1
|
van der Plas MC, Koemans EA, Schipper MR, Voigt S, Rasing I, van der Zwet RGJ, Kaushik K, van Dort R, Schriemer S, van Harten TW, van Zwet E, van Etten ES, van Osch MJP, Terwindt GM, van Walderveen M, Wermer MJH. One-Year Radiologic Progression in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Neurology 2025; 104:e213546. [PMID: 40198864 PMCID: PMC11995281 DOI: 10.1212/wnl.0000000000213546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Knowledge on the short-term progression of cerebral amyloid angiopathy (CAA) is important for clinical practice and the design of clinical treatment trials. We investigated the 1-year progression of CAA-related MRI markers in sporadic (sCAA) and Dutch-type hereditary (D-CAA). METHODS Participants were included from 2 prospective cohort studies. 3T-MRI was performed at baseline and after 1 year. We assessed macrobleeds, cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), convexity subarachnoid hemorrhages (cSAHs), white matter hyperintensities (WMH), enlarged centrum semiovale perivascular spaces (CSO-EPVS), and visually stimulated blood oxygenation level-dependent (BOLD) fMRI parameters. Progression was defined as increase in number of macrobleeds or CMBs, new focus or extension of cSS, increase in CSO-EPVS category, or volume increase of >10% of WMH. Multivariable regression analyses were performed to determine factors associated with progression and the association between events related to parenchymal injury (cSAH, macrobleeds) and radiologic progression. RESULTS We included 98 participants (47% women): 55 with sCAA (mean age 70 years), 28 with symptomatic D-CAA (mean age 59 years), and 15 with presymptomatic D-CAA (mean age 45 years). Progression of >1 MRI markers was seen in all 83 (100%) participants with sCAA and symptomatic D-CAA and in 9 (60%) with presymptomatic D-CAA. The number of CMBs showed the largest progression in sCAA (98%; median increase 24) and symptomatic D-CAA (100%; median increase 58). WMH volume (>10% increase in 70%; mean increase 1.2 mL) was most progressive in presymptomatic D-CAA. A decrease in the upslope of the visually evoked BOLD response was observed for most patients. Symptomatic D-CAA status was associated with more overall progression (adjusted odds ratio [aOR] 9.7; 95% CI 1.7-54.2), CMB (adjusted relative risk [aRR] 2.47; 95% CI 1.5-4.1), and WMH volume progression (β 2.52; 95% CI 0.3-4.8). Baseline CMB count (aRR 1.002; 95% CI 1.001-1.002) was associated with CMB progression and cSS presence at baseline (aOR 8.16; 95% CI 2.6-25.4) with cSS progression. cSS progression was also associated with cSAH and macrobleeds (aOR 21,029; 95% CI 2.042-216.537). DISCUSSION CAA is a radiologically progressive disease even in the short-term. After 1 year, all symptomatic and most of the presymptomatic participants showed progression of at least 1 MRI-marker. CMBs and WMH volume (in symptomatic CAA) and WMH volume (in presymptomatic CAA) are the most promising markers to track short-term progression in future trials.
Collapse
Affiliation(s)
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Manon R Schipper
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Rosemarie van Dort
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sanne Schriemer
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Erik van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands; and
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, University Medical Center Groningen, the Netherlands
| |
Collapse
|
2
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
3
|
Chan E, Bonifacio GB, Harrison C, Banerjee G, Best JG, Sacks B, Harding N, Del Rocio Hidalgo Mas M, Jäger HR, Cipolotti L, Werring DJ. Domain-specific neuropsychological investigation of CAA with and without intracerebral haemorrhage. J Neurol 2023; 270:6124-6132. [PMID: 37672105 PMCID: PMC10632296 DOI: 10.1007/s00415-023-11977-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is associated with cognitive impairment, but the contributions of lobar intracerebral haemorrhage (ICH), underlying diffuse vasculopathy, and neurodegeneration, remain uncertain. We investigated the domain-specific neuropsychological profile of CAA with and without ICH, and their associations with structural neuroimaging features. METHODS Data were collected from patients with possible or probable CAA attending a specialist outpatient clinic. Patients completed standardised neuropsychological assessment covering seven domains. MRI scans were scored for markers of cerebral small vessel disease and neurodegeneration. Patients were grouped into those with and without a macro-haemorrhage (CAA-ICH and CAA-non-ICH). RESULTS We included 77 participants (mean age 72, 65% male). 26/32 (81%) CAA-non-ICH patients and 41/45 (91%) CAA-ICH patients were impaired in at least one cognitive domain. Verbal IQ and non-verbal IQ were the most frequently impaired, followed by executive functions and processing speed. We found no significant differences in the frequency of impairment across domains between the two groups. Medial temporal atrophy was the imaging feature most consistently associated with cognitive impairment (both overall and in individual domains) in both univariable and multivariable analyses. DISCUSSION Cognitive impairment is common in CAA, even in the absence of ICH, suggesting a key role for diffuse processes related to small vessel disease and/or neurodegeneration. Our findings indicate that neurodegeneration, possibly due to co-existing Alzheimer's disease pathology, may be the most important contributor. The observation that general intelligence is the most frequently affected domain suggests that CAA has a generalised rather than focal cognitive impact.
Collapse
Affiliation(s)
- Edgar Chan
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK.
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK.
| | - Guendalina B Bonifacio
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Corin Harrison
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Gargi Banerjee
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan G Best
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin Sacks
- Comprehensive Stroke Service, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Nicola Harding
- Comprehensive Stroke Service, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Maria Del Rocio Hidalgo Mas
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - H Rolf Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Lisa Cipolotti
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David J Werring
- Department of Brain Repair and Rehabilitation, Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
4
|
Lauer A, Speroni SL, Choi M, Da X, Duncan C, McCarthy S, Krishnan V, Lusk CA, Rohde D, Hansen MB, Kalpathy-Cramer J, Loes DJ, Caruso PA, Williams DA, Mouridsen K, Emblem KE, Eichler FS, Musolino PL. Hematopoietic stem-cell gene therapy is associated with restored white matter microvascular function in cerebral adrenoleukodystrophy. Nat Commun 2023; 14:1900. [PMID: 37019892 PMCID: PMC10076264 DOI: 10.1038/s41467-023-37262-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Blood-brain barrier disruption marks the onset of cerebral adrenoleukodystrophy (CALD), a devastating cerebral demyelinating disease caused by loss of ABCD1 gene function. The underlying mechanism are not well understood, but evidence suggests that microvascular dysfunction is involved. We analyzed cerebral perfusion imaging in boys with CALD treated with autologous hematopoietic stem-cells transduced with the Lenti-D lentiviral vector that contains ABCD1 cDNA as part of a single group, open-label phase 2-3 safety and efficacy study (NCT01896102) and patients treated with allogeneic hematopoietic stem cell transplantation. We found widespread and sustained normalization of white matter permeability and microvascular flow. We demonstrate that ABCD1 functional bone marrow-derived cells can engraft in the cerebral vascular and perivascular space. Inverse correlation between gene dosage and lesion growth suggests that corrected cells contribute long-term to remodeling of brain microvascular function. Further studies are needed to explore the longevity of these effects.
Collapse
Affiliation(s)
- Arne Lauer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neuroradiology, Heidelberg University, Heidelberg, Germany
| | - Samantha L Speroni
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Myoung Choi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Xiao Da
- Functional Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Christine Duncan
- Dana-Farber and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Siobhan McCarthy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijai Krishnan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Cole A Lusk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mikkel Bo Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Daniel J Loes
- Suburban Radiologic Consultants, Ltd, Minneapolis, MN, USA
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Williams
- Dana-Farber and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Kim Mouridsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia L Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Athinoula A. Martinos Centre for Biomedical Imaging, Charlestown, MA, USA.
| |
Collapse
|
5
|
Alban SL, Lynch KM, Ringman JM, Toga AW, Chui HC, Sepehrband F, Choupan J. The association between white matter hyperintensities and amyloid and tau deposition. Neuroimage Clin 2023; 38:103383. [PMID: 36965457 PMCID: PMC10060905 DOI: 10.1016/j.nicl.2023.103383] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023]
Abstract
White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with β-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their β-amyloid and tau pathologies, then assessed the effects of β-amyloid and tau on WMH volume and number. We then determined regions in which β-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global β-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where β-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). β-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between β-amyloid and WMH burden emphasizes the relationship between β-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on β-amyloid's vascular effects and the implications of impaired brain clearance in AD.
Collapse
Affiliation(s)
- Sierra L Alban
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten M Lynch
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., Scarsdale, NY, USA
| |
Collapse
|
6
|
Jochems ACC, Arteaga C, Chappell F, Ritakari T, Hooley M, Doubal F, Muñoz Maniega S, Wardlaw JM. Longitudinal Changes of White Matter Hyperintensities in Sporadic Small Vessel Disease: A Systematic Review and Meta-analysis. Neurology 2022; 99:e2454-e2463. [PMID: 36123130 PMCID: PMC9728036 DOI: 10.1212/wnl.0000000000201205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES White matter hyperintensities (WMHs) are frequent imaging features of small vessel disease (SVD) and related to poor clinical outcomes. WMH progression over time is well described, but regression was also noted recently, although the frequency and associated factors are unknown. This systematic review and meta-analysis aims to assess longitudinal intraindividual WMH volume changes in sporadic SVD. METHODS We searched EMBASE and MEDLINE for articles up to 28 January 2022 on WMH volume changes using MRI on ≥2 time points in adults with sporadic SVD. We classified populations (healthy/community-dwelling, stroke, cognitive, other vascular risk factors, and depression) based on study characteristics. We performed random-effects meta-analyses with Knapp-Hartung adjustment to determine mean WMH volume change (change in milliliters, percentage of intracranial volume [%ICV], or milliliters per year), 95% CI, and prediction intervals (PIs, limits of increase and decrease) using unadjusted data. Risk of bias assessment tool for nonrandomized studies was used to assess risk of bias. We followed Preferred Reporting in Systematic Review and Meta-Analysis guidelines. RESULTS Forty-one articles, 12,284 participants, met the inclusion criteria. Thirteen articles had low risk of bias across all domains. Mean WMH volume increased over time by 1.74 mL (95% CI 1.23-2.26; PI -1.24 to 4.73 mL; 27 articles, N = 7,411, mean time interval 2.7 years, SD = 1.65); 0.25 %ICV (95% CI 0.14-0.36; PI -0.06 to 0.56; 6 articles, N = 1,071, mean time interval 3.5 years, SD = 1.54); or 0.58 mL/y (95% CI 0.35-0.81; PI -0.26 to 1.41; 8 articles, N = 3,802). In addition, 13 articles specifically mentioned and/or provided data on WMH regression, which occurred in asymptomatic, stroke, and cognitive disorders related to SVD. DISCUSSION Net mean WMH volume increases over time mask wide-ranging change (e.g., mean increase of 1.75 mL ranging from 1.25 mL decrease to 4.75 mL increase), with regression documented explicitly in up to one-third of participants. More knowledge on underlying mechanisms, associated factors, and clinical correlates is needed, as WMH regression could be an important intervention target.
