: ; Tel.: +886-4-26581919-4301
| |
Collapse
|
33
|
Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021; 131:136055. [PMID: 33463549 DOI: 10.1172/jci136055] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.
Collapse
Affiliation(s)
- Rohit Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Bryn Reinstadler
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Owen S Skinner
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Erin Stackowitz
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Institute for Exercise and Environmental Medicine of Texas Health Presbyterian Hospital, Dallas, Texas, USA
| | | | | | - Melissa A Walker
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Fryer
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ashok Khatri
- Endocrine Division and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Sue CM, Balasubramaniam S, Bratkovic D, Bonifant C, Christodoulou J, Coman D, Crawley K, Edema-Hildebrand F, Ellaway C, Ghaoui R, Kearns LS, Lee J, Liang C, Mackey DA, Murray S, Needham M, Ruis R, Russell J, Thyagarajan D, Wools C. Patient Care Standards for Primary Mitochondrial Disease in Australia. An Australian adaptation of the Mitochondrial Medicine Society recommendations. Intern Med J 2021; 52:110-120. [PMID: 34505344 PMCID: PMC9299181 DOI: 10.1111/imj.15505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
This document provides consensus‐based recommendations for general physicians and primary care physicians who diagnose and manage patients with mitochondrial diseases (MD). It builds on previous international guidelines, with particular emphasis on clinical management in the Australian setting. This statement was prepared by a working group of medical practitioners, nurses and allied health professionals with clinical expertise and experience in managing Australian patients with MD. As new treatments and management plans emerge, these consensus‐based recommendations will continue to evolve, but current standards of care are summarised in this document.
Collapse
Affiliation(s)
- Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Department of Neurogenetics, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, New South Wales, Australia.,Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Catherine Bonifant
- Department of Dietetics and Food Services, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria.,Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South UK.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South UK
| | - David Coman
- Department of Metabolic Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,School of Medicine, Griffith University, Mt Gravatt, Queensland, Australia
| | - Karen Crawley
- Department of Neurogenetics, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | - Carolyn Ellaway
- Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia.,Genetic Metabolic Disorders Service Sydney Children's Hospital Network, Sydney, New South Wales, Australia
| | - Roula Ghaoui
- Department of Neurology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria
| | - Joy Lee
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria.,Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Department of Neurogenetics, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia
| | | | - Merrilee Needham
- Notre Dame University, Fremantle, Western Australia.,IIID Murdoch University, Perth, Western Australia.,Department of Neurology, Fiona Stanley Hospital, Perth, Western Australia
| | - Rocio Ruis
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria
| | - Jacqui Russell
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
| | | | - Christine Wools
- Department of Neurology, Calvary Health Care Bethlehem, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Almannai M, El-Hattab AW. Nitric Oxide Deficiency in Mitochondrial Disorders: The Utility of Arginine and Citrulline. Front Mol Neurosci 2021; 14:682780. [PMID: 34421535 PMCID: PMC8374159 DOI: 10.3389/fnmol.2021.682780] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial diseases represent a growing list of clinically heterogeneous disorders that are associated with dysfunctional mitochondria and multisystemic manifestations. In spite of a better understanding of the underlying pathophysiological basis of mitochondrial disorders, treatment options remain limited. Over the past two decades, there is growing evidence that patients with mitochondrial disorders have nitric oxide (NO) deficiency due to the limited availability of NO substrates, arginine and citrulline; decreased activity of nitric oxide synthase (NOS); and NO sequestration. Studies evaluating the use of arginine in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) presenting with stroke-like episodes showed symptomatic improvement after acute administration as well as a reduction in the frequency and severity of stroke-like episodes following chronic use. Citrulline, another NO precursor, was shown through stable isotope studies to result in a greater increase in NO synthesis. Recent studies showed a positive response of arginine and citrulline in other mitochondrial disorders besides MELAS. Randomized-controlled studies with a larger number of patients are warranted to better understand the role of NO deficiency in mitochondrial disorders and the efficacy of NO precursors as treatment modalities in these disorders.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia.,College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Genetics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
36
|
The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules 2021; 26:molecules26164913. [PMID: 34443494 PMCID: PMC8400259 DOI: 10.3390/molecules26164913] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.
