1
|
Gravesteijn G, Rutten JW, Cerfontaine MN, Hack RJ, Liao YC, Jolly AA, Guey S, Hsu SL, Park JY, Yuan Y, Kopczak A, Rifino N, Neilson SJ, Poggesi A, Shourav MMI, Saito S, Ishiyama H, Domínguez Mayoral A, Nogueira R, Muiño E, Andersen P, De Stefano N, Santo G, Sukhonpanich N, Mele F, Park A, Lee JS, Rodríguez-Girondo M, Vonk SJJ, Brodtmann A, Börjesson-Hanson A, Pantoni L, Fernández-Cadenas I, Silva AR, Montanaro VVA, Kalaria RN, Lopergolo D, Ihara M, Meschia JF, Muir KW, Bersano A, Pescini F, Duering M, Choi JC, Ling C, Kim H, Markus HS, Chabriat H, Lee YC, Lesnik Oberstein SAJ. Disease Severity Staging System for NOTCH3-Associated Small Vessel Disease, Including CADASIL. JAMA Neurol 2025; 82:49-60. [PMID: 39610302 DOI: 10.1001/jamaneurol.2024.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Importance Typical cysteine-altering NOTCH3 (NOTCH3cys) variants are highly prevalent (approximately 1 in 300 individuals) and are associated with a broad spectrum of small vessel disease (SVD), ranging from early-onset stroke and dementia (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]) to nonpenetrance. A staging system that captures the full NOTCH3-SVD severity spectrum is needed and currently lacking. Objective To design a simple disease severity staging system that captures the broad clinicoradiological NOTCH3-SVD severity spectrum. Design, Setting, and Participants A cohort study was performed in which the NOTCH3-SVD severity staging system was developed using a discovery cohort (2019-2020) and validated in independent international CADASIL cohorts (1999-2023) and the UK Biobank. Clinical and imaging data were collected from participants originating from 23 international CADASIL cohorts and from the UK Biobank. Eligibility criteria were presence of a NOTCH3cys variant, availability of brain magnetic resonance imaging, and modified Rankin Scale score. The discovery cohort consisted of 195 NOTCH3cys-positive cases from families with CADASIL; the validation set included 1713 NOTCH3cys-positive cases from 15 countries. The UK Biobank cohort consisted of 101 NOTCH3cys-positive individuals. Data from 2-year (2019-2023) and 18-year (1999-2017) follow-up studies were also analyzed. Data analysis was performed from July 2023 to August 2024. Main Outcomes and Measures Percentage of cases following the sequence of events of the NOTCH3-SVD stages, and the association between the stages and ischemic stroke, intracerebral hemorrhage, global cognition, processing speed, brain volume, brain microstructural damage, and serum neurofilament light chain (NfL) level. Results The NOTCH3-SVD staging system encompasses 9 disease stages or substages, ranging from stage 0 (premanifest stage) to stage 4B (end stage). Of all 1908 cases, which included 195 in the discovery cohort (mean [SD] age, 52.4 [12.2] years) and 1713 in the validation cohorts (mean [SD] age, 53.1 [13.0] years), 1789 (94%) followed the sequence of events defined by the NOTCH3-SVD staging system. The NOTCH3-SVD stages were associated with neuroimaging outcomes in the NOTCH3cys-positive cases in the CADASIL cohorts and in the UK Biobank and with cognitive outcomes and serum NfL level in cases from the CADASIL cohorts. The NOTCH3-SVD staging system captured disease progression and was associated with 18-year survival. Conclusions and Relevance The NOTCH3-SVD staging system captures the full disease spectrum, from asymptomatic individuals with a NOTCH3cys variant to patients with end-stage disease. The NOTCH3-SVD staging system is a simple but effective tool for uniform disease staging in the clinic and in research.