Collapse
Affiliation(s)
- Angela C C Jochems
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Carmen Arteaga
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Francesca Chappell
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Tuula Ritakari
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Monique Hooley
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Fergus Doubal
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Susana Muñoz Maniega
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the Centre for Clinical Brain Sciences (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), UK Dementia Research Institute (A.C.C.J., C.A., F.C., T.R., F.D., S.M.M., J.M.W.), and Centre for Discovery Brain Sciences (M.H.), University of Edinburgh, United Kingdom.
| |
Collapse
|
7
|
Perspectives on the Molecular Mediators of Oxidative Stress and Antioxidant Strategies in the Context of Neuroprotection and Neurolongevity: An Extensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7743705. [PMID: 36062188 PMCID: PMC9439934 DOI: 10.1155/2022/7743705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
Molecules with at least one unpaired electron in their outermost shell are known as free radicals. Free radical molecules are produced either within our bodies or by external sources such as ozone, cigarette smoking, X-rays, industrial chemicals, and air pollution. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. Although ROS (reactive oxygen species) are formed in the GI tract, little is known about how they contribute to pathophysiology and disease etiology. When reactive oxygen species and antioxidants are in imbalance in our bodies, they can cause cell structure damage, neurodegenerative diseases, diabetes, hypercholesterolemia, atherosclerosis, cancer, cardiovascular diseases, metabolic disorders, and other obesity-related disorders, as well as protein misfolding, mitochondrial dysfunction, glial cell activation, and subsequent cellular apoptosis. Neuron cells are gradually destroyed in neurodegenerative diseases. The production of inappropriately aggregated proteins is strongly linked to oxidative stress. This review's goal is to provide as much information as possible about the numerous neurodegenerative illnesses linked to oxidative stress. The possibilities of multimodal and neuroprotective therapy in human illness, using already accessible medications and demonstrating neuroprotective promise in animal models, are highlighted. Neuroprotection and neurolongevity may improve from the use of bioactive substances from medicinal herbs like Allium stadium, Celastrus paniculatus, and Centella asiatica. Many neuroprotective drugs' possible role has been addressed. Preventing neuroinflammation has been demonstrated in several animal models.
Collapse
|
8
|
van Dijk SE, van der Grond J, Lak J, van den Berg-Huysmans A, Labadie G, Terwindt GM, Wermer MJH, Gurol ME, van Buchem MA, Greenberg SM, van Rooden S. Longitudinal Progression of Magnetic Resonance Imaging Markers and Cognition in Dutch-Type Hereditary Cerebral Amyloid Angiopathy. Stroke 2022; 53:2006-2015. [PMID: 35360926 PMCID: PMC9126261 DOI: 10.1161/strokeaha.121.035826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemorrhagic and ischemic magnetic resonance imaging lesions as well as the more recently described decrease in vasomotor reactivity have been suggested as possible biomarkers for cerebral amyloid angiopathy (CAA). Analyses of these markers have been primarily cross-sectional during the symptomatic phase of the disease, with little data on their longitudinal progression, particularly in the presymptomatic phase of the disease when it may be most responsive to treatment. We used the unique opportunity provided by studying Dutch-type hereditary cerebral amyloid angiopathy (D-CAA) to determine longitudinal progression of CAA biomarkers during the presymptomatic as well as the symptomatic phase of the disease.
Collapse
Affiliation(s)
- Suzanne E van Dijk
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| | - Jessie Lak
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| | - Annette van den Berg-Huysmans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| | - Gerda Labadie
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| | - Gisela M Terwindt
- Department of Neurology,Leiden University Medical Center, Leiden, the Netherlands. (G.M.T., M.J.H.W.)
| | - Marieke J H Wermer
- Department of Neurology,Leiden University Medical Center, Leiden, the Netherlands. (G.M.T., M.J.H.W.)
| | - M Edip Gurol
- Department of Neurology, Massachusetts General Hospital, Boston (M.E.G., S.M.G.)
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston (M.E.G., S.M.G.)
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. (S.E.v.D., J.v.d.G., J.L., A.v.d.B-H, G.L., M.A.v.B., S.v.R)
| |
Collapse
|
9
|
Jiang L, Qin Y, Zhao YW, Zeng Q, Pan HX, Liu ZH, Sun QY, Xu Q, Tan JQ, Yan XX, Li JC, Tang BS, Guo JF. PSEN1 G417S mutation in a Chinese pedigree causing early-onset parkinsonism with cognitive impairment. Neurobiol Aging 2022; 115:70-76. [DOI: 10.1016/j.neurobiolaging.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
10
|
Automated Cerebral Infarct Detection on Computed Tomography Images Based on Deep Learning. Biomedicines 2022; 10:biomedicines10010122. [PMID: 35052801 PMCID: PMC8773678 DOI: 10.3390/biomedicines10010122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The limited accuracy of cerebral infarct detection on CT images caused by the low contrast of CT hinders the desirable application of CT as a first-line diagnostic modality for screening of cerebral infarct. This research was aimed at utilizing convolutional neural network to enhance the accuracy of automated cerebral infarct detection on CT images. The CT images underwent a series of preprocessing steps mainly to enhance the contrast inside the parenchyma, adjust the orientation, spatially normalize the images to the CT template, and create a t-score map for each patient. The input format of the convolutional neural network was the t-score matrix of a 16 × 16-pixel patch. Non-infarcted and infarcted patches were selected from the t-score maps, on which data augmentation was conducted to generate more patches for training and testing the proposed convolutional neural network. The convolutional neural network attained a 93.9% patch-wise detection accuracy in the test set. The proposed method offers prompt and accurate cerebral infarct detection on CT images. It renders a frontline detection modality of ischemic stroke on an emergent or regular basis.
Collapse
|
11
|
Nagaraja N, Farooqui A, Bin Zahid A, Kaur S. Factors associated with the presence of cerebral microbleeds and its influence on outcomes of stroke not treated with alteplase. Clin Neurol Neurosurg 2021; 207:106798. [PMID: 34252690 DOI: 10.1016/j.clineuro.2021.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Cerebral microbleeds (CMB) are associated with increased risk of hemorrhagic transformation (HT) of ischemic stroke with alteplase. Whether the presence of CMB influences the risk of HT and discharge outcomes of stroke patients not receiving alteplase is unclear. We evaluated the factors associated with the presence of CMB, and if the rates of HT and discharge outcomes were modified by the presence of CMB among stroke patients not treated with alteplase. METHODS Ischemic stroke patients who had MRI and did not receive alteplase were included in the study. CMB, HT and white matter hyperintensity (WMH) were evaluated using Microbleed Anatomical Rating Scale, Heidelberg bleeding classification, and Fazekas scales, respectively. Multivariate regression analysis was performed to evaluate factors associated with the presence of CMB. RESULTS Among 196 patients in the study, 58 (30%) patients had CMB. Nine patients had ≥ 10 CMBs. Median National Institutes of Health stroke scale score was 4. In multivariate analysis, age (OR=1.07;95%CI=1.01-1.12), history of stroke (OR=3.10;95%CI=1.08-8.92), congestive heart failure (OR=7.26;95%CI=1.58-33.42), admission diastolic blood pressure (OR=1.03;95%CI=1.003-1.06) and severe WMH defined as Fazekas score 4-6 (OR=4.69;95%CI=1.80-12.23) were significantly associated with the presence of CMB. There was no difference in HT (10% vs 12%, p = 0.80) or discharge outcomes (modified Rankin Scale 0-2: 53% vs 57%, p = 0.62) of patients with CMB compared to those without CMB. CONCLUSION CMB are associated with severe WMH and higher diastolic blood pressure. CMB are not associated with the HT occurrence or discharge outcome of mild ischemic stroke in the absence of alteplase.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Amreen Farooqui
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Abdullah Bin Zahid
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Supreet Kaur
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
12
|
Alber J, Arthur E, Goldfarb D, Drake J, Boxerman JL, Silver B, Ott BR, Johnson LN, Snyder PJ. The relationship between cerebral and retinal microbleeds in cerebral amyloid angiopathy (CAA): A pilot study. J Neurol Sci 2021; 423:117383. [PMID: 33684655 DOI: 10.1016/j.jns.2021.117383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The standard in vivo diagnostic imaging technique for cerebral amyloid angiopathy (CAA) is costly and thereby of limited utility for point-of-care diagnosis and monitoring of treatment efficacy. Recent recognition that retinal changes may reflect cerebral changes in neurodegenerative disease provides an ideal opportunity for development of accessible and cost-effective biomarkers for point-of-care use in the detection and monitoring of CAA. In this pilot study, we examined structural and angiographic retinal changes in CAA patients relative to a control group, and compared retinal and cerebral pathology in a group of CAA patients. METHODS We used spectral domain optical coherence tomography (SD-OCT) to image the retina and compared retinal microbleeds to both cerebral microbleeds and white matter hyperintensities (WMH) in CAA patients, as seen on MRI. We compared retinal angiographic changes, along with structural retinal neuronal layer changes in CAA patients and cognitively normal older adults, and examined the relationship between retinal and cerebral microbleeds and cognition in CAA patients. RESULTS We found a trend level correlation between retinal and cerebral microbleeds in CAA patients. Moreover, we found a significant correlation between retinal microbleeds and episodic memory performance in CAA patients. There were no significant group differences between CAA patients and cognitively normal older adults on retinal angiographic or structural measurements. CONCLUSION Retinal microbleeds may reflect degree of cerebral microbleed burden in CAA. This picture was complicated by systolic hypertension in the CAA group, which is a confounding factor for the interpretation of these data. Our results stimulate motivation for pursuit of a more comprehensive prospective study to determine the feasibility of retinal biomarkers in CAA.
Collapse
Affiliation(s)
- Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA; Memory & Aging Program, Butler Hospital, Providence, RI, USA.
| | - Edmund Arthur
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA; Memory & Aging Program, Butler Hospital, Providence, RI, USA
| | | | - Jonathan Drake
- Department of Neurology, Rhode Island Hospital, Providence, RI, USA; Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jerrold L Boxerman
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA; Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI, USA
| | - Brian Silver
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian R Ott
- Department of Neurology, Rhode Island Hospital, Providence, RI, USA; Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Lenworth N Johnson
- Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA; Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA; Department of Surgery (Ophthalmology), Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Lauer A, Speroni SL, Patel JB, Regalado E, Choi M, Smith E, Kalpathy-Kramer J, Caruso P, Milewicz DM, Musolino PL. Cerebrovascular Disease Progression in Patients With ACTA2 Arg179 Pathogenic Variants. Neurology 2021; 96:e538-e552. [PMID: 33199432 PMCID: PMC7905785 DOI: 10.1212/wnl.0000000000011210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To establish progression of imaging biomarkers of stroke, arterial steno-occlusive disease, and white matter injury in patients with smooth muscle dysfunction syndrome caused by mutations in the ACTA2 gene, we analyzed 113 cerebral MRI scans from a retrospective cohort of 27 patients with ACTA2 Arg179 pathogenic variants. METHODS Systematic quantifications of arterial ischemic strokes and white matter lesions were performed on baseline and follow-up scans using planimetric methods. Critical stenosis and arterial vessel diameters were quantified applying manual and semiautomated methods to cerebral magnetic resonance angiograms. We then assessed correlations between arterial abnormalities and parenchymal injury. RESULTS We found characteristic patterns of acute white matter ischemic injury and progressive internal carotid artery stenosis during infancy. Longitudinal analysis of patients older than 1.2 years showed stable white matter hyperintensities but increased number of cystic-like lesions over time. Progressive narrowing of the terminal internal carotid artery occurred in 80% of patients and correlated with the number of critical stenoses in cerebral arteries and arterial ischemic infarctions. Arterial ischemic strokes occurred in same territories affected by critical stenosis. CONCLUSIONS We found characteristic, early, and progressive cerebrovascular abnormalities in patients with ACTA2 Arg179 pathogenic variants. Our longitudinal data suggest that while steno-occlusive disease progresses over time and is associated with arterial ischemic infarctions and cystic-like white matter lesions, white matter hyperintensities can remain stable over long periods. The evaluated metrics will enable diagnosis in early infancy and be used to monitor disease progression, guide timing of stroke preventive interventions, and assess response to current and future therapies.