Collapse
|
37
|
Vassar R, Mehta N. Pearls & Oy-sters: Symmetric Numbness and Paresthesia Due to Stroke-like Episode in an Adolescent Male With MELAS. Neurology 2021; 97:1006-1008. [PMID: 34376513 DOI: 10.1212/wnl.0000000000012611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) syndrome is a mitochondrial condition with a wide range of neurologic complications including migraines, seizures, and stroke-like episodes. This case report highlights a rare presentation of bilateral sensory changes related to MELAS and offers an opportunity to consider how a differential diagnosis may need to be modified in patients with underlying mitochondrial disorders. Neurologic symptoms in MELAS may defy classic localization patterns, and early neuroimaging is warranted.
Collapse
Affiliation(s)
- Rachel Vassar
- Child Neurology Residency Program, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Nehali Mehta
- Child Neurology Residency Program, Department of Neurology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
38
|
Gramegna LL, Evangelisti S, Di Vito L, La Morgia C, Maresca A, Caporali L, Amore G, Talozzi L, Bianchini C, Testa C, Manners DN, Cortesi I, Valentino ML, Liguori R, Carelli V, Tonon C, Lodi R. Brain MRS correlates with mitochondrial dysfunction biomarkers in MELAS-associated mtDNA mutations. Ann Clin Transl Neurol 2021; 8:1200-1211. [PMID: 33951347 PMCID: PMC8164862 DOI: 10.1002/acn3.51329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The purpose of this study was to investigate correlations between brain proton magnetic resonance spectroscopy (1H‐MRS) findings with serum biomarkers and heteroplasmy of mitochondrial DNA (mtDNA) mutations. This study enrolled patients carrying mtDNA mutations associated with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke‐like episodes (MELAS), and MELAS‐Spectrum Syndrome (MSS). Methods Consecutive patients carrying mtDNA mutations associated with MELAS and MSS were recruited and their serum concentrations of lactate, alanine, and heteroplasmic mtDNA mutant load were evaluated. The brain protocol included single‐voxel 1H‐MRS (1.5T) in the medial parieto‐occipital cortex (MPOC), left cerebellar hemisphere, parieto‐occipital white matter (POWM), and lateral ventricles. Relative metabolite concentrations of N‐acetyl‐aspartate (NAA), choline (Cho), and myo‐inositol (mI) were estimated relative to creatine (Cr), using LCModel 6.3. Results Six patients with MELAS (age 28 ± 13 years, 3 [50%] female) and 17 with MSS (age 45 ± 11 years, 7 [41%] female) and 39 sex‐ and age‐matched healthy controls (HC) were enrolled. These patients demonstrated a lower NAA/Cr ratio in MPOC compared to HC (p = 0.006), which inversely correlated with serum lactate (p = 0.021, rho = −0.68) and muscle mtDNA heteroplasmy (p < 0.001, rho = −0.80). Similarly, in the cerebellum patients had lower NAA/Cr (p < 0.001), Cho/Cr (p = 0.002), and NAA/mI (p = 0.001) ratios, which negatively correlated with mtDNA blood heteroplasmy (p = 0.001, rho = −0.81) and with alanine (p = 0.050, rho = −0.67). Ventricular lactate was present in 78.3% (18/23) of patients, correlating with serum lactate (p = 0.024, rho = 0.58). Conclusion Correlations were found between the peripheral and biochemical markers of mitochondrial dysfunction and brain in vivo markers of neurodegeneration, supporting the use of both biomarkers as signatures of MELAS and MSS disease, to evaluate the efficacy of potential treatments.
Collapse
Affiliation(s)
- Laura L Gramegna
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Evangelisti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Giulia Amore
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Bianchini
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Cortesi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Maria L Valentino
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Sen K, Harrar D, Hahn A, Wells EM, Gropman AL. Management considerations for stroke-like episodes in MELAS with concurrent COVID-19 infection. J Neurol 2021; 268:3988-3991. [PMID: 33796896 PMCID: PMC8016504 DOI: 10.1007/s00415-021-10538-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/22/2023]
Abstract
There have been considerations since the beginning of the Coronavirus pandemic that COVID-19 infection, like any other viral illness, can trigger neurological and metabolic decompensation in patients with mitochondrial diseases. At the time of writing, there were no published reports reviewing experiences and guidelines about management of COVID-19 infection in this patient population. We present a challenging case of an adult patient with a known diagnosis of Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like Episodes (MELAS) complicated by COVID-19 infection. She initially presented with altered mental status and vomiting and went on to develop a stroke-like episode, pancreatitis, and pneumatosis intestinalis. We review salient features of her hospitalization, including initiation of thromboprophylaxis in relation to intravenous arginine therapy, caution regarding medications such as remdesivir, and the incidence of gastrointestinal complications.
