1
|
Santos Cuevas DC, Campos Ruiz RE, Collina DD, Tierra Criollo CJ. Effective brain connectivity related to non-painful thermal stimuli using EEG. Biomed Phys Eng Express 2024; 10:045044. [PMID: 38834037 DOI: 10.1088/2057-1976/ad53ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Understanding the brain response to thermal stimuli is crucial in the sensory experience. This study focuses on non-painful thermal stimuli, which are sensations induced by temperature changes without causing discomfort. These stimuli are transmitted to the central nervous system through specific nerve fibers and are processed in various regions of the brain, including the insular cortex, the prefrontal cortex, and anterior cingulate cortex. Despite the prevalence of studies on painful stimuli, non-painful thermal stimuli have been less explored. This research aims to bridge this gap by investigating brain functional connectivity during the perception of non-painful warm and cold stimuli using electroencephalography (EEG) and the partial directed coherence technique (PDC). Our results demonstrate a clear contrast in the direction of information flow between warm and cold stimuli, particularly in the theta and alpha frequency bands, mainly in frontal and temporal regions. The use of PDC highlights the complexity of brain connectivity during these stimuli and reinforces the existence of different pathways in the brain to process different types of non-painful warm and cold stimuli.
Collapse
Affiliation(s)
| | | | - Denny Daniel Collina
- Department of Electronics and Biomedical Engineering, Federal Center for Technological Education of Minas Gerais, Belo Horizonte, 30510-000, Brazil
| | | |
Collapse
|
2
|
Clinical presentation of strokes confined to the insula: a systematic review of literature. Neurol Sci 2021; 42:1697-1704. [PMID: 33575921 PMCID: PMC8043872 DOI: 10.1007/s10072-021-05109-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/31/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE The insular cortex serves a wide variety of functions in humans, ranging from sensory and affective processing to high-level cognition. Hence, insular dysfunction may result in several different presentations. Ischemic strokes limited to the insular territory are rare and deserve a better characterization, to be quickly recognized and to receive the appropriate treatment (e.g. thrombolysis). METHODS We reviewed studies on patients with a first-ever acute stroke restricted to the insula. We searched in the Medline database the keywords "insular stroke" and "insular infarction", to identify previously published cases. Afterwards, the results were divided depending on the specific insular region affected by the stroke: anterior insular cortex (AIC), posterior insular cortex (PIC) or total insula cortex (TIC). Finally, a review of the clinical correlates associated with each region was performed. RESULTS We identified 25 reports including a total of 49 patients (59.7 ± 15.5 years, 48% male) from systematic review of the literature. The most common clinical phenotypes were motor and somatosensory deficits, dysarthria, aphasia and a vestibular-like syndrome. Atypical presentations were also common and included dysphagia, awareness deficits, gustatory disturbances, dysautonomia, neuropsychiatric or auditory disturbances and headache. CONCLUSIONS The clinical presentation of insular strokes is heterogeneous; however, an insular stroke should be suspected when vestibular-like, somatosensory, speech or language disturbances are combined in the same patient. Further studies are needed to improve our understanding of more atypical presentations.
Collapse
|
3
|
Raghu ALB, Parker T, van Wyk A, Green AL. Insula stroke: the weird and the worrisome. Postgrad Med J 2019; 95:497-504. [PMID: 31296791 DOI: 10.1136/postgradmedj-2019-136732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 01/10/2023]
Abstract
Infarction of the insula is a common scenario with large tissue-volume strokes in the middle cerebral artery territory. Considered to be part of the central autonomic network, infarction of this region is associated with autonomic disturbances, in particular cardiovascular dysregulation. Risk of aspiration following stroke is also associated with involvement of the insula, consistent with its purported participation in complex functions of the mouth and pharynx. Strokes restricted to the insula are rare and present with a broad range of symptoms that offer a window of insight into the diverse functionality of the insular cortex. Chemosensory, autonomic, vestibular, auditory, somatosensory, language and oropharyngeal functional deficits are all recognised, among others. Long-term sequelae are unknown but profound symptoms, such as hemiparesis, are usually transient. Understanding the patterns of dysfunction highlighted provides the basis for future strategies to optimise stroke management on the discovery of insula involvement.