Collapse
Affiliation(s)
- Arne Lauer
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Samantha L Speroni
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jay B Patel
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ellen Regalado
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Myoung Choi
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Edward Smith
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jayashree Kalpathy-Kramer
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Paul Caruso
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dianna M Milewicz
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Patricia L Musolino
- From the Departments of Neurology (A.L., S.L.S., P.L.M.) and Radiology (J.B.P., J.K.-K., P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Internal Medicine (E.R., D.M.M.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neuroradiology (A.L., M.C.), Goethe University, Frankfurt am Main, Germany; andDepartment of Neurosurgery (E.S.), Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
14
|
Dubost F, Bruijne MD, Nardin M, Dalca AV, Donahue KL, Giese AK, Etherton MR, Wu O, Groot MD, Niessen W, Vernooij M, Rost NS, Schirmer MD. Multi-atlas image registration of clinical data with automated quality assessment using ventricle segmentation. Med Image Anal 2020; 63:101698. [PMID: 32339896 PMCID: PMC7275913 DOI: 10.1016/j.media.2020.101698] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Registration is a core component of many imaging pipelines. In case of clinical scans, with lower resolution and sometimes substantial motion artifacts, registration can produce poor results. Visual assessment of registration quality in large clinical datasets is inefficient. In this work, we propose to automatically assess the quality of registration to an atlas in clinical FLAIR MRI scans of the brain. The method consists of automatically segmenting the ventricles of a given scan using a neural network, and comparing the segmentation to the atlas ventricles propagated to image space. We used the proposed method to improve clinical image registration to a general atlas by computing multiple registrations - one directly to the general atlas and others via different age-specific atlases - and then selecting the registration that yielded the highest ventricle overlap. Finally, as an example application of the complete pipeline, a voxelwise map of white matter hyperintensity burden was computed using only the scans with registration quality above a predefined threshold. Methods were evaluated in a single-site dataset of more than 1000 scans, as well as a multi-center dataset comprising 142 clinical scans from 12 sites. The automated ventricle segmentation reached a Dice coefficient with manual annotations of 0.89 in the single-site dataset, and 0.83 in the multi-center dataset. Registration via age-specific atlases could improve ventricle overlap compared to a direct registration to the general atlas (Dice similarity coefficient increase up to 0.15). Experiments also showed that selecting scans with the registration quality assessment method could improve the quality of average maps of white matter hyperintensity burden, instead of using all scans for the computation of the white matter hyperintensity map. In this work, we demonstrated the utility of an automated tool for assessing image registration quality in clinical scans. This image quality assessment step could ultimately assist in the translation of automated neuroimaging pipelines to the clinic.
Collapse
Affiliation(s)
- Florian Dubost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands.
| | - Marleen de Bruijne
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Marco Nardin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Adrian V Dalca
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Kathleen L Donahue
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Anne-Katrin Giese
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Mark R Etherton
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Marius de Groot
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, the Netherlands
| | - Wiro Niessen
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Department of Imaging Physics, Faculty of Applied Science, TU Delft, Delft, The Netherlands
| | - Meike Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, the Netherlands
| | - Natalia S Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Markus D Schirmer
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA; Department of Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Germany.
| |
Collapse
|
15
|
Guo Y, Shen XN, Hou XH, Ou YN, Huang YY, Dong Q, Tan L, Yu JT. Genome-wide association study of white matter hyperintensity volume in elderly persons without dementia. NEUROIMAGE-CLINICAL 2020; 26:102209. [PMID: 32062564 PMCID: PMC7021640 DOI: 10.1016/j.nicl.2020.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/29/2023]
Abstract
We conducted a GWAS to identify genetic loci linked to WMHV in non-demented elders. Rs7220676 near HS3ST3A1 and MIR548H3 genes was significantly associated with WMHV. Rs7220676 was also correlated with rates of cognitive decline.
Background White matter hyperintensity has been correlated with cognitive disorders and its genetic predictors remain unclear. Here we conducted a genome-wide association study to identify novel genetic determinants that were correlated with white matter hyperintensity volume (WMHV) among non-demented elders. Methods Three hundred and fifty non-Hispanic Caucasian subjects aged 55–80 years were included from the Alzheimer's Disease Neuroimaging Initiative cohort. Associations of WMHV with genetic polymorphisms were explored using multiple linear regression under an additive genetic model. Further studies were conducted to explore the influence of genetic variants on cognition-related phenotypes. Results Rs7220676 near HS3ST3A1 and MIR548H3 genes was associated with WMHV levels at genome-wide significance (P = 2.96 × 10−8). Single nucleotide polymorphisms comprising rs9675262 (near HS3ST3A1 and MIR548H3 genes, P = 1.15 × 10−7), rs9820240 (in DCLK3 gene, P = 2.23 × 10−7), rs10916409 (near ISCA1P2 gene, P = 4.55 × 10−6), and rs540422 (in PICALM gene, P = 9.68 × 10−6) were identified as suggestive loci linked to WMHV levels. The minor allele of rs7220676 (C) showed association with lower log (WMHV) in a dose-dependent manner. Besides, rs7220676 was correlated with rates of cognitive decline assessed by Mini-mental State Examination and memory scores. Conclusions A novel locus near HS3ST3A1 and MIR548H3 genes was associated with WMHV levels and it may be involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China.
| | | |
Collapse
|
16
|
Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF. Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102149. [PMID: 31927133 DOI: 10.1016/j.nano.2020.102149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which leads to progressive dysfunction of cognition, memory and learning in elderly people. Common therapeutic agents are not only inadequate to suppress the progression of AD pathogenesis but also produce deleterious side effects; hence, development of alternative therapies is required to specifically suppress complications of AD. The current review provides a commentary on conventional as well as novel therapeutic approaches with an emphasis on stem cell and nano-based therapies for improvement and management of AD pathogenesis. According to our overview of the current literature, AD is a multi-factorial disorder with various pathogenic trajectories; hence, a multifunctional strategy to create effective neuroprotective agents is required to treat this disorder.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Moakedi
- Health Science Center, West Virginia University, Morgantown, USA
| | | | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
17
|
Gurol ME, Biessels GJ, Polimeni JR. Advanced Neuroimaging to Unravel Mechanisms of Cerebral Small Vessel Diseases. Stroke 2019; 51:29-37. [PMID: 31752614 DOI: 10.1161/strokeaha.119.024149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- M Edip Gurol
- From the Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (M.E.G.)
| | - Geert J Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands (G.J.B.)
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown (J.R.P.).,Department of Radiology, Harvard Medical School, Boston, MA (J.R.P.).,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA (J.P.R.)
| |
Collapse
|
18
|
Su N, Liang X, Yao M, Zhou LX, Wang Q, Jin ZY, Zhang SY, Cui LY, Gong G, Zhu YC, Ni J. Cerebral Microbleeds Correlated with White Matter and Hippocampal Volumes in Community-Dwelling Populations. J Alzheimers Dis 2019; 71:559-567. [PMID: 31424402 DOI: 10.3233/jad-190454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Few studies have investigated the correlation between cerebral microbleeds (CMBs), a hemorrhagic imaging marker of cerebral small vessel disease (CSVD), and brain volume. OBJECTIVE We investigated the association between the burden and locations of CMBs and brain volume in community-dwelling populations. METHODS Data were obtained from 1,029 participants who underwent brain magnetic resonance imaging (MRI) and APOE genotyping. Volumes of the whole brain, subcortical white matter (WM), cortical gray matter (GM), and hippocampus were extracted. Linear regression models were used to investigate the relationship between the CMB burden and their location with structural changes. RESULTS Regarding burden, participants with≥3 CMBs had significantly lower whole brain (β= -1.124, p = 0.0133), subcortical WM (β= -1.020, p = 0.0043), and hippocampus (β= -0.015, p = 0.0088) volumes than those without CMBs. Regarding location and burden, the presence of≥3 strictly lobar CMBs was negatively associated with whole brain volume (β= -2.838, p = 0.0088). Additionally, higher CMB burdens in strictly lobar locations or deep/mixed locations were associated with lower subcortical WM volume (β= -1.689, p = 0.0482; β= -0.872, p = 0.0464, respectively). Finally, the presence of≥3 deep/mixed CMBs was associated with lower hippocampus volume (β= -0.018, p = 0.0088), and these associations were independent of other ischemic markers of CSVD. However, the CMB burden and distributional pattern did not correlate with cortical GM volumes. CONCLUSION A higher CMB burden, in specific locations, is associated with decreased brain volumes in community-dwelling populations.
Collapse
Affiliation(s)
- Ning Su
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Xin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Carmona-Iragui M, Videla L, Lleó A, Fortea J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev Neurobiol 2019; 79:716-737. [PMID: 31278851 DOI: 10.1002/dneu.22709] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/04/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
Schirmer MD, Dalca AV, Sridharan R, Giese AK, Donahue KL, Nardin MJ, Mocking SJT, McIntosh EC, Frid P, Wasselius J, Cole JW, Holmegaard L, Jern C, Jimenez-Conde J, Lemmens R, Lindgren AG, Meschia JF, Roquer J, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Thijs V, Woo D, Vagal A, Xu H, Kittner SJ, McArdle PF, Mitchell BD, Rosand J, Worrall BB, Wu O, Golland P, Rost NS. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts - The MRI-GENIE study. Neuroimage Clin 2019; 23:101884. [PMID: 31200151 PMCID: PMC6562316 DOI: 10.1016/j.nicl.2019.101884] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/02/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022]
Abstract
White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94-0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of -2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.
Collapse
Affiliation(s)
- Markus D Schirmer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Lab, MIT, USA; Department of Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Germany.
| | - Adrian V Dalca
- Computer Science and Artificial Intelligence Lab, MIT, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Anne-Katrin Giese
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathleen L Donahue
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco J Nardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J T Mocking
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Elissa C McIntosh
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Petrea Frid
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - Johan Wasselius
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden; Department of Radiology, Neuroradiology, Skåne University Hospital, Malmö, Sweden
| | - John W Cole
- Department of Neurology, University of Maryland School of Medicine and Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Lukas Holmegaard
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jordi Jimenez-Conde
- Department of Neurology, Neurovascular Research Group (NEUVAS), IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Vesalius Research Center, Laboratory of Neurobiology, Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Arne G Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden; Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden
| | | | - Jaume Roquer
- Department of Neurology, Neurovascular Research Group (NEUVAS), IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ralph L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Pankaj Sharma
- Institute of Cardiovascular Research, St Peter's and Ashford Hospitals, Royal Holloway University of London (ICR2UL), Egham, UK
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Vincent Thijs
- Stroke Division, Australia and Department of Neurology, Austin Health, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Achala Vagal
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven J Kittner
- Department of Neurology, University of Maryland School of Medicine and Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Patrick F McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ona Wu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Lab, MIT, USA
| | - Natalia S Rost
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Regenhardt RW, Das AS, Ohtomo R, Lo EH, Ayata C, Gurol ME. Pathophysiology of Lacunar Stroke: History's Mysteries and Modern Interpretations. J Stroke Cerebrovasc Dis 2019; 28:2079-2097. [PMID: 31151839 DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/13/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
Since the term "lacune" was adopted in the 1800s to describe infarctions from cerebral small vessels, their underlying pathophysiological basis remained obscure until the 1960s when Charles Miller Fisher performed several autopsy studies of stroke patients. He observed that the vessels displayed segmental arteriolar disorganization that was associated with vessel enlargement, hemorrhage, and fibrinoid deposition. He coined the term "lipohyalinosis" to describe the microvascular mechanism that engenders small subcortical infarcts in the absence of a compelling embolic source. Since Fisher's early descriptions of lipohyalinosis and lacunar stroke (LS), there have been many advancements in the understanding of this disease process. Herein, we review lipohyalinosis as it relates to modern concepts of cerebral small vessel disease (cSVD). We discuss clinical classifications of LS as well as radiographic definitions based on modern neuroimaging techniques. We provide a broad and comprehensive overview of LS pathophysiology both at the vessel and parenchymal levels. We also comment on the role of biomarkers, the possibility of systemic disease processes, and advancements in the genetics of cSVD. Lastly, we assess preclinical models that can aid in studying LS disease pathogenesis. Enhanced understanding of this highly prevalent disease will allow for the identification of novel therapeutic targets capable of mitigating disease sequelae.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alvin S Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ryo Ohtomo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eng H Lo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cenk Ayata
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mahmut Edip Gurol
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Schirmer MD, Giese AK, Fotiadis P, Etherton MR, Cloonan L, Viswanathan A, Greenberg SM, Wu O, Rost NS. Spatial Signature of White Matter Hyperintensities in Stroke Patients. Front Neurol 2019; 10:208. [PMID: 30941083 PMCID: PMC6433778 DOI: 10.3389/fneur.2019.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: White matter hyperintensity (WMH) is a common phenotype across a variety of neurological diseases, particularly prevalent in stroke patients; however, vascular territory dependent variation in WMH burden has not yet been identified. Here, we sought to investigate the spatial specificity of WMH burden in patients with acute ischemic stroke (AIS). Materials and Methods: We created a novel age-appropriate high-resolution brain template and anatomically delineated the cerebral vascular territories. We used WMH masks derived from the clinical T2 Fluid Attenuated Inverse Recovery (FLAIR) MRI scans and spatial normalization of the template to discriminate between WMH volume within each subject's anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) territories. Linear regression modeling including age, sex, common vascular risk factors, and TOAST stroke subtypes was used to assess for spatial specificity of WMH volume (WMHv) in a cohort of 882 AIS patients. Results: Mean age of this cohort was 65.23 ± 14.79 years, 61.7% were male, 63.6% were hypertensive, 35.8% never smoked. Mean WMHv was 11.58c ± 13.49 cc. There were significant differences in territory-specific, relative to global, WMH burden. In contrast to PCA territory, age (0.018 ± 0.002, p < 0.001) and small-vessel stroke subtype (0.212 ± 0.098, p < 0.001) were associated with relative increase of WMH burden within the anterior (ACA and MCA) territories, whereas male sex (-0.275 ± 0.067, p < 0.001) was associated with a relative decrease in WMHv. Conclusions: Our data establish the spatial specificity of WMH distribution in relation to vascular territory and risk factor exposure in AIS patients and offer new insights into the underlying pathology.