Collapse
Affiliation(s)
- Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Minne N Cerfontaine
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Remco J Hack
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Brain Research Center, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Amy A Jolly
- Stroke Research Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Stéphanie Guey
- Centre NeuroVasculaire Translationnel and Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Lariboisière Hospital and Université Paris-Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unit 1141 NeuroDiderot, Paris, France
| | - Shao-Lun Hsu
- Department of Neurology, Brain Research Center, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jae-Young Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, University Hospital of Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sam J Neilson
- Centre for Stroke & Brain Imaging, University of Glasgow, Glasgow, United Kingdom
| | - Anna Poggesi
- Stroke Unit, Careggi University Hospital, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | | | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ana Domínguez Mayoral
- Unidad de Enfermedades Neurovasculares Infrecuentes, Hospital Virgen Macarena, Sevilla, Spain
| | - Renata Nogueira
- Department of Neurology, Hospital SARAH Kubitschek, Rio de Janeiro, Brazil
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pia Andersen
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gustavo Santo
- Department of Neurology, University Hospital of Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Nontapat Sukhonpanich
- Stroke Research Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Francesco Mele
- Neurology and Stroke Unit, Luigi Sacco University Hospital, Milan, Italy
| | - Ashley Park
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Jung Seok Lee
- College of Medicine, Jeju National University, Jeju, South Korea
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Amy Brodtmann
- School of Translational Medicine, Monash University, Melbourne, Australia
| | - Anne Börjesson-Hanson
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Leonardo Pantoni
- Neuroscience Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Rita Silva
- Center for Research in Neuropsychology and Cognitive Behavioral Interventions, University of Coimbra, Coimbra, Portugal
| | | | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Keith W Muir
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Pescini
- Stroke Unit, Careggi University Hospital, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital of Ludwig-Maximilians-University Munich, Munich, Germany
- Medical Image Analysis Center and Translational Imaging in Neurology, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jay Chol Choi
- College of Medicine, Jeju National University, Jeju, South Korea
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Hugues Chabriat
- Centre NeuroVasculaire Translationnel and Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Lariboisière Hospital and Université Paris-Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unit 1141 NeuroDiderot, Paris, France
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Brain Research Center, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | |
Collapse
|
2
|
Gong Z, Wang W, Zhao Y, Wang Y, Sun R, Zhang H, Wang F, Lu Y, Zhang J. Analysis of the pathogenicity and pathological characteristics of NOTCH3 gene-sparing cysteine mutations in vitro and in vivo models. Front Mol Neurosci 2024; 17:1391040. [PMID: 39759869 PMCID: PMC11695339 DOI: 10.3389/fnmol.2024.1391040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3ECD) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial. Objective To analyze the pathogenicity and pathological features of cysteine-sparing mutations in both in vitro and in vivo mouse models. Methods A cysteine-sparing mutant of NOTCH3ECD R75Q was constructed by lentiviral transfection in vitro, and the NOTCH3 R75Q knock-in mouse model was constructed by CRISPR/Cas-mediated genome engineering in vivo. A cycloheximide pulse-chase experiment was used to analyze the degradation of NOTCH3 extracellular domain proteins, and the deposition characteristics of NOTCH3ECD were quantitatively analyzed by immunohistochemical staining. The characteristics of the smooth muscle cells and granular osmiophilic materials were observed using electron microscopy. Results We elucidated that the NOTCH3 R75Q mutation is pathogenic. NOTCH3ECD R75Q was found to be resistant to protein degradation and more likely to cause abnormal aggregation of NOTCH3ECD, resulting in reduced cell activity in vitro. The NOTCH3 R75Q mouse model showed pathological characteristics of CADASIL, with age-dependent NOTCH3ECD, granular osmiophilic material, and degenerated smooth muscle cells detected in the brain. Conclusion To our knowledge, this is the first study to analyze the pathogenicity of NOTCH3 R75Q cysteine-sparing mutations in both in vitro and in vivo models. We demonstrate that NOTCH3ECD induced by NOTCH3 R75Q mutation has toxic effects on cells and reveal the deposition characteristics of NOTCH3ECD in the brain. This provides a feasible model and lays the foundation for further studies on the pathogenesis and therapeutic strategies of NOTCH3 cysteine-sparing mutations.
Collapse
Affiliation(s)
- Zhenping Gong
- Department of Neurology, Henan Province People’s Hospital, Xinxiang Medical University, Zhengzhou, China
| | - Wan Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
| | - Ying Zhao
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
| | - Yadan Wang
- Department of Neurology Henan University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haohan Zhang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fengyu Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
| | - Yaru Lu
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Henan Province People’s Hospital, Xinxiang Medical University, Zhengzhou, China
- Department of Neurology, Zhengzhou University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
- Department of Neurology Henan University People’s Hospital, Henan Province People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024; 66:223-235. [PMID: 38176524 PMCID: PMC11674792 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Bai L, Yan H, Guo Y, Shan Y, Peng Q, Jin H, Sun Y, Li F, Sun W, Zhang W, Zhang Z, Wang Z, Yuan Y, Ling C. The prevalence of neuropsychiatric symptoms and correlation with MRI findings in CADASIL patients. Ann Clin Transl Neurol 2024; 11:3010-3018. [PMID: 39344629 PMCID: PMC11572744 DOI: 10.1002/acn3.52214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the prevalence, timing, and functional impact of neuropsychiatric symptoms in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and to assess whether these neuropsychiatric symptoms are associated with magnetic resonance imaging (MRI) features of the patients. METHODS Our study included a total of 78 patients with CADASIL. To assess neuropsychiatric symptoms, we evaluated the caregivers using the Neuropsychiatric Inventory (NPI). Patients were considered to have an irritability, depression, apathy, aggression, or anxiety disorder if they scored ≥1 in the NPI. Subsequently, we conducted a more detailed assessment of irritability, depression, apathy, aggression, and anxiety. Multivariate logistic regression was employed to analyze the relationships between neuropsychiatric symptoms and clinical/MRI features in the patients. RESULTS Overall, 57.69% of patients with CADASIL experienced neuropsychiatric symptoms. Among these symptoms, irritability was the most prevalent (52.56%), followed by depression (19.23%), apathy (17.95%), aggression (7.69%), and anxiety (6.41%). The mean age of onset for irritability was the youngest, followed by anxiety, apathy, aggression, and depression. Among patients with both stroke/TIA and neuropsychiatric symptoms, 31.03% reported experiencing neuropsychiatric symptoms prior to stroke/TIA. Furthermore, both irritability and apathy had a negative impact on the patients' daily functioning. Additionally, there was a correlation between the presence of neuropsychiatric symptoms and the patients' MRI lesion burden. INTERPRETATION Our study has discovered that neuropsychiatric symptoms are highly prevalent in patients with CADASIL and may occur before cerebrovascular events, suggesting that neuropsychiatric symptoms of CADASIL deserve more attention and earlier exploration.