Collapse
Affiliation(s)
| | - Tariq Parker
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - André van Wyk
- Acute Stroke Unit, Royal Berkshire Hospital, Reading, UK
| | - Alexander Laurence Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
4
|
Key B, Brown D. Designing Brains for Pain: Human to Mollusc. Front Physiol 2018; 9:1027. [PMID: 30127750 PMCID: PMC6088194 DOI: 10.3389/fphys.2018.01027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
There is compelling evidence that the "what it feels like" subjective experience of sensory stimuli arises in the cerebral cortex in both humans as well as mammalian experimental animal models. Humans are alone in their ability to verbally communicate their experience of the external environment. In other species, sensory awareness is extrapolated on the basis of behavioral indicators. For instance, cephalopods have been claimed to be sentient on the basis of their complex behavior and anecdotal reports of human-like intelligence. We have interrogated the findings of avoidance learning behavioral paradigms and classical brain lesion studies and conclude that there is no evidence for cephalopods feeling pain. This analysis highlighted the questionable nature of anthropometric assumptions about sensory experience with increased phylogenetic distance from humans. We contend that understanding whether invertebrates such as molluscs are sentient should first begin with defining the computational processes and neural circuitries underpinning subjective awareness. Using fundamental design principles, we advance the notion that subjective awareness is dependent on observer neural networks (networks that in some sense introspect the neural processing generating neural representations of sensory stimuli). This introspective process allows the observer network to create an internal model that predicts the neural processing taking place in the network being surveyed. Predictions arising from the internal model form the basis of a rudimentary form of awareness. We develop an algorithm built on parallel observer networks that generates multiple levels of sensory awareness. A network of cortical regions in the human brain has the appropriate functional properties and neural interconnectivity that is consistent with the predicted circuitry of the algorithm generating pain awareness. By contrast, the cephalopod brain lacks the necessary neural circuitry to implement such an algorithm. In conclusion, we find no compelling behavioral, functional, or neuroanatomical evidence to indicate that cephalopods feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Thusius N, Romanowicz M, Mlynek K, Sola C. Prolonged Psychosis Associated with Left Insular Stroke: Talking to God in the Walls. PSYCHOSOMATICS 2018; 59:618-621. [PMID: 29751938 DOI: 10.1016/j.psym.2018.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Nuria Thusius
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN.
| | | | - Karolina Mlynek
- Department of Psychiatry, MetroHealth MedicalCenter, Cleveland, OH
| | | |
Collapse
|
6
|
Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal-Opercular (SII) Cortex. J Neurosci 2017; 37:9380-9388. [PMID: 28847806 PMCID: PMC5618259 DOI: 10.1523/jneurosci.1316-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/30/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023] Open
Abstract
The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal–opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex. SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal–opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative “temperature cortex.” Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules.
Collapse
|
7
|
Kodumuri N, Sebastian R, Davis C, Posner J, Kim EH, Tippett DC, Wright A, Hillis AE. The association of insular stroke with lesion volume. NEUROIMAGE-CLINICAL 2016; 11:41-45. [PMID: 26909326 PMCID: PMC4732185 DOI: 10.1016/j.nicl.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/28/2015] [Accepted: 01/09/2016] [Indexed: 12/19/2022]
Abstract
The insula has been implicated in many sequelae of stroke. It is the area most commonly infarcted in people with post-stroke arrhythmias, loss of thermal sensation, hospital acquired pneumonia, and apraxia of speech. We hypothesized that some of these results reflect the fact that: (1) ischemic strokes that involve the insula are larger than strokes that exclude the insula (and therefore are associated with more common and persistent deficits); and (2) insular involvement is a marker of middle cerebral artery (MCA) occlusion. We analyzed MRI scans of 861 patients with acute ischemic hemispheric strokes unselected for functional deficits, and compared infarcts involving the insula to infarcts not involving the insula using t-tests for continuous variables and chi square tests for dichotomous variables. Mean infarct volume was larger for infarcts including the insula (n = 232) versus excluding the insula (n = 629): 65.8 ± 78.8 versus 10.2 ± 15.9 cm3 (p < 0.00001). Even when we removed lacunar infarcts, mean volume of non-lacunar infarcts that included insula (n = 775) were larger than non-lacunar infarcts (n = 227) that excluded insula: 67.0 cm3 ± 79.2 versus 11.5 cm3 ± 16.7 (p < 0.00001). Of infarcts in the 90th percentile for volume, 87% included the insula (χ2 = 181.8; p < 0.00001). Furthermore, 79.0% infarcts due to MCA occlusion included the insula; 78.5% of infarcts without MCA occlusion excluded the insula (χ2 = 93.1; p < 0.0001). The association between insular damage and acute or chronic sequelae likely often reflects the fact that insular infarct is a marker of large infarcts caused by occlusion of the MCA more than a specific role of the insula in a range of functions. Particularly in acute stroke, some deficits may also be due to ischemia of the MCA or ICA territory caused by large vessel occlusion. The insula is the most commonly infarcted area in patients with a wide range of deficits. In 861 acute ischemic hemispheric strokes, mean infarct volume was much larger when infarct included the insula (p < 0.00001). Of infarcts in the 90th percentile for volume, 87% included the insula (χ2 = 181.8; p < 0.00001). Nearly 80% of infarcts due to MCA occlusion included the insula Identified associations between insular infarct and deficits should control for lesion volume.