Collapse
Affiliation(s)
- Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA, United States
- Department of Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anne-Katrin Giese
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Panagiotis Fotiadis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark R. Etherton
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lisa Cloonan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anand Viswanathan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ona Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Traylor M, Tozer DJ, Croall ID, Lisiecka-Ford DM, Olorunda AO, Boncoraglio G, Dichgans M, Lemmens R, Rosand J, Rost NS, Rothwell PM, Sudlow CLM, Thijs V, Rutten-Jacobs L, Markus HS. Genetic variation in PLEKHG1 is associated with white matter hyperintensities (n = 11,226). Neurology 2019; 92:e749-e757. [PMID: 30659137 PMCID: PMC6396967 DOI: 10.1212/wnl.0000000000006952] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify novel genetic associations with white matter hyperintensities (WMH). METHODS We performed a genome-wide association meta-analysis of WMH volumes in 11,226 individuals, including 8,429 population-based individuals from UK Biobank and 2,797 stroke patients. Replication of novel loci was performed in an independent dataset of 1,202 individuals. In all studies, WMH were quantified using validated automated or semi-automated methods. Imputation was to either the Haplotype Reference Consortium or 1,000 Genomes Phase 3 panels. RESULTS We identified a locus at genome-wide significance in an intron of PLEKHG1 (rs275350, β [SE] = 0.071 [0.013]; p = 1.6 × 10-8), a Rho guanine nucleotide exchange factor that is involved in reorientation of cells in the vascular endothelium. This association was validated in an independent sample (overall p value, 2.4 × 10-9). The same single nucleotide polymorphism was associated with all ischemic stroke (odds ratio [OR] [95% confidence interval (CI)] 1.07 [1.03-1.12], p = 0.00051), most strongly with the small vessel subtype (OR [95% CI] 1.09 [1.00-1.19], p = 0.044). Previous associations at 17q25 and 2p16 reached genome-wide significance in this analysis (rs3744020; β [SE] = 0.106 [0.016]; p = 1.2 × 10-11 and rs7596872; β [SE] = 0.143 [0.021]; p = 3.4 × 10-12). All identified associations with WMH to date explained 1.16% of the trait variance in UK Biobank, equivalent to 6.4% of the narrow-sense heritability. CONCLUSIONS Genetic variation in PLEKHG1 is associated with WMH and ischemic stroke, most strongly with the small vessel subtype, suggesting it acts by promoting small vessel arteriopathy.
Collapse
Affiliation(s)
- Matthew Traylor
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia.
| | - Daniel J Tozer
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Iain D Croall
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Danuta M Lisiecka-Ford
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Abiodun Olubunmi Olorunda
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Giorgio Boncoraglio
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Martin Dichgans
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Robin Lemmens
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Jonathan Rosand
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Natalia S Rost
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Peter M Rothwell
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Cathie L M Sudlow
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Vincent Thijs
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Loes Rutten-Jacobs
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | - Hugh S Markus
- From the Department of Clinical Neurosciences, Stroke Research Group (M.T., D.J.T., I.D.C., D.M.L.F., A.O.O., L.R.-J., H.S.M.), University of Cambridge, UK; Department of Cerebrovascular Diseases (G.B.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Institute for Stroke and Dementia Research (M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich; German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) (R.L.), KU Leuven-University of Leuven; Department of Neurology (R.L.), University Hospitals Leuven; Laboratory of Neurobiology (R.L.), VIB Center for Brain and Disease Research, Leuven, Belgium; Center for Human Genetic Research (J.R.) and Division of Neurocritical Care and Emergency Neurology (J.R.) and J. Philip Kistler Stroke Research Center (J.R., N.S.R.), Department of Neurology, Massachusetts General Hospital, Boston; Nuffield Department of Clinical Neurosciences (Clinical Neurology), Stroke Prevention Research Unit (P.M.R.), University of Oxford; Centre for Clinical Brain Sciences and Institute for Genetics and Molecular Medicine (C.L.M.S.), University of Edinburgh, UK; Stroke Division, Florey Institute of Neuroscience and Mental Health (V.T.), University of Melbourne; and Department of Neurology (V.T.), Austin Health, Heidelberg, Victoria, Australia
| | | |
Collapse
|
24
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
25
|
Chen X, Chen X, Chen Y, Xu M, Yu T, Li J. The Impact of Intracerebral Hemorrhage on the Progression of White Matter Hyperintensity. Front Hum Neurosci 2018; 12:471. [PMID: 30559656 PMCID: PMC6287195 DOI: 10.3389/fnhum.2018.00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
Objective: The exact relationship between white matter hyperintensity (WMH) and intracerebral hemorrhage (ICH) after ICH remains unclear. In this retrospective study, we investigated whether patients with ICH had more severe WMH progression. Patients and Methods: A total of 2,951 patients aged ≥40 years with ICH who received brain computed tomography (CT) imaging within 12 h of ICH symptom onset were screened. Ninety patients with two fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) assessments, including 36 patients with Lobar ICH, 40 with basal ganglia region ICH and 14 with ICH at other sites, were included in the final study. We selected 90 age- and gender-matched healthy individuals with two MRI scans as the control group. The WMH volumes at baseline and follow-up were assessed using the FLAIR image by MRICRON and ITK-SNAP software, while the hematoma volumes were calculated based on the CT images using ITK-SNAP software. Results: The annual progression rate of WMH was significantly higher in the ICH group compared with the control group (p < 0.05). Furthermore, WMH progression was associated with the ICH volume. The largest ICH volume (>30 mL) was associated with the highest annual progression rate of WMH (p < 0.05). In contrast, no trend toward an association between ICH location and the annual progression rate of WMH was observed (p > 0.05). Conclusions: Our results showed that ICH patients had more severe WMH progression and that larger ICH volume was related to greater progression of WMH after ICH. These results could provide important prognostic information about patients with ICH.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Manman Xu
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Yu
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Tsai HH, Kim JS, Jouvent E, Gurol ME. Updates on Prevention of Hemorrhagic and Lacunar Strokes. J Stroke 2018; 20:167-179. [PMID: 29886717 PMCID: PMC6007298 DOI: 10.5853/jos.2018.00787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) and lacunar infarction (LI) are the major acute clinical manifestations of cerebral small vessel diseases (cSVDs). Hypertensive small vessel disease, cerebral amyloid angiopathy, and hereditary causes, such as Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), constitute the three common cSVD categories. Diagnosing the underlying vascular pathology in these patients is important because the risk and types of recurrent strokes show significant differences. Recent advances in our understanding of the cSVD-related radiological markers have improved our ability to stratify ICH risk in individual patients, which helps guide antithrombotic decisions. There are general good-practice measures for stroke prevention in patients with cSVD, such as optimal blood pressure and glycemic control, while individualized measures tailored for particular patients are often needed. Antithrombotic combinations and anticoagulants should be avoided in cSVD treatment, as they increase the risk of potentially fatal ICH without necessarily lowering LI risk in these patients. Even when indicated for a concurrent pathology, such as nonvalvular atrial fibrillation, nonpharmacological approaches should be considered in the presence of cSVD. More data are emerging regarding the presentation, clinical course, and diagnostic markers of hereditary cSVD, allowing accurate diagnosis, and therefore, guiding management of symptomatic patients. When suspicion for asymptomatic hereditary cSVD exists, the pros and cons of prescribing genetic testing should be discussed in detail in the absence of any curative treatment. Recent data regarding diagnosis, risk stratification, and specific preventive approaches for both sporadic and hereditary cSVDs are discussed in this review article.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eric Jouvent
- Department of Neurology, University Paris Diderot, Paris, France
| | - M Edip Gurol
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Giralt-Steinhauer E, Medrano S, Soriano-Tárraga C, Mola-Caminal M, Rasal R, Cuadrado-Godia E, Rodríguez-Campello A, Ois A, Capellades J, Jimenez-Conde J, Roquer J. Brainstem leukoaraiosis independently predicts poor outcome after ischemic stroke. Eur J Neurol 2018; 25:1086-1092. [PMID: 29660221 DOI: 10.1111/ene.13659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Increased supratentorial white matter hyperintensities volume (S-WMHV) has been reported to be a predictor of worse outcome in patients with acute ischemic stroke (AIS). However, few studies have focused on less common locations, such as brainstem white matter hyperintensities (B-WMH), and their relationship to S-WMHV. This study aimed to examine whether B-WMH affect clinical outcome after AIS or transient ischemic attack (TIA). METHODS Based on magnetic resonance imaging evidence, B-WMH were evaluated in 313 prospectively identified patients with AIS/TIA and registered as absent or present. Standardized S-WMHV was quantified using a validated volumetric image analysis and natural log-transformed (Log_S-WMHV). Poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months after the index event. RESULTS Brainstem white matter hyperintensities were detected in 57 (18.2%) patients. In unadjusted analyses for outcome, the presence of B-WMH was associated with worse outcome, compared with patients without B-WMH (P = 0.034). In multivariate analysis controlling for age, atrial fibrillation, stroke severity, reperfusion therapies and Log_S-WMHV, only B-WMH [odds ratio (OR), 2.46; P = 0.021] and stroke severity (OR, 1.23; P < 0.001) remained independently associated with unfavourable 90-day modified Rankin Scale score. Patients with B-WMH were older (OR, 1.06; P < 0.001) and tended to have more hyperlipidaemia (OR, 2.21; P = 0.023) and peripheral arterial disease (OR, 2.57; P = 0.031). CONCLUSIONS Brainstem white matter hyperintensities are an independent predictor of poor outcome after AIS/TIA and this relationship persists after adjustment for important prognostic factors. Our results also show that leukoaraiosis in this location identifies patients with a specific risk factor profile, suggesting differences in the underlying pathogenesis.