Collapse
Affiliation(s)
- Li Bai
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - HaoTian Yan
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Yu Guo
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Yong Shan
- Department of NeurologyPeking University First HospitalBeijing100034China
| | - Qing Peng
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Haiqiang Jin
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Yunchuang Sun
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Fan Li
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Wei Sun
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Wei Zhang
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of Sciences15 Datun RoadBeijing100101China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefei230088China
| | - Zhaoxia Wang
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Yun Yuan
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| | - Chen Ling
- Department of NeurologyPeking University First HospitalBeijing100034China
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijing100034China
| |
Collapse
|
5
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
6
|
Ozzoude M, Varriano B, Beaton D, Ramirez J, Adamo S, Holmes MF, Scott CJM, Gao F, Sunderland KM, McLaughlin P, Goubran M, Kwan D, Roberts A, Bartha R, Symons S, Tan B, Swartz RH, Abrahao A, Saposnik G, Masellis M, Lang AE, Marras C, Zinman L, Shoesmith C, Borrie M, Fischer CE, Frank A, Freedman M, Montero-Odasso M, Kumar S, Pasternak S, Strother SC, Pollock BG, Rajji TK, Seitz D, Tang-Wai DF, Turnbull J, Dowlatshahi D, Hassan A, Casaubon L, Mandzia J, Sahlas D, Breen DP, Grimes D, Jog M, Steeves TDL, Arnott SR, Black SE, Finger E, Rabin J, Tartaglia MC. White matter hyperintensities and smaller cortical thickness are associated with neuropsychiatric symptoms in neurodegenerative and cerebrovascular diseases. Alzheimers Res Ther 2023; 15:114. [PMID: 37340319 PMCID: PMC10280981 DOI: 10.1186/s13195-023-01257-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are a core feature of most neurodegenerative and cerebrovascular diseases. White matter hyperintensities and brain atrophy have been implicated in NPS. We aimed to investigate the relative contribution of white matter hyperintensities and cortical thickness to NPS in participants across neurodegenerative and cerebrovascular diseases. METHODS Five hundred thirteen participants with one of these conditions, i.e. Alzheimer's Disease/Mild Cognitive Impairment, Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Parkinson's Disease, or Cerebrovascular Disease, were included in the study. NPS were assessed using the Neuropsychiatric Inventory - Questionnaire and grouped into hyperactivity, psychotic, affective, and apathy subsyndromes. White matter hyperintensities were quantified using a semi-automatic segmentation technique and FreeSurfer cortical thickness was used to measure regional grey matter loss. RESULTS Although NPS were frequent across the five disease groups, participants with frontotemporal dementia had the highest frequency of hyperactivity, apathy, and affective subsyndromes compared to other groups, whilst psychotic subsyndrome was high in both frontotemporal dementia and Parkinson's disease. Results from univariate and multivariate results showed that various predictors were associated with neuropsychiatric subsyndromes, especially cortical thickness in the inferior frontal, cingulate, and insula regions, sex(female), global cognition, and basal ganglia-thalamus white matter hyperintensities. CONCLUSIONS In participants with neurodegenerative and cerebrovascular diseases, our results suggest that smaller cortical thickness and white matter hyperintensity burden in several cortical-subcortical structures may contribute to the development of NPS. Further studies investigating the mechanisms that determine the progression of NPS in various neurodegenerative and cerebrovascular diseases are needed.