Collapse
Affiliation(s)
- Nishanth Kodumuri
- NTR University of Health Sciences, Osmania Medical College, Hyderabad, Telangana 500095, India; Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Cameron Davis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Joseph Posner
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Eun Hye Kim
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Donna C Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Amy Wright
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Raison CL, Hale MW, Williams LE, Wager TD, Lowry CA. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Front Psychol 2015; 5:1580. [PMID: 25628593 PMCID: PMC4292224 DOI: 10.3389/fpsyg.2014.01580] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders.
Collapse
Affiliation(s)
- Charles L. Raison
- Department of Psychiatry, Norton School of Family and Consumer Sciences, College of Medicine, College of Agriculture and Life Sciences, University of ArizonaTucson, AZ, USA
| | - Matthew W. Hale
- Department of Psychology, School of Psychological Science, La Trobe UniversityBundoora, Australia
| | - Lawrence E. Williams
- Marketing Division, Leeds School of Business, University of Colorado BoulderBoulder, CO, USA
| | - Tor D. Wager
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulder, CO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado BoulderBoulder, CO, USA
| |
Collapse
|
9
|
A somatosensory circuit for cooling perception in mice. Nat Neurosci 2014; 17:1560-6. [PMID: 25262494 DOI: 10.1038/nn.3828] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022]
Abstract
The temperature of an object provides important somatosensory information for animals performing tactile tasks. Humans can perceive skin cooling of less than one degree, but the sensory afferents and central circuits that they engage to enable the perception of surface temperature are poorly understood. To address these questions, we examined the perception of glabrous skin cooling in mice. We found that mice were also capable of perceiving small amplitude skin cooling and that primary somatosensory (S1) cortical neurons were required for cooling perception. Moreover, the absence of the menthol-gated transient receptor potential melastatin 8 ion channel in sensory afferent fibers eliminated the ability to perceive cold and the corresponding activation of S1 neurons. Our results identify parts of a neural circuit underlying cold perception in mice and provide a new model system for the analysis of thermal processing and perception and multimodal integration.
Collapse
|
10
|
Inagaki TK, Eisenberger NI. Shared neural mechanisms underlying social warmth and physical warmth. Psychol Sci 2013; 24:2272-80. [PMID: 24048423 DOI: 10.1177/0956797613492773] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many of people's closest bonds grow out of socially warm exchanges and the warm feelings associated with being socially connected. Indeed, the neurobiological mechanisms underlying thermoregulation may be shared by those that regulate social warmth, the experience of feeling connected to other people. To test this possibility, we placed participants in a functional MRI scanner and asked them to (a) read socially warm and neutral messages from friends and family and (b) hold warm and neutral-temperature objects (a warm pack and a ball, respectively). Findings showed an overlap between physical and social warmth: Participants felt warmer after reading the positive (compared with neutral) messages and more connected after holding the warm pack (compared with the ball). In addition, neural activity during social warmth overlapped with neural activity during physical warmth in the ventral striatum and middle insula, but neural activity did not overlap during another pleasant task (soft touch). Together, these results suggest that a common neural mechanism underlies physical and social warmth.