Collapse
Affiliation(s)
- E Giralt-Steinhauer
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - S Medrano
- Neuroradiology Department, Hospital del Mar, Universistat Autònoma de Barcelona, Barcelona
| | - C Soriano-Tárraga
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - M Mola-Caminal
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - R Rasal
- Neurology Service, Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - E Cuadrado-Godia
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - A Rodríguez-Campello
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - A Ois
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - J Capellades
- Neuroradiology Department, Hospital del Mar, Universistat Autònoma de Barcelona, Barcelona
| | - J Jimenez-Conde
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| | - J Roquer
- Department of Neurology, Hospital del Mar, Barcelona.,Neurovascular Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona.,Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona
| |
Collapse
|
28
|
Sharma R, Dearaugo S, Infeld B, O'Sullivan R, Gerraty RP. Cerebral amyloid angiopathy: Review of clinico-radiological features and mimics. J Med Imaging Radiat Oncol 2018; 62:451-463. [PMID: 29604173 DOI: 10.1111/1754-9485.12726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/01/2018] [Indexed: 01/02/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is an important cause of lobar intracerebral haemorrhage (ICH) in the elderly, but has other clinico-radiological manifestations. In the last two decades, certain magnetic resonance imaging (MRI) sequences, namely gradient-recalled echo imaging and the newer and more sensitive susceptibility-weighted imaging, have been utilised to detect susceptibility-sensitive lesions such as cerebral microbleeds and cortical superficial siderosis. These can be utilised sensitively and specifically by the Modified Boston Criteria to make a diagnosis of CAA without the need for 'gold-standard' histopathology from biopsy. However, recently, other promising MRI biomarkers of CAA have been described which may further increase precision of radiological diagnosis, namely chronic white matter ischaemia, cerebral microinfarcts and lobar lacunes, cortical atrophy, and increased dilated perivascular spaces in the centrum semiovale. However, the radiological manifestations of CAA, as well as their clinical correlates, may have other aetiologies and mimics. It is important for the radiologist to be aware of these clinico-radiological features and mimics to accurately diagnose CAA. This is increasingly important in a patient demographic that has a high prevalence for use of antiplatelet and antithrombotic medications for other comorbidities which inherently carries an increased risk of ICH in patients with CAA.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Stephanie Dearaugo
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Bernard Infeld
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Richard O'Sullivan
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Healthcare Imaging Services, Melbourne, Victoria, Australia
| | - Richard P Gerraty
- Department of Medicine, Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| |
Collapse
|
29
|
Lauer A, Da X, Hansen MB, Boulouis G, Ou Y, Cai X, Liberato Celso Pedrotti A, Kalpathy-Cramer J, Caruso P, Hayden DL, Rost N, Mouridsen K, Eichler FS, Rosen B, Musolino PL. ABCD1 dysfunction alters white matter microvascular perfusion. Brain 2017; 140:3139-3152. [PMID: 29136088 PMCID: PMC5841142 DOI: 10.1093/brain/awx262] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic resonance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased capillary flow heterogeneity in asymptomatic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow heterogeneity followed by blood–brain barrier permeability changes in the perilesional white matter, which predicts lesion progression. These white matter microvascular alterations normalize within 1 year after treatment with haematopoietic stem cell transplantation. For the first time in vivo, our studies unveil a model to assess how ABCD1 alters white matter microvascular function and explores its potential as an earlier biomarker for monitoring disease progression and response to treatment.
Collapse
Affiliation(s)
- Arne Lauer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neuroradiology, Goethe University, Frankfurt a.M., Germany
| | - Xiao Da
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | - Gregoire Boulouis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neuroradiology, Université Paris-Descartes, INSERM UMR 894, Centre Hospitalier Sainte-Anne, Paris, France
| | - Yangming Ou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Xuezhu Cai
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | | | - Paul Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Douglas L Hayden
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Natalia Rost
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Mouridsen
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia L Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
30
|
Daugherty AM, Raz N. Incident risk and progression of cerebral microbleeds in healthy adults: a multi-occasion longitudinal study. Neurobiol Aging 2017; 59:22-29. [PMID: 28800410 PMCID: PMC5612885 DOI: 10.1016/j.neurobiolaging.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/24/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
Decline in cerebrovascular health complicates brain aging, and development of cerebral microbleeds (CMBs) is one of its prominent indicators. In a large sample of healthy adults (N = 251, age 18-78 years at baseline, 70% women), the contributions of chronological age and vascular health indicators to the risk of developing a CMB, as well as the change in CMB size and iron content, were examined in a prospective 8-year longitudinal study using susceptibility weighted imaging. Twenty-six persons (10.4%), most of whom were 40 years of age or older, had at least 1 CMB during the study. Older age was associated with greater risk for developing a CMB (odds ratio 1.03). Elevation of combined metabolic syndrome indicators (b = 0.15, p = 0.001) conferred additional risk (odds ratio 1.02). High body mass index exacerbated the risk associated with poor vascular health (b = 0.75, p < 0.001) and frequent exercise mitigated it (b = -0.46, p = 0.03). CMBs persisted over time, yet their volume decreased (mean change = -0.32, p < 0.05), whereas their relative iron content remained stable (mean change = -0.14, p = 0.05). We conclude that although developing a CMB is unlikely during normal aging, risk increases with declining vascular health, which is modifiable via behavioral and pharmaceutical intervention.
Collapse
Affiliation(s)
- Ana M Daugherty
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Naftali Raz
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, USA; Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
31
|
Polyakova TA, Arablinsky AV. [Neuroimaging and molecular biomarkers of dementia]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:16-22. [PMID: 28980608 DOI: 10.17116/jnevro20171176216-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Development of laboratory diagnosis and neuroimaging revealed a number of biomarkers for in vivo diagnosis of the most common forms of dementia (Alzheimer's disease, Lewy body dementia and vascular dementia). Currently, the highest diagnostic sensitivity and specificity of molecular biomarkers in the cerebrospinal fluid are detected for Alzheimer's disease. At the same time, the changes according to the magnetic resonance imaging are more prognostically significant for future cognitive decline than cerebrospinal fluid biomarkers. Cerebral microbleeds are an available adjuvant diagnostic marker, which increases the diagnostic value of leukoaraiosis that suggests the development of cerebral amyloid angiopathy or hypertensive microangiopathy, especially in cases of mixed pathology and severe cognitive deficits.
Collapse
Affiliation(s)
- T A Polyakova
- Russian Medical Academy for Continued Professional Education, Moscow, Russia
| | - A V Arablinsky
- Sechenov First Moscow Medical University, Moscow, Russia
| |
Collapse
|
32
|
Disease progression and regression in sporadic small vessel disease-insights from neuroimaging. Clin Sci (Lond) 2017; 131:1191-1206. [PMID: 28566448 DOI: 10.1042/cs20160384] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/17/2023]
Abstract
Cerebral small vessel disease (SVD) is considered the most important vascular contributor to the development of dementia. Comprehensive characterization of the time course of disease progression will result in better understanding of aetiology and clinical consequences of SVD. SVD progression has been studied extensively over the years, usually describing change in SVD markers over time using neuroimaging at two time points. As a consequence, SVD is usually seen as a rather linear, continuously progressive process. This assumption of continuous progression of SVD markers was recently challenged by several studies that showed regression of SVD markers. Here, we provide a review on disease progression in sporadic SVD, thereby taking into account both progression and regression of SVD markers with emphasis on white matter hyperintensities (WMH), lacunes and microbleeds. We will elaborate on temporal dynamics of SVD progression and discuss the view of SVD progression as a dynamic process, rather than the traditional view of SVD as a continuous progressive process, that might better fit evidence from longitudinal neuroimaging studies. We will discuss possible mechanisms and clinical implications of a dynamic time course of SVD, with both progression and regression of SVD markers.
Collapse
|
33
|
Prats-Sanchez L, Martínez-Domeño A, Camps-Renom P, Delgado-Mederos R, Guisado-Alonso D, Marín R, Dorado L, Rudilosso S, Gómez-González A, Purroy F, Gómez-Choco M, Cánovas D, Cocho D, Garces M, Abilleira S, Martí-Fàbregas J. Risk factors are different for deep and lobar remote hemorrhages after intravenous thrombolysis. PLoS One 2017. [PMID: 28640874 PMCID: PMC5480833 DOI: 10.1371/journal.pone.0178284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background and purpose Remote parenchymal haemorrhage (rPH) after intravenous thrombolysis is defined as hemorrhages that appear in brain regions without visible ischemic damage, remote from the area of ischemia causing the initial stroke symptom. The pathophysiology of rPH is not clear and may be explained by different underlying mechanisms. We hypothesized that rPH may have different risk factors according to the bleeding location. We report the variables that we found associated with deep and lobar rPH after intravenous thrombolysis. Methods This is a descriptive study of patients with ischemic stroke who were treated with intravenous thrombolysis. These patients were included in a multicenter prospective registry. We collected demographic, clinical and radiological data. We evaluated the number and distribution of cerebral microbleeds (CMB) from Magnetic Resonance Imaging. We excluded patients treated endovascularly, patients with parenchymal hemorrhage without concomitant rPH and stroke mimics. We compared the variables from patients with deep or lobar rPH with those with no intracranial hemorrhage. Results We studied 934 patients (mean age 73.9±12.6 years) and 52.8% were men. We observed rPH in 34 patients (3.6%); 9 (0.9%) were deep and 25 (2.7%) lobar. No hemorrhage was observed in 900 (96.6%) patients. Deep rPH were associated with hypertensive episodes within first 24 hours after intravenous thrombolysis (77.7% vs 23.3%, p<0.001). Lobar rPH were associated with the presence of CMB (53.8% vs 7.9%, p<0.001), multiple (>1) CMB (30.7% vs 4.4%, p = 0.003), lobar CMB (53.8% vs 3.0%, p<0.001) and severe leukoaraiosis (76.9% vs 42%, p = 0.02). Conclusions A high blood pressure within the first 24 hours after intravenous thrombolysis is associated with deep rPH, whereas lobar rPH are associated with imaging markers of amyloid deposition. Thus, our results suggest that deep and lobar rPH after intravenous thrombolysis may have different mechanisms.
Collapse
Affiliation(s)
- Luis Prats-Sanchez
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
- * E-mail:
| | - Alejandro Martínez-Domeño
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
| | - Pol Camps-Renom
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
| | - Raquel Delgado-Mederos
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
| | - Daniel Guisado-Alonso
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
| | - Rebeca Marín
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
| | - Laura Dorado
- Department of Neurology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | - Francisco Purroy
- Department of Neurology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | | | - David Cánovas
- Department of Neurology, Hospital Universitari de Sabadell-Corporació Sanitària Parc Taulí, Sabadell, Spain
| | - Dolores Cocho
- Department of Neurology, Hospital General Universitari de Granollers, Granollers, Spain
| | - Moises Garces
- Department of Neurology, Hospital Verge de la Cinta, Tortosa, Spain
| | - Sonia Abilleira
- Stroke Programme/Agency for Health Quality and Assessment of Catalonia, Barcelona, Spain
| | - Joan Martí-Fàbregas
- Servei de neuorlogia, Hospital de la Santa Creu i Sant Pau (Biomedical Research Institute, IIB-Sant Pau), Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
34
|
Boulouis G, van Etten ES, Charidimou A, Auriel E, Morotti A, Pasi M, Haley KE, Brouwers HB, Ayres AM, Vashkevich A, Jessel MJ, Schwab KM, Viswanathan A, Greenberg SM, Rosand J, Goldstein JN, Gurol ME. Association of Key Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease With Hematoma Volume and Expansion in Patients With Lobar and Deep Intracerebral Hemorrhage. JAMA Neurol 2017; 73:1440-1447. [PMID: 27723863 DOI: 10.1001/jamaneurol.2016.2619] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Hematoma expansion is an important determinant of outcome in spontaneous intracerebral hemorrhage (ICH) due to small vessel disease (SVD), but the association between the severity of the underlying SVD and the extent of bleeding at the acute phase is unknown to date. Objective To investigate the association between key magnetic resonance imaging (MRI) markers of SVD (as per the Standards for Reporting Vascular Changes on Neuroimaging [STRIVE] guidelines) and hematoma volume and expansion in patients with lobar or deep ICH. Design, Setting, and Participants Analysis of data collected from 418 consecutive patients admitted with primary lobar or deep ICH to a single tertiary care medical center between January 1, 2000, and October 1, 2012. Data were analyzed on March 4, 2016. Participants were consecutive patients with computed tomographic images allowing ICH volume calculation and MRI allowing imaging markers of SVD assessment. Main Outcomes and Measures The ICH volumes at baseline and within 48 hours after symptom onset were measured in 418 patients with spontaneous ICH without anticoagulant therapy, and hematoma expansion was calculated. Cerebral microbleeds, cortical superficial siderosis, and white matter hyperintensity volume were assessed on MRI. The associations between these SVD markers and ICH volume, as well as hematoma expansion, were investigated using multivariable models. Results This study analyzed 254 patients with lobar ICH (mean [SD] age, 75 [11] years and 140 [55.1%] female) and 164 patients with deep ICH (mean [SD] age 67 [14] years and 71 [43.3%] female). The presence of cortical superficial siderosis was an independent variable associated with larger ICH volume in the lobar ICH group (odds ratio per quintile increase in final ICH volume, 1.49; 95% CI, 1.14-1.94; P = .004). In multivariable models, the absence of cerebral microbleeds was associated with larger ICH volume for both the lobar and deep ICH groups (odds ratios per quintile increase in final ICH volume, 1.41; 95% CI, 1.11-1.81; P = .006 and 1.43; 95% CI, 1.04-1.99; P = .03; respectively) and with hematoma expansion in the lobar ICH group (odds ratio, 1.70; 95% CI, 1.07-2.92; P = .04). The white matter hyperintensity volumes were not associated with either hematoma volume or expansion. Conclusions and Relevance In patients admitted with primary lobar or deep ICH to a single tertiary care medical center, the presence of cortical superficial siderosis was an independent variable associated with larger lobar ICH volume, and the absence of cerebral microbleeds was associated with larger lobar and deep ICHs. The absence of cerebral microbleeds was independently associated with more frequent hematoma expansion in patients with lobar ICH. We provide an analytical framework for future studies aimed at limiting hematoma expansion.