Collapse
Affiliation(s)
- Kuntal Sen
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA. .,Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington, DC, USA.
| | - Dana Harrar
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA.,Program in Stroke and Critical Care Neurology, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Elizabeth M Wells
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA
| | - Andrea L Gropman
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA.,Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
40
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
41
|
Gramegna LL, Cortesi I, Mitolo M, Evangelisti S, Lia T, Cirillo L, Tonon C, Lodi R. Major cerebral vessels involvement in patients with MELAS syndrome: Worth a scan? A systematic review. J Neuroradiol 2021; 48:359-366. [PMID: 33596430 DOI: 10.1016/j.neurad.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Major cerebral vessels have been proposed as a target of defective mitochondrial metabolism in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Cerebral angiographic techniques are not routinely performed in MELAS patients. A systematic literature review was performed to identify studies describing major vessel caliber alterations in MELAS. Twenty-three studies reporting on 46 MELAS patients were included. Alterations in major caliber vessels were present in 59% (27/46) of patients. Dilation occurred in 37% (17/46) of patients, and in 88% (15/17) of them during a stroke-like episode (SLE). Stenosis was reported in 24% (11/46) of patients: 36% (4/11) related to an SLE and 64% (7/11) to dissections or degenerative changes. During an SLE, identification of intracranial vessels dilation or stenosis could be a selection tool for new treatment protocols. Outside SLE, identification of major cerebral vessels dissections and degenerative changes may help to prevent subsequent complications.
Collapse
Affiliation(s)
- Laura Ludovica Gramegna
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
| | - Irene Cortesi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Evangelisti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Talozzi Lia
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Luigi Cirillo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
42
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
43
|
Yeung RO, Al Jundi M, Gubbi S, Bompu ME, Sirrs S, Tarnopolsky M, Hannah-Shmouni F. Management of mitochondrial diabetes in the era of novel therapies. J Diabetes Complications 2021; 35:107584. [PMID: 32331977 PMCID: PMC7554068 DOI: 10.1016/j.jdiacomp.2020.107584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial disorders refer to the complex group of conditions affecting energy metabolism. A number of mitochondrial disorders can lead to the development of diabetes mellitus, and mitochondrial diabetes is thought to account for up to 3% of all diabetes mellitus cases. Depending on the degree of preservation of beta cell secretory capacity and peripheral muscle insulin sensitivity, the phenotype of mitochondrial diabetes may resemble that of type 1 or type 2 diabetes. Additionally, mitochondrial diabetes may rarely present with diabetic ketoacidosis, and can be distinguished from other forms of monogenic diabetes including maturity onset diabetes of the young by the presence of multi-organ involvement, particularly pre-senile sensorineural hearing loss, maternal transmission, and later-onset diagnosis, typically affecting adults over 35 years. Various guidelines on diabetes care do not address this important subset of cases, and this diagnosis is easily missed. Additionally, there is paucity of data on tailored diabetes therapies for mitochondrial diabetes, particularly in the era of novel therapies including glucagon-like peptide-1 receptor agonist and sodium glucose co-transporter-2 inhibitors. Here, we report three patients with mitochondrial diabetes who responded well to the addition of these novel agents and propose a new treatment algorithm for this condition.