Collapse
Affiliation(s)
- Miracle Ozzoude
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Brenda Varriano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Derek Beaton
- Data Science & Advanced Analytic, St. Michael's Hospital, Toronto, ON, Canada
| | - Joel Ramirez
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sabrina Adamo
- Graduate Department of Psychological Clinical Science, University of Toronto Scarborough, Scarborough, ON, Canada
| | - Melissa F Holmes
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Christopher J M Scott
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fuqiang Gao
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | | - Maged Goubran
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Queen's University, Kingston, ON, Canada
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- School of Communication Sciences and Disorders, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Robert Bartha
- Robarts Research Institute, Western University, London, ON, Canada
| | - Sean Symons
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Richard H Swartz
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Gustavo Saposnik
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Anthony E Lang
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Connie Marras
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Lorne Zinman
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Michael Borrie
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Corinne E Fischer
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Baycrest Health Sciences, Toronto, ON, Canada
| | - Manuel Montero-Odasso
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Lawsone Health Research Institute, London, ON, Canada
- Gait and Brain Lab, Parkwood Institute, London, ON, Canada
| | - Sanjeev Kumar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephen Pasternak
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Stephen C Strother
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bruce G Pollock
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David F Tang-Wai
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - John Turnbull
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Leanne Casaubon
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- St. Joseph's Healthcare Centre, London, ON, Canada
| | - Demetrios Sahlas
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David Grimes
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Thomas D L Steeves
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jennifer Rabin
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 2S8, Canada.
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
- Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
7
|
Anisetti B, Greco E, Stojadinovic E, Goldstein ED, Sakusic A, Badi MK, Liu MD, Lin MP, Chiang CC, Elahi FM, Worrall BB, Petrosian D, Ross O, Meschia JF. Novel grading system for CADASIL severity: A multicenter cross-sectional study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100170. [PMID: 37441712 PMCID: PMC10333271 DOI: 10.1016/j.cccb.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023]
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited progressive cerebral microangiopathy with considerable phenotypic variability. The purpose of this study was to describe the generalizability of a recently proposed grading system of CADASIL across multiple centers in the United States. Methods Electronic medical records (EMR) of an initial neurological assessment of adult patients with confirmed CADASIL were reviewed across 5 tertiary referral medical centers with expertise in CADASIL. Demographic, vascular risk factors, and neuroimaging data were abstracted from EMR. Patients were categorized into groups according to the proposed CADASIL grading system: Grade 0 (asymptomatic), Grade 1 (migraine only), Grade 2 (stroke, TIA, or MCI), Grade 3 (gait assistance or dementia), and Grade 4 (bedbound or end-stage). Inter-rater reliability (IRR) of grading was tested in a subset of cases. Results We identified 138 patients with a mean age of 50.9 ± 13.1 years, and 57.2% were female. The IRR was acceptable over 33 cases (κ=0.855, SD 0.078, p<0.001) with 81.8% being concordant. There were 15 patients (10.9%) with Grade 0, 50 (36.2%) with Grade 1, 61 (44.2%) with Grade 2, 12 (8.7%) with Grade 3, and none with Grade 4. Patients with a lower severity grade (grade 0 vs 3) tended to be younger (49.5 vs. 61.9 years) and had a lower prevalence of hypertension (50% vs. 20%, p = 0.027) and diabetes mellitus (0% vs. 25%, p = 0.018). A higher severity grade was associated with an increased number of vascular risk factors (p = 0.02) and independently associated with hypertension and diabetes (p<0.05). Comparing Grade 0 vs. 3, cortical thickness tended to be greater (2.06 vs. 1.87 mm; p = 0.06) and white matter hyperintensity volume tended to be lower (54.7 vs. 72.5 ml; p = 0.73), but the differences did not reach significance. Conclusion The CADASIL severity grading system is a pragmatic, reliable system for characterizing CADASIL phenotype that does not require testing beyond that done in standard clinical practice. Higher severity grades tended to have a higher vascular risk factor burden. This system offers a simple method of categorizing CADASIL patients which may help to describe populations in observational and interventional studies.