Collapse
|
11
|
Lemieux F, Lanthier S, Chevrier MC, Gioia L, Rouleau I, Cereda C, Nguyen DK. Insular ischemic stroke: clinical presentation and outcome. Cerebrovasc Dis Extra 2012; 2:80-7. [PMID: 23139684 PMCID: PMC3492997 DOI: 10.1159/000343177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background The insula is a small but complex structure located in the depth of the sylvian fissure, covered by the frontal, parietal and temporal operculum. Ischemic strokes limited to the insula are rare and have not been well studied. Our objective is to better define the clinical presentation and outcome of insular ischemic strokes (IIS). Methods We reviewed the institutional prospective, consecutive stroke database from two centers to identify patients with IIS seen between 2008 and 2010. We also searched the Medline database using the keywords insula(r), infarction and stroke to identify previously published IIS cases confirmed by MRI. Minimal extension to an adjacent operculum or subinsular area was accepted. Clinicoradiological correlation was performed by distinguishing IIS involving the anterior (AIC) or posterior insular cortex (PIC). We collected clinical, demographic and radiological data. The outcome was determined using the modified Rankin Scale (mRS). Results We identified 7 patients from our institutions and 16 previously published cases of IIS. Infarcts were limited to the AIC (n = 4) or the PIC (n = 12) or affected both (n = 7). The five most frequent symptoms were somatosensory deficits (n = 10), aphasia (n = 10), dysarthria (n = 10), a vestibular-like syndrome (n = 8) and motor deficits (n = 6). A significant correlation was found between involvement of the PIC and somatosensory manifestations (p = 0.04). No other statistically significant associations were found. IIS presentation resembled a partial anterior circulation infarct (n = 9), a lacunar infarct (n = 2) or a posterior circulation infarct (n = 2). However, most cases presented findings that did not fit with these classical patterns (n = 10). At the 6 month follow up, mRS was 0 in 8/23 (35%) patients, 1–2 in 7/23 (30%) and unknown in 8/23 (35%). Conclusions IIS presentation is variable. Due to the confluence of functions in a restricted region, it results in multimodal deficits. It should be suspected when vestibular-like or motor but especially somatosensory, speech or language disturbances are combined in the same patient. The outcome of IIS is often favorable. Larger prospective studies are needed to better define the clinical presentation and outcome of IIS.
Collapse
Affiliation(s)
- F Lemieux
- Service de Neurologie, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Qué., Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Michael GA, Relland S, Galich H. Interhemispheric balance sets nostril differences in color-induced nasal thermal judgments. Behav Brain Res 2011; 224:369-75. [PMID: 21722675 DOI: 10.1016/j.bbr.2011.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
Abstract
Sniffing out of sight always the same colorless and odorless solution containing no thermal agents while viewing a bottle with colored water increases sensitivity of the left nostril/right hemisphere (RH) for warming sensations and sensitivity of the right nostril/left hemisphere (LH) for cooling sensations. It is likely that engagement in a temperature judgment task and the development of specific expectancies due to the presence of color cues alter and enhance processing in brain areas involved in thermosensory processing. The lateralized patterns thus intimate hemispheric specialization for thermosensory processing probably originating in reciprocal inhibition that confers balance between the hemispheres. If the inhibition-balance hypothesis were correct then the more the left nostril proves sensitive to warming the more the right nostril would prove sensitive to cooling. One hundred and ninety one healthy volunteers were tested here. The left nostril dominance for warming and the right dominance for cooling were replicated once more. The dominance of the left nostril for warming (left minus right nostril) correlated highly with the dominance of the left nostril to cooling (right minus left nostril) and the individual patterns of results were distributed along an axis starting from the expected left nostril/warming - right nostril/cooling pattern and ending at the opposite left nostril/cooling - right nostril/warming pattern. Furthermore, the point where the left nostril dominance for warming responses dropped and inverted perfectly coincided with the point where the right nostril dominance for cooling responses inverted too. Such a good continuum between the expected and the opposite patterns supports the inhibition-balance hypothesis. Finally, 66% of subjects exhibited the expected left-warming/right-cooling pattern suggesting, therefore, that, despite this continuum, there is a dominant lateral specialization for temperature processing.
Collapse
Affiliation(s)
- George A Michael
- Laboratoire d'Étude des Mécanismes Cognitifs, Université Lyon 2, Lyon, France.
| | | | | |
Collapse
|
13
|
Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study. Clin J Pain 2010; 26:339-47. [PMID: 20393270 DOI: 10.1097/ajp.0b013e3181cb4055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Although the etiology of complex regional pain syndrome type 1 (CRPS 1) is still debated, many arguments favor central maladaptive changes in pain processing as an important causative factor. METHODS To look for the suspected alterations, 10 patients with CRPS affecting the left hand were explored with functional magnetic resonance imaging during graded electrical painful stimulation of both hands subsequently and compared with healthy participants. RESULTS Activation of the anterior insula, posterior cingulate cortex (PCC), and caudate nucleus was seen in patients during painful stimulation. Compared with controls, CRPS patients had stronger activation of the PCC during painful stimulation of the symptomatic hand. The comparison of insular/opercular activation between controls and patients with CRPS I during painful stimulation showed stronger (posterior) opercular activation in controls than in patients. DISCUSSION Stronger PCC activation during painful stimulation may be interpreted as a correlate of motor inhibition during painful stimuli different from controls. Also, the decreased opercular activation in CRPS patients shows less sensory-discriminative processing of painful stimuli.These results show that changed cerebral pain processing in CRPS patients is less sensory-discriminative but more motor inhibition during painful stimuli. These changes are not limited to the diseased side but show generalized alterations of cerebral pain processing in chronic pain patients.