Collapse
Affiliation(s)
- Gregoire Boulouis
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Ellis S van Etten
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston2Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Eitan Auriel
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Andrea Morotti
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Marco Pasi
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Kellen E Haley
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - H Bart Brouwers
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston3Brain Center Rudolf Magnus, Department of Neurosurgery, University Medical Center Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - Alison M Ayres
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Anastasia Vashkevich
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Michael J Jessel
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Kristin M Schwab
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Jonathan Rosand
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| | - Joshua N Goldstein
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston4Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston
| |
Collapse
|
35
|
Reijmer YD, Fotiadis P, Charidimou A, van Veluw SJ, Xiong L, Riley GA, Martinez-Ramirez S, Schwab K, Viswanathan A, Gurol ME, Greenberg SM. Relationship between white matter connectivity loss and cortical thinning in cerebral amyloid angiopathy. Hum Brain Mapp 2017; 38:3723-3731. [PMID: 28462514 DOI: 10.1002/hbm.23629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/08/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Patients with cerebral amyloid angiopathy (CAA) show loss of white matter connectivity and cortical thinning on MRI, primarily in posterior brain regions. Here we examined whether a potential causal relationship exists between these markers of subcortical and cortical brain injury by examining whether changes in cortical thickness progress in tandem with changes in their underlying connections. Thirty-one patients with probable CAA with brain MRI at two time points were included (follow-up time: 1.3 ± 0.4 years). Brain networks were reconstructed using diffusion MRI-based fiber tractography. Of each network node, we calculated the change in fractional anisotropy-weighted connectivity strength over time and the change in cortical thickness. The association between change in connectivity strength and cortical thickness was assessed with (hierarchical) linear regression models. Our results showed that decline in posterior network connectivity over time was strongly related to thinning of the occipital cortex (β = 0.65 (0.35-0.94), P < 0.001), but not to thinning of the other posterior or frontal cortices. However, at the level of individual network nodes, we found no association between connectivity strength and cortical thinning of the corresponding node (β = 0.009 ± 0.04, P = 0.80). Associations were independent of age, sex, and other brain MRI markers of CAA. To conclude, CAA patients with greater progressive loss of posterior white matter connectivity also have greater progression of occipital cortical thinning, but our results do not support a direct causal relationship between them. The association can be better explained by a shared underlying mechanism, which may form a potential target for future treatments. Hum Brain Mapp 38:3723-3731, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yael D Reijmer
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Panagiotis Fotiadis
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susanne J van Veluw
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Li Xiong
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grace A Riley
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sergi Martinez-Ramirez
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kristin Schwab
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Characterizing Deep White Matter Hyperintensities in Patients with Symptomatic Isolated Cortical Superficial Siderosis. J Stroke Cerebrovasc Dis 2017; 26:465-469. [PMID: 28089561 DOI: 10.1016/j.jstrokecerebrovasdis.2016.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 12/25/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In patient with cerebral amyloid angiopathy (CAA) presenting with lobar hemorrhage (LH), magnetic resonance imaging (MRI) white matter hyperintensities (WMH) tend to be predominant in posterior regions with the "multiple subcortical spots" WMH pattern as the most frequent topographical WMH pattern. Our aim was to analyze WMH severity and topographical distribution in patients with cortical superficial siderosis (CSS). METHODS We retrospectively analyzed MRIs from consecutive symptomatic isolated (i.e., without LH) CSS and LH-CAA (with or without associated CSS) patients. We analyzed baseline clinical characteristics including age, history of hypertension, diabetes, hypercholesterolemia, and pre-existing cognitive deficit. The presence of lobar microbleeds (MB) was scored on T2*. FLAIR (fluid-attenuated inversion recovery) WMH severity (using the Fazekas scale) and topographical distribution (using [slightly modified] earlier described WMH patterns) were analyzed and compared between both groups. RESULTS Twenty CSS and 63 LH-CAA patients were analyzed. Baseline clinical characteristics were similar between both groups, except for hypercholesterolemia less frequently present in the CSS group (P = .026). Lobar MB were significantly less frequently present in the CSS group (P < .01), and CSS was more frequently focal in the CSS group compared with LH-CAA patients with associated CSS (P = .03). Mean Fazekas scale was significantly lower in CSS patients (P = .011). WMH patterns did not differ between both groups, with the multiple subcortical spots pattern as the most frequently observed pattern. CONCLUSIONS Relative severe WMH scores and similar topographical distribution in CSS patients argue for WMH as a CAA-related feature in these patients with isolated CSS, adding level of evidence that isolated CSS could correspond to early manifestations of CAA.
Collapse
|
37
|
Kalheim LF, Bjørnerud A, Fladby T, Vegge K, Selnes P. White matter hyperintensity microstructure in amyloid dysmetabolism. J Cereb Blood Flow Metab 2017; 37:356-365. [PMID: 26792028 PMCID: PMC5363752 DOI: 10.1177/0271678x15627465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023]
Abstract
Accumulating evidence suggests associations between cerebrovascular disease (CVD) and Alzheimer's disease (AD). White matter hyperintensities of presumed vascular origin (WMHs) are increased in subjects with mild cognitive impairment (MCI) and AD, but the exact pathomechanistic link is unknown. The current study investigated effects of amyloid dysmetabolism on the microstructure of WMHs in subjects with MCI or subjective cognitive decline (N = 51), dichotomized according to pathological or normal levels of amyloid-β peptide (Aβ42) in cerebrospinal fluid (CSF). Thirty-one subjects with low CSF Aβ42 (Aβ+) and 20 subjects with normal CSF Aβ42 (Aβ-) were assessed with magnetic resonance diffusion tensor imaging (DTI), and fractional anisotropy (FA), radial diffusivity (DR), axial diffusivity (DA), and mean diffusivity (MD) were determined. There were no significant differences in WMH volume or distribution between the groups, and neither age nor WMH volume had significant impact on the DTI indices. Nevertheless, there were significantly higher DA, DR, and MD in WMHs in Aβ+ relative to Aβ-; however, no differences in FA were found. The present results suggest that amyloid accumulation is associated with impaired structural integrity (e.g. relating to more extensive demyelination and loss of axons) in WMHs putatively adding to effects of ischemia.
Collapse
Affiliation(s)
- Lisa F Kalheim
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Kjetil Vegge
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
38
|
Raman MR, Kantarci K, Murray ME, Jack CR, Vemuri P. Imaging markers of cerebrovascular pathologies: Pathophysiology, clinical presentation, and risk factors. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:5-14. [PMID: 28054023 PMCID: PMC5198884 DOI: 10.1016/j.dadm.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrovascular pathologies (CVPs) are common pathologies associated with age-related cognitive decline along with Alzheimer disease pathologies. The impact of CVP on the prevalence of dementia is increasingly being recognized. The goal of this review is to improve our understanding of the pathophysiological underpinnings and the multimodal magnetic resonance imaging and positron emission tomography imaging changes that are associated with the hallmarks of CVP. This knowledge will facilitate the development of early detection, intervention, and prevention strategies that may contribute to lowering the risk of dementia. In this review, we will first discuss currently known risk factors of CVPs including cardiovascular, lifestyle, genetic, sex differences, and head injury. Next, we will focus on the pathophysiology of CVPs and their impact on neurodegeneration and downstream cognitive impairment. Specifically, we will discuss three of the most common cerebrovascular lesions seen on MRI: white-matter hyperintensity, microbleeds, and infarcts. Finally, we will discuss the unanswered open questions in this field.
Collapse
Affiliation(s)
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
39
|
Derakhshankhah H, Hajipour MJ, Barzegari E, Lotfabadi A, Ferdousi M, Saboury AA, Ng EP, Raoufi M, Awala H, Mintova S, Dinarvand R, Mahmoudi M. Zeolite Nanoparticles Inhibit Aβ-Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30768-30779. [PMID: 27766857 DOI: 10.1021/acsami.6b10941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
EMT-type zeolite nanoparticles (EMT NPs) with particle size of 10-20 nm and external surface area of 200 m2/g have shown high selective affinity toward plasma protein (fibrinogen). Besides, the EMT NPs have demonstrated no adverse effect on blood coagulation hemostasis. Therefore, it was envisioned that the EMT NPs could inhibit possible β-amyloid (Aβ)-fibrinogen interactions that result in the formation of structurally abnormal clots, which are resistant to lysis, in cerebral vessels of patients with Alzheimer disease (AD). To evaluate this hypothesis, the clot formation and degradation of Aβ-fibrinogen in the presence and absence of the EMT zeolite NPs were assessed. The results clearly showed that the delay in clot dissolution was significantly reduced in the presence of zeolite NPs. By formation of protein corona, the EMT NPs showed a negligible reduction in their inhibitory strength. Docking of small molecules (Aβ-fibrinogen) introduced a novel potential inhibitory candidate. The zeolite NPs showed similar inhibitory effects on binding of fibrinogen to both Aβ(25-35) and/or Aβ(1-42). This indicates that the inhibitory strength of these NPs is independent of Aβ sequence, and it is suggested that the zeolite NPs adsorb fibrinogen and specifically obstruct their Aβ binding sites. Therefore, the zeolite NPs can be the safe and effective inhibitors in preventing Aβ-fibrinogen interaction and consequent cognitive damage.