Collapse
Affiliation(s)
| | - Elena Greco
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eric D. Goldstein
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amra Sakusic
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Michael D Liu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Fanny M Elahi
- Department of Neurology, University of California, San Francisco, California, USA
| | - Bradford B Worrall
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Derek Petrosian
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Owen Ross
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
8
|
Clancy U, Radakovic R, Doubal F, Hernández MDCV, Maniega SM, Taylor AM, Corley J, Chappell FM, Russ TC, Cox SR, Bastin ME, Deary IJ, Wardlaw JM. Are neuropsychiatric symptoms a marker of small vessel disease progression in older adults? Evidence from the Lothian Birth Cohort 1936. Int J Geriatr Psychiatry 2023; 38:e5855. [PMID: 36490272 PMCID: PMC10108049 DOI: 10.1002/gps.5855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropsychiatric symptoms could form part of an early cerebral small vessel disease prodrome that is detectable before stroke or dementia onset. We aimed to identify whether apathy, depression, anxiety, and subjective memory complaints associate with longitudinal white matter hyperintensity (WMH) progression. METHODS Community-dwelling older adults from the observational Lothian Birth Cohort 1936 attended three visits at mean ages 73, 76, and 79 years, repeating MRI, Mini-Mental State Examination, neuropsychiatric (Dimensional Apathy Scale, Hospital Anxiety and Depression Scale), and subjective memory symptoms. We ran regression and mixed-effects models for symptoms and normalised WMH volumes (cube root of WMH:ICV × 10). RESULTS At age 73, 76, and 79, m = 672, n = 476, and n = 382 participants attended MRI respectively. Worse apathy at age 79 was associated with WMH volume increase (β = 0.27, p = 0.04) in the preceding 6 years. A 1SD increase in apathy score at age 79 associated with a 0.17 increase in WMH (β = 0.17 normalised WMH percent ICV, p = 0.009). In apathy subscales, executive (β = 0.13, p = 0.05) and emotional (β = 0.13, p = 0.04) scores associated with increasing WMH more than initiation scores (β = 0.11, p = 0.08). Increasing WMH also associated with age (β = 0.40, p = 0.002) but not higher depression (β = -0.01, p = 0.78), anxiety (β = 0.05, p = 0.13) scores, or subjective memory complaints (β = 1.12, p = 0.75). CONCLUSIONS Apathy independently associates with preceding longitudinal WMH progression, while depression, anxiety, and subjective memory complaints do not. Patients with apathy should be considered for enrolment to small vessel disease trials.
Collapse
Affiliation(s)
- Una Clancy
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Ratko Radakovic
- Department of Clinical Psychology and Psychological TherapiesUniversity of East AngliaNorwichUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
- Euan MacDonald Centre for MND ResearchUniversity of EdinburghEdinburghUK
| | - Fergus Doubal
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Maria del C. Valdés Hernández
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Susana Muñoz Maniega
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Adele M. Taylor
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Janie Corley
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Francesca M. Chappell
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Tom C. Russ
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
- Division of PsychiatryCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Simon R. Cox
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Ian J. Deary
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
- Scottish Imaging Network, a Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| |
Collapse
|
9
|
Chabriat H, Joutel A, Tournier-Lasserve E, Bousser MG. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Cognition, mood and behavior in CADASIL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100043. [PMID: 36324403 PMCID: PMC9616390 DOI: 10.1016/j.cccb.2022.100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 01/02/2023]
Abstract
CADASIL is responsible for cognitive, mood or behavior disturbances. Cognitive disturbances range from moderate cognitive slowing to impairment of executive functions and may progress to a global decrease of cognitive efficiency up to severe dementia. Mood disturbances are extremely variable in intensity, depression is the most frequent symptom. Behavioral changes may occur at all stage of the disease, but are often associated with the onset of cognitive alterations. Apathy is the most prominent behavior alteration.
CADASIL is the most common familial cerebral small vessel disease (cSVD). Stereotyped mutations of the NOTCH3 gene are responsible for this archetypal ischemic cSVD that can lead, at the very end stage, to severe dementia. Variable cognitive alterations, mood, or behavior disturbances are frequently observed during the course of the disease. In this review, these clinical manifestations, their occurrence, severity and duration are analyzed in relation to the disease progression. Also, the potential relationships with cerebral lesions and treatment options are discussed.