Collapse
|
14
|
Michael GA, Relland S, Borg C, Peyron R, Thomas-Anterion C. A role for the insula in color-induced nasal thermal sensations. Behav Brain Res 2010; 212:103-8. [PMID: 20394779 DOI: 10.1016/j.bbr.2010.03.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/29/2010] [Indexed: 11/19/2022]
Abstract
This article is the first step towards understanding the mechanisms underlying the intriguing, recently discovered lateralized color-induced nasal thermal sensations. In the presence of color cues and complete absence of thermal stimulus, larger sensitivity of the left nostril/right hemisphere (RH) for warming sensations and larger right nostril/left hemisphere (LH) for cooling sensations were replicated several times. It was suggested that engagement in a temperature judgment task and the development of specific expectancies due to the presence of color cues could alter and enhance processing in brain areas involved in thermosensory processing, such as the middle/posterior insula. The lateralized patterns could thus intimate hemispheric specialization for thermosensory processing. However, such lateralization may be due to either exclusive specialization of each hemisphere or specialization-through-reciprocal inhibition between the hemispheres. The two hypotheses predict different results following a unilateral insular stroke. Here, we present the results of a sample of healthy volunteers and patient MB, a young woman suffering from unilateral left-side damage of the posterior insula, in a task involving color-induced nasal thermal judgment. The expected lateralized pattern was found in the performance of the controls. In line with our previous suggestions that the LH is more involved in the processing of cooling sensations, patient MB exhibited changes only in the judgment of cooling sensations. Her results also clearly support the specialization-through-reciprocal inhibition account since she exhibited decreased cooling judgments contralaterally but increased cooling judgments ipsilaterally. Accordingly, we conclude that (a) the lateralized patterns arise because of hemispheric specialization; (b) the LH is seemingly more involved in the processing of cooling sensations; (c) this specialization is underlain by reciprocal interhemispheric inhibition; and (d) even in the absence of thermal stimulus, the development of expectancies suffices to activate modality-specific brain areas involved in the current task in such a way that damage to these areas disturbs the corresponding specific processes.
Collapse
Affiliation(s)
- George A Michael
- Laboratoire d'Etude des Mécanismes Cognitifs, Université Lyon 2, Lyon, France.
| | | | | | | | | |
Collapse
|
15
|
Warm pleasant feelings in the brain. Neuroimage 2008; 41:1504-13. [PMID: 18468458 DOI: 10.1016/j.neuroimage.2008.03.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/26/2008] [Accepted: 03/07/2008] [Indexed: 11/22/2022] Open
Abstract
Warm and cold stimuli have affective components such as feeling pleasant or unpleasant, and these components may have survival value, for approach to warmth and avoidance of cold may be reinforcers or goals for action built into us during evolution to direct our behaviour to stimuli that are appropriate for survival. Understanding the brain processing that underlies these prototypical reinforcers provides a direct approach to understanding the brain mechanisms of emotion. In an fMRI investigation in humans, we showed that the mid-orbitofrontal and pregenual cingulate cortex and the ventral striatum have activations that are correlated with the subjective pleasantness ratings made to warm (41 degrees C) and cold (12 degrees C) stimuli, and combinations of warm and cold stimuli, applied to the hand. Activations in the lateral and some more anterior parts of the orbitofrontal cortex were correlated with the unpleasantness of the stimuli. In contrast, activations in the somatosensory cortex and ventral posterior insula were correlated with the intensity but not the pleasantness of the thermal stimuli. A principle thus appears to be that processing related to the affective value and associated subjective emotional experience of thermal stimuli that are important for survival is performed in different brain areas to those where activations are related to sensory properties of the stimuli such as their intensity. This conclusion appears to be the case for processing in a number of sensory modalities, and the finding with such prototypical stimuli as warm and cold provides strong support for this principle.
Collapse
|