Collapse
Affiliation(s)
| | - Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr 75147, Iran
| | | | | | | | | | - Eng Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia , 11800 USM, Malaysia
| | | | - Hussein Awala
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen , CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Svetlana Mintova
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen , CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | | | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
van Rooden S, van Opstal AM, Labadie G, Terwindt GM, Wermer MJH, Webb AG, Middelkoop HAM, Greenberg SM, van der Grond J, van Buchem MA. Early Magnetic Resonance Imaging and Cognitive Markers of Hereditary Cerebral Amyloid Angiopathy. Stroke 2016; 47:3041-3044. [PMID: 27834748 DOI: 10.1161/strokeaha.116.014418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/23/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Early markers for cerebral amyloid angiopathy are largely unknown. We aimed to identify which magnetic resonance imaging (MRI) (performed at 7 and 3T) and cognitive markers are an early sign in (pre) symptomatic subjects with hereditary cerebral hemorrhage with amyloidosis-Dutch type. METHODS Twenty-seven DNA-proven Dutch-type mutation carriers (15 symptomatic and 12 presymptomatic) (mean age of 45.9 years) and 33 controls (mean age of 45.6 years) were included. 7T and 3T MRI was performed, cerebral amyloid angiopathy and small-vessel disease type MRI markers were estimated, and cognitive performance was assessed. Univariate general linear modeling analysis was used to assess the association between MRI markers and cognitive performance on the one hand and on the other, mutation status, adjusted for age, sex, and education. RESULTS In symptomatic patients, all established cerebral amyloid angiopathy MRI markers (microbleeds, intracerebral hemorrhages, subarachnoid hemorrhages, superficial siderosis, microinfarcts, volume of white matter hyperintensities, and dilated perivascular spaces in centrum semiovale) were increased compared with controls (P<0.05). In presymptomatic subjects, the prevalence of microinfarcts and median volume of white matter hyperintensities were increased in comparison to controls (P<0.05). Symptomatic patients performed worse on all cognitive domains, whereas presymptomatic subjects did not show differences in comparison with controls (P<0.05). CONCLUSIONS White matter hyperintensities and microinfarcts are more prevalent among presymptomatic subjects and precede cognitive and neuropsychiatric symptoms and intracerebral hemorrhages.
Collapse
Affiliation(s)
- Sanneke van Rooden
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Anna M van Opstal
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Gerda Labadie
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Gisela M Terwindt
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Marieke J H Wermer
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Andrew G Webb
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Huub A M Middelkoop
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Steven M Greenberg
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Jeroen van der Grond
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.).
| | - Mark A van Buchem
- From the C.J. Gorter Center for High-Field MRI (S.v.R., A.M.v.O., A.G.W., J.v.d.G., M.A.v.B.), Department of Radiology (S.v.R., A.M.v.O., G.L., A.G.W., J.v.d.G., M.A.v.B.), and Department of Neurology (G.M.T., M.J.H.W., H.A.M.M.), Leiden University Medical Center, The Netherlands; and Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| |
Collapse
|
41
|
De Reuck J, Cordonnier C, Deramecourt V, Auger F, Durieux N, Leys D, Pasquier F, Maurage CA, Bordet R. Lobar intracerebral haematomas: Neuropathological and 7.0-tesla magnetic resonance imaging evaluation. J Neurol Sci 2016; 369:121-125. [PMID: 27653876 DOI: 10.1016/j.jns.2016.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE The Boston criteria for cerebral amyloid angiopathy (CAA) need validation by neuropathological examination in patients with lobar cerebral haematomas (LCHs). In "vivo" 1.5-tesla magnetic resonance imaging (MRI) is unreliable to detect the age-related signal changes in LCHs. This post-mortem study investigates the validity of the Boston criteria in brains with LCHs and the signal changes during their time course with 7.0-tesla MRI. MATERIALS AND METHODS Seventeen CAA brains including 26 LCHs were compared to 13 non-CAA brains with 14 LCHs. The evolution of the signal changes with time was examined in 25 LCHs with T2 and T2* 7.0-tesla MRI. RESULTS In the CAA group LCHs were predominantly located in the parieto-occipital lobes. Also white matter changes were more severe with more cortical microinfarcts and cortical microbleeds. On MRI there was a progressive shift of the intensity of the hyposignal from the haematoma core in the acute stage to the boundaries later on. During the residual stage the hyposignal mildly decreased in the boundaries with an increase of the superficial siderosis and haematoma core collapse. CONCLUSIONS Our post-mortem study of LCHs confirms the validity of the Boston criteria for CAA. Also 7.0-tesla MRI allows staging the age of the LCHs.
Collapse
Affiliation(s)
- Jacques De Reuck
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France.
| | - Charlotte Cordonnier
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Vincent Deramecourt
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Florent Auger
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Nicolas Durieux
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Didier Leys
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Florence Pasquier
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Claude-Alain Maurage
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| | - Regis Bordet
- Université Lille 2, INSERM U1171, Degenerative & vascular cognitive disorders, CHU Lille, F-59000 Li, France
| |
Collapse
|
42
|
Karayiannis C, Soufan C, Chandra RV, Phan TG, Wong K, Singhal S, Slater LA, Ly J, Moran C, Srikanth V. Prevalence of Brain MRI Markers of Hemorrhagic Risk in Patients with Stroke and Atrial Fibrillation. Front Neurol 2016; 7:151. [PMID: 27703444 PMCID: PMC5028680 DOI: 10.3389/fneur.2016.00151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
Background and purpose Cerebral microbleeds (CMBs), cortical superficial siderosis, white matter lesions (WML), and cerebral atrophy may signify greater bleeding risk particularly in patients in whom anticoagulation is to be considered. We investigated their prevalence and associations with stroke type in patients with stroke and atrial fibrillation (AF). Materials and Methods Cross-sectional sample, Monash Medical Centre (Melbourne, Australia) between 2010 and 2013, with brain MRI. MRI abnormalities were rated using standardized methods. Logistic regression was used to study associations adjusting for age and sex. Results There were 170 patients, mean age 78 years (SD 9.8), 154 (90.6%) with ischemic stroke. Prevalence of MRI markers were any microbleed 49%, multiple (≥2) microbleeds 30%, confluent WMLs 18.8%, siderosis 8.9%, severe cerebral atrophy 37.7%. Combinations of the severe manifestations of these markers were much less prevalent (2.9–12.4%). Compared with ischemic stroke, those with hemorrhagic stroke were more likely to have ≥10 microbleeds (OR 5.50 95% CI 1.46–20.77, p = 0.012) and siderosis (OR 6.24, 95% CI 1.74–22.40, p = 0.005). Siderosis was associated with multiple microbleeds (OR 8.14, 95% CI 2.38–27.86, p = 0.001). Patients admitted with hemorrhagic stroke and multiple microbleeds were more frequently anticoagulated prior to stroke (6/7, 85.7%) than in those with single (1/2, 50%) or no microbleeds (4/7, 57%). Conclusion Multiple CMBs, severe WML, and severe cerebral atrophy were common individually in hospitalized patients with stroke and AF, but less so in combination. A higher burden of CMBs may be associated with intracerebral hemorrhage in stroke patients with AF.
Collapse
Affiliation(s)
- Christopher Karayiannis
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University , Melbourne, VIC , Australia
| | - Cathy Soufan
- Neuroradiology Service, Monash Imaging, Monash Health , Melbourne, VIC , Australia
| | - Ronil V Chandra
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, VIC, Australia
| | - Thanh G Phan
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Stroke Unit, Neurosciences, Monash Health, Melbourne, VIC, Australia
| | - Kitty Wong
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University , Melbourne, VIC , Australia
| | - Shaloo Singhal
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Stroke Unit, Neurosciences, Monash Health, Melbourne, VIC, Australia
| | - Lee-Anne Slater
- Neuroradiology Service, Monash Imaging, Monash Health , Melbourne, VIC , Australia
| | - John Ly
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Stroke Unit, Neurosciences, Monash Health, Melbourne, VIC, Australia
| | - Chris Moran
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Department of Medicine, Peninsula Health, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia; Aged Care, Alfred Health, Melbourne, VIC, Australia
| | - Velandai Srikanth
- Department of Medicine, Stroke and Ageing Research Centre, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia; Stroke Unit, Neurosciences, Monash Health, Melbourne, VIC, Australia; Department of Medicine, Peninsula Health, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Curtze S, Putaala J, Sibolt G, Melkas S, Mustanoja S, Haapaniemi E, Sairanen T, Tiainen M, Tatlisumak T, Strbian D. Cerebral white matter lesions and post-thrombolytic remote parenchymal hemorrhage. Ann Neurol 2016; 80:593-9. [DOI: 10.1002/ana.24760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sami Curtze
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Jukka Putaala
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Gerli Sibolt
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Susanna Melkas
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Satu Mustanoja
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Elena Haapaniemi
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Tiina Sairanen
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Marjaana Tiainen
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - Turgut Tatlisumak
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
- Institute of Neuroscience and Physiology; Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
- Department of Neurology; Sahlgrenska University Hospital; Gothenburg Sweden
| | - Daniel Strbian
- Division of Neurology, Department of Clinical Neurosciences; University of Helsinki; Helsinki Finland
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
44
|
Nelson S, Cloonan L, Kanakis AS, Fitzpatrick KM, Shideler KI, Perilla AS, Furie KL, Rost NS. Antecedent Aspirin Use Is Associated with Less Severe Symptoms on Admission for Ischemic Stroke. J Stroke Cerebrovasc Dis 2016; 25:2519-25. [PMID: 27444522 DOI: 10.1016/j.jstrokecerebrovasdis.2016.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/08/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Aspirin is known to reduce stroke risk; however, its role in reducing severity of ischemic syndrome is not clear. We sought to investigate the relationship between antecedent aspirin use and stroke severity in patients presenting with acute ischemic stroke (AIS). METHODS We retrospectively analyzed a prospectively collected database of consecutive AIS patients presenting to our center. Clinical characteristics (including antecedent aspirin use), imaging findings, and laboratory data were assessed in association with presenting stroke severity, as measured by the National Institutes of Health Stroke Scale (NIHSS). Logistic regression models were used to determine univariate and multivariate predictors of baseline NIHSS. RESULTS Of the 610 AIS patients with admission brain magnetic resonance imaging available for volumetric analysis of acute infarct size, 241 (39.5%) used aspirin prior to stroke onset. Antecedent aspirin use (P = .0005), history of atrial fibrillation (P < .0001), acute infarct volume (P < .0001), initial systolic blood pressure (P = .041), admission glucose level (P = .0027), and stroke subtype (P < .0001) were associated with presenting stroke severity in univariate analysis. Antecedent aspirin use (P < .0001), history of atrial fibrillation (P < .0002), acute infarct volume (P < .0001), systolic blood pressure (P = .038), and glucose level (P = .0095) remained independent predictors of NIHSS in multivariable analysis. CONCLUSIONS Antecedent aspirin use was independently associated with milder presenting stroke severity, even after accounting for acute infarct volume. While the underlying biology of this apparent protective relationship requires further study, patients at high risk of stroke may benefit from routine aspirin use.
Collapse
Affiliation(s)
- Sarah Nelson
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.
| | - Lisa Cloonan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Allison S Kanakis
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kaitlin M Fitzpatrick
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kelsey I Shideler
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Adriana S Perilla
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Karen L Furie
- Department of Neurology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Natalia S Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Rost NS, Cloonan L, Kanakis AS, Fitzpatrick KM, Azzariti DR, Clarke V, Lourenco CM, Germain DP, Politei JM, Homola GA, Sommer C, Üçeyler N, Sims KB. Determinants of white matter hyperintensity burden in patients with Fabry disease. Neurology 2016; 86:1880-6. [PMID: 27164662 DOI: 10.1212/wnl.0000000000002673] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/05/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Using a semiautomated volumetric MRI assessment method, we aimed to identify determinants of white matter hyperintensity (WMH) burden in patients with Fabry disease (FD). METHODS Patients with confirmed FD and brain MRI available for this analysis were eligible for this protocol after written consent. Clinical characteristics were abstracted from medical records. T2 fluid-attenuated inversion recovery MRI were transferred in electronic format and analyzed for WMH volume (WMHV) using a validated, computer-assisted method. WMHV was normalized for head size (nWMHV) and natural log-transformed (lnWMHV) for univariate and multivariate linear regression analyses. Level of significance was set at p < 0.05 for all analyses. RESULTS Of 223 patients with FD and WMHV analyzed, 132 (59%) were female. Mean age at MRI was 39.2 ± 14.9 (range 9.6-72.7) years, and 136 (61%) patients received enzyme replacement therapy prior to enrollment. Median nWMHV was 2.7 cm(3) (interquartile range 1.8-4.0). Age (β 0.02, p = 0.008) and history of stroke (β 1.13, p = 0.02) were independently associated with lnWMHV. However, WMH burden-as well as WMHV predictors-varied by decade of life in this cohort of patients with FD (p < 0.0001). CONCLUSIONS In this largest-to-date cohort of patients with FD who had volumetric analysis of MRI, age and prior stroke independently predicted the burden of WMH. The 4th decade of life appears to be critical in progression of WMH burden, as novel predictors of WMHV emerged in patients aged 31-40 years. Future studies to elucidate the biology of WMH in FD and its role as potential MRI marker of disease progression are needed.