Collapse
|
11
|
Smith EE, Crites S, Wang M, Charlton A, Zwiers A, Sekhon R, Sajobi T, Camicioli R, McCreary CR, Frayne R, Ismail Z. Cerebral Amyloid Angiopathy Is Associated With Emotional Dysregulation, Impulse Dyscontrol, and Apathy. J Am Heart Assoc 2021; 10:e022089. [PMID: 34755541 PMCID: PMC8751932 DOI: 10.1161/jaha.121.022089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Cerebral amyloid angiopathy (CAA) causes cognitive decline, but it is not known whether it is associated with neuropsychiatric symptoms (NPS). Methods and Results Participants with CAA, mild cognitive impairment, mild dementia due to Alzheimer's disease, and normal cognition were recruited from stroke and dementia clinics and community advertising. NPS were captured using the Neuropsychiatric Inventory Questionnaire short form. The number and total severity (number multiplied by severity of each symptom [mild, moderate, or severe]) of NPS were analyzed using generalized linear regression with a negative binomial link and multiple linear regression, adjusting for age, sex, and education. A total of 109 participants (43 with CAA, 15 with Alzheimer's disease, 28 with mild cognitive impairment, and 23 with normal cognition) (mean age 71.1 [SD=7.6]; 53.2% male) were included. The most frequent NPS in CAA were depression/dysphoria (48.8%), irritability/lability (37.2%), agitation/aggression (37.2%), apathy/indifference (34.9%), and anxiety (32.6%). In adjusted models, patients with CAA had 3.2 times (95% CI, 1.7-6.0) more NPS symptoms and 3.1 units (95% CI, 1.0-5.1) higher expected severity score. The number of NPS was similar to patients with mild cognitive impairment (3.2 times higher than controls) but less than in patients with Alzheimer's disease dementia (4.1 times higher than controls). Within patients with CAA, there were 1.20 times (95% CI, 1.01-1.32) more NPS per 1% increase in white matter hyperintensity as a percentage of intracranial volume. Conclusions NPS are common in CAA, with a similar prevalence as in mild cognitive impairment. The association of the total number of NPS with higher white matter hyperintensity volume suggests that white matter damage may underlie some of these symptoms.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences University of Calgary Alberta Canada.,Hotchkiss Brain Institute Calgary Alberta Canada
| | | | - Meng Wang
- Department of Clinical Neurosciences University of Calgary Alberta Canada.,Department of Community Health Sciences University of Calgary Alberta Canada
| | - Anna Charlton
- Department of Clinical Neurosciences University of Calgary Alberta Canada
| | - Angela Zwiers
- Department of Clinical Neurosciences University of Calgary Alberta Canada
| | - Ramnik Sekhon
- Department of Clinical Neurosciences University of Calgary Alberta Canada
| | - Tolulope Sajobi
- Hotchkiss Brain Institute Calgary Alberta Canada.,Department of Community Health Sciences University of Calgary Alberta Canada
| | - Richard Camicioli
- Department of Medicine (Neurology) University of Alberta Edmonton Alberta Canada
| | - Cheryl R McCreary
- Department of Clinical Neurosciences University of Calgary Alberta Canada.,Hotchkiss Brain Institute Calgary Alberta Canada.,Department of Radiology University of Calgary Alberta Canada
| | - Richard Frayne
- Department of Clinical Neurosciences University of Calgary Alberta Canada.,Hotchkiss Brain Institute Calgary Alberta Canada.,Department of Radiology University of Calgary Alberta Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences University of Calgary Alberta Canada.,Hotchkiss Brain Institute Calgary Alberta Canada.,Department of Psychiatry University of Calgary Alberta Canada.,Department of Community Health Sciences University of Calgary Alberta Canada
| |
Collapse
|
12
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
13
|
Bhat A, Biswas A, Das G, Lahiri D, Dubey S, Mukherjee A. Behavioral variations among vascular cognitive impairment subtypes - A comparative study. APPLIED NEUROPSYCHOLOGY-ADULT 2021; 30:439-446. [PMID: 34294015 DOI: 10.1080/23279095.2021.1954002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dementia of vascular origin is a distinct variety with a heterogeneous neuropsychological profile. Very few studies have compared the behavioral dysfunction in the large vessel and small vessel vascular dementia (VaD) and studied the association between executive dysfunction and behavioral dysfunction documented in these patients, between the white matter load in small vessel disease (SVD) and the behavioral dysfunction. 76 patients having a modified Hachinski Ischemic Scale score of ≥ 4 were recruited and categorized into a small vessel and large vessel VaD. The Neuropsychiatric Inventory (NPI) score ≥ 4 per domain for defining clinically relevant symptoms and the Clinical Dementia Rating Scale (CDR) for evaluating the severity of dementia were used. Behavioral and Psychological Symptoms of Dementia (BPSD) were present in 66.67% of patients with SVD and 53.57% of those having large vessel disease. Apathy, euphoria, and disinhibition were more common in SVD, while appetite alterations were more common in large vessel disease. Behavioral dysfunction was also associated with executive dysfunction in both the VaD subtypes and with white matter loads in SVD. We conclude that different VaD subtypes have different behavioral profiles. This might help in understanding the underlying pathophysiology, diagnosis and thus better management of this disorder.