Collapse
Affiliation(s)
- Roseanne O Yeung
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Canada.
| | - Mohammad Al Jundi
- Section on Endocrinology & Genetics (SEGEN), National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Maria E Bompu
- 1st Department of Pediatrics, Aghia Sofia Children's Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sandra Sirrs
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
44
|
Mizuguchi M, Ichiyama T, Imataka G, Okumura A, Goto T, Sakuma H, Takanashi JI, Murayama K, Yamagata T, Yamanouchi H, Fukuda T, Maegaki Y. Guidelines for the diagnosis and treatment of acute encephalopathy in childhood. Brain Dev 2021; 43:2-31. [PMID: 32829972 DOI: 10.1016/j.braindev.2020.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
The cardinal symptom of acute encephalopathy is impairment of consciousness of acute onset during the course of an infectious disease, with duration and severity meeting defined criteria. Acute encephalopathy consists of multiple syndromes such as acute necrotizing encephalopathy, acute encephalopathy with biphasic seizures and late reduced diffusion and clinically mild encephalitis/encephalopathy with reversible splenial lesion. Among these syndromes, there are both similarities and differences. In 2016, the Japanese Society of Child Neurology published 'Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood', which made recommendations and comments on the general aspects of acute encephalopathy in the first half, and on individual syndromes in the latter half. Since the guidelines were written in Japanese, this review article describes extracts from the recommendations and comments in English, in order to introduce the essence of the guidelines to international clinicians and researchers.
Collapse
Affiliation(s)
- Masashi Mizuguchi
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takashi Ichiyama
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Division of Pediatrics, Tsudumigaura Medical Center for Children with Disabilities, Yamaguchi, Japan
| | - George Imataka
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Akihisa Okumura
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Pediatrics, Aichi Medical University, Aichi, Japan
| | - Tomohide Goto
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Division of Neurology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Hiroshi Sakuma
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jun-Ichi Takanashi
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Kei Murayama
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Takanori Yamagata
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hideo Yamanouchi
- Committee for the Compilation of Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood, Japanese Society of Child Neurology, Tokyo, Japan; Department of Pediatrics, Comprehensive Epilepsy Center, Saitama Medical University, Saitama, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Committee for the Integration of Guidelines, Japanese Society of Child Neurology, Tokyo, Japan
| | - Yoshihiro Maegaki
- Committee for the Integration of Guidelines, Japanese Society of Child Neurology, Tokyo, Japan; Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
45
|
Therapeutical Management and Drug Safety in Mitochondrial Diseases-Update 2020. J Clin Med 2020; 10:jcm10010094. [PMID: 33383961 PMCID: PMC7794679 DOI: 10.3390/jcm10010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases (MDs) are a group of genetic disorders that may manifest with vast clinical heterogeneity in childhood or adulthood. These diseases are characterized by dysfunctional mitochondria and oxidative phosphorylation deficiency. Patients are usually treated with supportive and symptomatic therapies due to the absence of a specific disease-modifying therapy. Management of patients with MDs is based on different therapeutical strategies, particularly the early treatment of organ-specific complications and the avoidance of catabolic stressors or toxic medication. In this review, we discuss the therapeutic management of MDs, supported by a revision of the literature, and provide an overview of the drugs that should be either avoided or carefully used both for the specific treatment of MDs and for the management of comorbidities these subjects may manifest. We finally discuss the latest therapies approved for the management of MDs and some ongoing clinical trials.
Collapse
|
46
|
Ikawa M, Okazawa H, Yoneda M. Molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. Biochim Biophys Acta Gen Subj 2020; 1865:129832. [PMID: 33358866 DOI: 10.1016/j.bbagen.2020.129832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increasing evidence from pathological and biochemical investigations suggests that mitochondrial metabolic impairment and oxidative stress play a crucial role in the pathogenesis of mitochondrial diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and various neurodegenerative disorders. Recent advances in molecular imaging technology with positron emission tomography (PET) and functional magnetic resonance imaging (MRI) have accomplished a direct and non-invasive evaluation of the pathophysiological changes in living patients. SCOPE OF REVIEW In this review, we focus on the latest achievements of molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. MAJOR CONCLUSIONS Molecular imaging with PET and MRI exhibited mitochondrial metabolic changes, such as enhanced glucose utilization with lactic acid fermentation, suppressed fatty acid metabolism, decreased TCA-cycle metabolism, impaired respiratory chain activity, and increased oxidative stress, in patients with MELAS syndrome. In addition, PET imaging clearly demonstrated enhanced cerebral oxidative stress in patients with Parkinson's disease or amyotrophic lateral sclerosis. The magnitude of oxidative stress correlated well with clinical severity in patients, indicating that oxidative stress based on mitochondrial dysfunction is associated with the neurodegenerative changes in these diseases. GENERAL SIGNIFICANCE Molecular imaging is a promising tool to improve our knowledge regarding the pathogenesis of diseases associated with mitochondrial dysfunction and oxidative stress, and this would facilitate the development of potential antioxidants and mitochondrial therapies.