Collapse
Affiliation(s)
- Natalia S Rost
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany.
| | - Lisa Cloonan
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Allison S Kanakis
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Kaitlin M Fitzpatrick
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Danielle R Azzariti
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Virginia Clarke
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Charles M Lourenco
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Dominique P Germain
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Juan M Politei
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - György A Homola
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Claudia Sommer
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Nurcan Üçeyler
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| | - Katherine B Sims
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (N.S.R., L.C., A.S.K., K.M.F.), and the Center for Human Genetic Research, Department of Neurology (N.S.R., D.R.A., V.C., K.B.S.), Massachusetts General Hospital, Boston; Neurogenetics Unit (C.M.L.), School of Medicine of Riberirao Preto, University of São Paulo, Brazil; Division of Medical Genetics (D.P.G.), University of Versailles-St Quentin en Yvelines Paris-Saclay University, France; Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN) (J.M.P.), Buenos Aires, Argentina; and Departments of Neuroradiology (G.A.H.) and Neurology (C.S., N.Ü.), Fabry Center for Interdisciplinary Therapy (FAZIT) (C.S., N.Ü.), University of Würzburg, Germany
| |
Collapse
|
46
|
Switzer AR, McCreary C, Batool S, Stafford RB, Frayne R, Goodyear BG, Smith EE. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy. NEUROIMAGE-CLINICAL 2016; 11:461-467. [PMID: 27104140 PMCID: PMC4827726 DOI: 10.1016/j.nicl.2016.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = − 0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes. Visual fMRI was performed in CAA and controls at baseline and at one year. BOLD response amplitude was lower at one year compared to baseline in CAA. BOLD response amplitude decreases were not seen in similarly-aged controls. Progressive impairment in vascular reactivity may be a feature of CAA. Decreased BOLD response amplitude was unrelated to other CAA-related vascular changes.
Collapse
Affiliation(s)
- Aaron R Switzer
- Neuroscience Graduate Program, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada
| | - Cheryl McCreary
- Department of Radiology, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada
| | - Saima Batool
- Department of Clinical Neurosciences, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada
| | - Randall B Stafford
- Department of Clinical Neurosciences, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada
| | - Richard Frayne
- Neuroscience Graduate Program, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada
| | - Bradley G Goodyear
- Neuroscience Graduate Program, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada
| | - Eric E Smith
- Neuroscience Graduate Program, University of Calgary, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Canada.
| |
Collapse
|
47
|
Tran T, Cotlarciuc I, Yadav S, Hasan N, Bentley P, Levi C, Worrall BB, Meschia JF, Rost N, Sharma P. Candidate-gene analysis of white matter hyperintensities on neuroimaging. J Neurol Neurosurg Psychiatry 2016; 87:260-6. [PMID: 25835038 PMCID: PMC4789815 DOI: 10.1136/jnnp-2014-309685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/11/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH) are a common radiographic finding and may be a useful endophenotype for small vessel diseases. Given high heritability of WMH, we hypothesised that certain genotypes may predispose individuals to these lesions and consequently, to an increased risk of stroke, dementia and death. We performed a meta-analysis of studies investigating candidate genes and WMH to elucidate the genetic susceptibility to WMH and tested associated variants in a new independent WMH cohort. We assessed a causal relationship of WMH to methylene tetrahydrofolate reductase (MTHFR). METHODS Database searches through March 2014 were undertaken and studies investigating candidate genes in WMH were assessed. Associated variants were tested in a new independent ischaemic cohort of 1202 WMH patients. Mendelian randomization was undertaken to assess a causal relationship between WMH and MTHFR. RESULTS We identified 43 case-control studies interrogating eight polymorphisms in seven genes covering 6,314 WMH cases and 15,461 controls. Fixed-effects meta-analysis found that the C-allele containing genotypes of the aldosterone synthase CYP11B2 T(-344)C gene polymorphism were associated with a decreased risk of WMH (OR=0.61; 95% CI, 0.44 to 0.84; p=0.003). Using mendelian randomisation the association among MTHFR C677T, homocysteine levels and WMH, approached, but did not reach, significance (expected OR=1.75; 95% CI, 0.90-3.41; observed OR=1.68; 95% CI, 0.97-2.94). Neither CYP11B2 T(-344)C nor MTHFR C677T were significantly associated when tested in a new independent cohort of 1202 patients with WMH. CONCLUSIONS There is a genetic basis to WMH but anonymous genome wide and exome studies are more likely to provide novel loci of interest.
Collapse
Affiliation(s)
- Theresa Tran
- Institute of Cardiovascular Research, Royal Holloway University of London (ICR2UL) and Ashford & St Peters NHS Foundation Trust, London, UK Imperial College Cerebrovascular Research Unit (ICCRU), Imperial College London, London, UK
| | - Ioana Cotlarciuc
- Institute of Cardiovascular Research, Royal Holloway University of London (ICR2UL) and Ashford & St Peters NHS Foundation Trust, London, UK
| | - Sunaina Yadav
- Imperial College Cerebrovascular Research Unit (ICCRU), Imperial College London, London, UK
| | - Nazeeha Hasan
- Imperial College Cerebrovascular Research Unit (ICCRU), Imperial College London, London, UK
| | - Paul Bentley
- Imperial College Cerebrovascular Research Unit (ICCRU), Imperial College London, London, UK
| | - Christopher Levi
- Department of Neurology, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia, USA
| | - James F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Natalia Rost
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj Sharma
- Institute of Cardiovascular Research, Royal Holloway University of London (ICR2UL) and Ashford & St Peters NHS Foundation Trust, London, UK Imperial College Cerebrovascular Research Unit (ICCRU), Imperial College London, London, UK
| |
Collapse
|
48
|
Pasquini M, Benedictus MR, Boulouis G, Rossi C, Dequatre-Ponchelle N, Cordonnier C. Incident Cerebral Microbleeds in a Cohort of Intracerebral Hemorrhage. Stroke 2016; 47:689-94. [PMID: 26839348 DOI: 10.1161/strokeaha.115.011843] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/24/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to identify prognostic and associated factors of incident cerebral microbleeds (CMBs) in intracerebral hemorrhage (ICH) survivors. METHODS Observational prospective cohort of 168 ICH survivors who underwent 1.5T magnetic resonance imaging at ICH onset and during follow-up (median scan interval, 3.4; interquartile range, 1.4-4.7) years. We used logistic regression adjusted for age, sex, and scan interval. Analyses were stratified according to the index ICH location (58 lobar ICH, 103 nonlobar ICH, excluding patients with multiple or unclassifiable ICH). RESULTS Eighty-nine (53%) patients had CMBs at ICH onset, and 80 (48%) exhibited incident CMBs during follow-up. Predictors of incident CMBs at ICH onset were ≥1 CMBs (adjusted odds ratio [aOR], 2.27; 95% confidence interval [CI], 1.18-4.35), old radiological macrohemorrhage (aOR, 6.78; 95% CI, 2.76-16.68), and CMBs in mixed location (aOR, 3.73; 95% CI, 1.67-8.31). When stratifying by ICH location, incident CMBs were associated in nonlobar ICH with incident lacunes (aOR, 2.86; 95% CI, 1.04-7.85) and with the use of antiplatelet agents (aOR, 2.89; 95% CI, 1.14-7.32). In lobar ICH, incident CMBs were associated with incident radiological macrohemorrhage (aOR, 9.76; 95% CI, 1.07-88.77). CONCLUSIONS Prognostic and associated factors of incident CMBs differed according to the index ICH location. Whereas in lobar ICH, incident CMBs were associated with hemorrhagic biomarkers, in nonlobar ICH, ischemic burden also increased. CMBs may be interesting biomarkers to monitor in randomized trials on restarting antithrombotic drugs after ICH.
Collapse
Affiliation(s)
- Marta Pasquini
- From the Univ. Lille, Inserm, CHU Lille, U 1171, Degenerative and vascular cognitive disorders, Lille, France, (M.P., G.B., C.R., N.D.-P., C.C.); Department of Neurology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France (M.P.); and Alzheimer Center and, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands (M.R.B.)
| | - Marije R Benedictus
- From the Univ. Lille, Inserm, CHU Lille, U 1171, Degenerative and vascular cognitive disorders, Lille, France, (M.P., G.B., C.R., N.D.-P., C.C.); Department of Neurology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France (M.P.); and Alzheimer Center and, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands (M.R.B.)
| | - Grégoire Boulouis
- From the Univ. Lille, Inserm, CHU Lille, U 1171, Degenerative and vascular cognitive disorders, Lille, France, (M.P., G.B., C.R., N.D.-P., C.C.); Department of Neurology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France (M.P.); and Alzheimer Center and, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands (M.R.B.)
| | - Costanza Rossi
- From the Univ. Lille, Inserm, CHU Lille, U 1171, Degenerative and vascular cognitive disorders, Lille, France, (M.P., G.B., C.R., N.D.-P., C.C.); Department of Neurology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France (M.P.); and Alzheimer Center and, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands (M.R.B.)
| | - Nelly Dequatre-Ponchelle
- From the Univ. Lille, Inserm, CHU Lille, U 1171, Degenerative and vascular cognitive disorders, Lille, France, (M.P., G.B., C.R., N.D.-P., C.C.); Department of Neurology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France (M.P.); and Alzheimer Center and, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands (M.R.B.)
| | - Charlotte Cordonnier
- From the Univ. Lille, Inserm, CHU Lille, U 1171, Degenerative and vascular cognitive disorders, Lille, France, (M.P., G.B., C.R., N.D.-P., C.C.); Department of Neurology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Saint Philibert Hospital, Lille, France (M.P.); and Alzheimer Center and, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands (M.R.B.).
| |
Collapse
|
49
|
Domingues R, Rossi C, Cordonnier C. Diagnostic evaluation for nontraumatic intracerebral hemorrhage. Neurol Clin 2016; 33:315-28. [PMID: 25907908 DOI: 10.1016/j.ncl.2014.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition with multiple possible underlying causes. Early diagnosis of ICH associated with a precise diagnostic work-up is mandatory. Clinical signs may give clues to diagnosis but are not reliable enough and imaging remains the cornerstone of management. Noncontrast computed tomography and magnetic resonance imaging (MRI) are highly sensitive for ICH identification. Additionally, MRI may disclose brain parenchymal biomarkers that can contribute to the etiologic diagnosis. Vessel examination should be carried out whenever there is a clinical suspicion of underlying structural lesions, such as vascular malformations or tumors. To date, conventional angiography remains the gold standard to detect intracranial vascular malformations in patients with ICH.
Collapse
Affiliation(s)
- Renan Domingues
- Department of Neurology, University of Lille, UDSL, CHU Lille, Inserm U 1171, Lille 59000, France; CAPES Foundation, Ministry of Education, Quadra 2, Bloco L, Lote 06, Edifício Capes - CEP: 70.040-020 - Brasilia-DF, Brazil
| | - Costanza Rossi
- Department of Neurology, University of Lille, UDSL, CHU Lille, Inserm U 1171, Lille 59000, France
| | - Charlotte Cordonnier
- Department of Neurology, University of Lille, UDSL, CHU Lille, Inserm U 1171, Lille 59000, France.
| |
Collapse
|
50
|
Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 2016; 36:40-54. [PMID: 25944592 PMCID: PMC4758563 DOI: 10.1038/jcbfm.2015.88] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA.
Collapse
Affiliation(s)
- Yael D Reijmer
- Department of Neurology, Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne J van Veluw
- Department of Neurology, Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Hemorrhagic Stroke Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|