Collapse
Affiliation(s)
- Ashwani Bhat
- Department of Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Atanu Biswas
- Department of Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Gautam Das
- Department of Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Durjoy Lahiri
- Department of Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Souvik Dubey
- Department of Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Adreesh Mukherjee
- Department of Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| |
Collapse
|
14
|
Zanon Zotin MC, Sveikata L, Viswanathan A, Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol 2021; 34:246-257. [PMID: 33630769 PMCID: PMC7984766 DOI: 10.1097/wco.0000000000000913] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We present recent developments in the field of small vessel disease (SVD)-related vascular cognitive impairment, including pathological mechanisms, updated diagnostic criteria, cognitive profile, neuroimaging markers and risk factors. We further address available management and therapeutic strategies. RECENT FINDINGS Vascular and neurodegenerative pathologies often co-occur and share similar risk factors. The updated consensus criteria aim to standardize vascular cognitive impairment (VCI) diagnosis, relying strongly on cognitive profile and MRI findings. Aggressive blood pressure control and multidomain lifestyle interventions are associated with decreased risk of cognitive impairment, but disease-modifying treatments are still lacking. Recent research has led to a better understanding of mechanisms leading to SVD-related cognitive decline, such as blood-brain barrier dysfunction, reduced cerebrovascular reactivity and impaired perivascular clearance. SUMMARY SVD is the leading cause of VCI and is associated with substantial morbidity. Tackling cardiovascular risk factors is currently the most effective approach to prevent cognitive decline in the elderly. Advanced imaging techniques provide tools for early diagnosis and may play an important role as surrogate markers for cognitive endpoints in clinical trials. Designing and testing disease-modifying interventions for VCI remains a key priority in healthcare.
Collapse
Affiliation(s)
- Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Center for Imaging Sciences and Medical Physics. Department of Medical Imaging, Hematology and Clinical Oncology. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Pinar Yilmaz
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Petitet P, Scholl J, Attaallah B, Drew D, Manohar S, Husain M. The relationship between apathy and impulsivity in large population samples. Sci Rep 2021; 11:4830. [PMID: 33649399 PMCID: PMC7921138 DOI: 10.1038/s41598-021-84364-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Apathy and impulsivity are debilitating conditions associated with many neuropsychiatric conditions, and expressed to variable degrees in healthy people. While some theories suggest that they lie at different ends of a continuum, others suggest their possible co-existence. Surprisingly little is known, however, about their empirical association in the general population. Here, gathering data from six large studies (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n = 3755$$\end{document}n=3755), we investigated the relationship between measures of apathy and impulsivity in young adults. The questionnaires included commonly used self-assessment tools—Apathy Evaluation Scale, Barratt Impulsiveness Scale (BIS-11) and UPPS-P Scale—as well as a more recent addition, the Apathy Motivation Index (AMI). Remarkably, across datasets and assessment tools, global measures of apathy and impulsivity correlated positively. However, analysis of sub-scale scores revealed a more complex relationship. Although most dimensions correlated positively with one another, there were two important exceptions revealed using the AMI scale. Social apathy was mostly negatively correlated with impulsive behaviour, and emotional apathy was orthogonal to all other sub-domains. These results suggest that at a global level, apathy and impulsivity do not exist at distinct ends of a continuum. Instead, paradoxically, they most often co-exist in young adults. Processes underlying social and emotional apathy, however, appear to be different and dissociable from behavioural apathy and impulsivity.
Collapse
Affiliation(s)
- Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK.
| | - Jacqueline Scholl
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK
| | - Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Daniel Drew
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
16
|
Manini A, Pantoni L. CADASIL from Bench to Bedside: Disease Models and Novel Therapeutic Approaches. Mol Neurobiol 2021; 58:2558-2573. [PMID: 33464533 PMCID: PMC8128844 DOI: 10.1007/s12035-021-02282-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic disease caused by NOTCH3 mutations and characterized by typical clinical, neuroradiological, and pathological features. NOTCH3 belongs to a family of highly conserved transmembrane receptors rich of epidermal growth factor repeats, mostly expressed in vascular smooth muscle cells and pericytes, which perform essential developmental functions and are involved in tissues maintenance and renewal. To date, no therapeutic option for CADASIL is available except for few symptomatic treatments. Novel in vitro and in vivo models are continuously explored with the aim to investigate underlying pathogenic mechanisms and to test novel therapeutic approaches. In this scenario, knock-out, knock-in, and transgenic mice studies have generated a large amount of information on molecular and biological aspects of CADASIL, despite that they incompletely reproduce the human phenotype. Moreover, the field of in vitro models has been revolutionized in the last two decades by the introduction of induced pluripotent stem cells (iPSCs) technology. As a consequence, novel therapeutic approaches, including immunotherapy, growth factors administration, and antisense oligonucleotides, are currently under investigation. While waiting that further studies confirm the promising results obtained, the data reviewed suggest that our therapeutic approach to the disease could be transformed, generating new hope for the future.