Collapse
Affiliation(s)
- Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan; Department of Advanced Medicine for Community Healthcare, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan; Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
47
|
Finsterer J. Clinical Therapeutic Management of Human Mitochondrial Disorders. Pediatr Neurol 2020; 113:66-74. [PMID: 33053453 DOI: 10.1016/j.pediatrneurol.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
Despite recent advances in the elucidation of etiology and pathogenesis of mitochondrial disorders, their therapeutic management remains challenging. This review focuses on currently available therapeutic options for human mitochondrial disorders. Current treatment of mitochondrial disorders relies on symptomatic, multidisciplinary therapies of various manifestations in organs such as the brain, muscle, nerves, eyes, ears, endocrine organs, heart, intestines, kidneys, lungs, bones, bone marrow, cartilage, immune system, and skin. If respiratory chain functions are primarily or secondarily impaired, antioxidants or cofactors should be additionally given one by one. All patients with mitochondrial disorders should be offered an individually tailored diet and physical training program. Irrespective of the pathogenesis, all patients with mitochondrial disorders should avoid exposure to mitochondrion-toxic agents and environments. Specific treatment can be offered for stroke-like episodes, mitochondrial epilepsy, mitochondrial neurogastrointestinal encephalopathy, Leber hereditary optic neuropathy, thiamine-responsive Leigh syndrome, primary coenzyme Q deficiency, primary carnitine deficiency, Friedreich ataxia, ethylmalonic encephalopathy, acyl-CoA dehydrogenase deficiency, pyruvate dehydrogenase deficiency, and hereditary vitamin E deficiency. Preventing the transmission of mitochondrial DNA-related mitochondrial disorders can be achieved by mitochondrion replacement therapy (spindle transfer, pronuclear transfer). In conclusion, specific and nonspecific therapies for human mitochondrial disorders are available, and beneficial effects have been anecdotally reported. However, double-blind, placebo-controlled studies to confirm effectiveness are lacking for the majority of the measures applied to mitochondrial disorders. Transmission of certain mitochondrial disorders can be prevented by mitochondrion replacement therapy. A multidisciplinary approach is required to meet the therapeutic challenges of patients with mitochondrial disorders.
Collapse
|
48
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
49
|
Yamada Y, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev 2020; 154-155:187-209. [PMID: 32987095 DOI: 10.1016/j.addr.2020.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria carry out various essential functions including ATP production, the regulation of apoptosis and possess their own genome (mtDNA). Delivering target molecules to this organelle, it would make it possible to control the functions of cells and living organisms and would allow us to develop a better understanding of life. Given the fact that mitochondrial dysfunction has been implicated in a variety of human disorders, delivering therapeutic molecules to mitochondria for the treatment of these diseases is an important issue. To date, several mitochondrial drug delivery system (DDS) developments have been reported, but a generalized DDS leading to therapy that exclusively targets mitochondria has not been established. This review focuses on mitochondria-targeted therapeutic strategies including antioxidant therapy, cancer therapy, mitochondrial gene therapy and cell transplantation therapy based on mitochondrial DDS. A particular focus is on nanocarriers for mitochondrial delivery with the goal of achieving mitochondria-targeting therapy. We hope that this review will stimulate the accelerated development of mitochondrial DDS.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
50
|
Almannai M, El-Hattab AW, Ali M, Soler-Alfonso C, Scaglia F. Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 2020; 131:1-13. [PMID: 33129691 PMCID: PMC7537630 DOI: 10.1016/j.ymgme.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial disorders comprise a molecular and clinically diverse group of diseases that are associated with mitochondrial dysfunction leading to multi-organ disease. With recent advances in molecular technologies, the understanding of the pathomechanisms of a growing list of mitochondrial disorders has been greatly expanded. However, the therapeutic approaches for mitochondrial disorders have lagged behind with treatment options limited mainly to symptom specific therapies and supportive measures. There is an increasing number of clinical trials in mitochondrial disorders aiming for more specific and effective therapies. This review will cover different treatment modalities currently used in mitochondrial disorders, focusing on recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|