Collapse
Affiliation(s)
- Arianna Manini
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy
| | - Leonardo Pantoni
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy.
| |
Collapse
|
17
|
Zhào H, Liu Y, Xia Z, Xie H, Huang Y. Diagnosis and Assessment of Apathy in Elderly Chinese Patients With Cerebral Small Vessel Disease. Front Psychiatry 2021; 12:688685. [PMID: 34413797 PMCID: PMC8368720 DOI: 10.3389/fpsyt.2021.688685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The study aimed to estimate the frequency of apathy in Chinese patients with cerebral small vessel disease (CSVD) and investigate the relationship between apathy and neuroimaging markers of CSVD. Methods: A total of 150 CSVD aged patients were recruited for a cross-sectional observational study. Following the new revised version of diagnostic criteria for apathy (DCA), each patient was evaluated successively by the neuropsychiatric inventory (NPI-apathy), geriatric depression scale (GDS), and caregiver burden scale (CBS). The MRI presence of lacunes, white matter hyperintensities, cerebral microbleeds, and perivascular spaces were rated independently. Furthermore, presence of all these MRI markers were summed in a score of 0-4 representing all CSVD features combined. Results: According to the DCA, we found that the frequency of apathy in Chinese Alzheimer's disease patients reached 37.33%, with lack of and diminished goal-directed activities in the dimension of behavior/cognition. We did not find a close relationship between apathy and depression. Caregiver burden was positively correlated with apathy severity. Apathy, but not depression, was positively associated with total CSVD burden, rather than a separate MRI marker of CSVD. Conclusion: As a key component of neuropsychiatric symptoms, apathy was common in Chinese elderly with CSVD, more attention should be paid to apathy in clinical practice of CSVD.
Collapse
Affiliation(s)
- Hóngyi Zhào
- Department of Neurology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Psychiatry, NO 984 Hospital of People's Liberation Army, Beijing, China
| | - Yu Liu
- Department of Neurology, NO 984 Hospital of People's Liberation Army, Beijing, China
| | - Zhenxi Xia
- Department of Neurology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyang Xie
- Department of Neurology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yonghua Huang
- Department of Neurology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
The INECO Frontal Screening for the Evaluation of Executive Dysfunction in Cerebral Small Vessel Disease: Evidence from Quantitative MRI in a CADASIL Cohort from Colombia. J Int Neuropsychol Soc 2020; 26:1006-1018. [PMID: 32487276 DOI: 10.1017/s1355617720000533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Executive dysfunction is a predominant cognitive symptom in cerebral small vessel disease (SVD). The Institute of Cognitive Neurology Frontal Screening (IFS) is a well-validated screening tool allowing the rapid assessment of multiple components of executive function in Spanish-speaking individuals. In this study, we examined performance on the IFS in subjects with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an inherited condition leading to the early onset of SVD. We further explored associations between performance on the IFS and magnetic resonance imaging (MRI) markers of SVD. METHODS We recruited 24 asymptomatic CADASIL subjects and 23 noncarriers from Colombia. All subjects underwent a research MRI and a neuropsychological evaluation, including the IFS. Structural MRI markers of SVD were quantified in each subject, together with an SVD Sum Score representing the overall burden of cerebrovascular alterations. General linear model, correlation, and receiver operating characteristic curve analyses were used to explore group differences on the IFS and relationships with MRI markers of SVD. RESULTS CADASIL subjects had a significantly reduced performance on the IFS Total Score. Performance on the IFS correlated with all quantified markers of SVD, except for brain atrophy and perivascular spaces enlargement. Finally, while the IFS Total Score was not able to accurately discriminate between carriers and noncarriers, it showed adequate sensitivity and specificity in detecting the presence of multiple MRI markers of SVD. CONCLUSIONS These results suggest that the IFS may be a useful screening tool to assess executive function and disease severity in the context of SVD.
Collapse
|
19
|
Spalletta G, Iorio M, Vecchio D, Piras F, Ciullo V, Banaj N, Sensi SL, Gianni W, Assogna F, Caltagirone C, Piras F. Subclinical Cognitive and Neuropsychiatric Correlates and Hippocampal Volume Features of Brain White Matter Hyperintensity in Healthy People. J Pers Med 2020; 10:jpm10040172. [PMID: 33076372 PMCID: PMC7712953 DOI: 10.3390/jpm10040172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
White matter hyperintensities (WMH) are associated with brain aging and behavioral symptoms as a possible consequence of disrupted white matter pathways. In this study, we investigated, in a cohort of asymptomatic subjects aged 50 to 80, the relationship between WMH, hippocampal atrophy, and subtle, preclinical cognitive and neuropsychiatric phenomenology. Thirty healthy subjects with WMH (WMH+) and thirty individuals without (WMH−) underwent comprehensive neuropsychological and neuropsychiatric evaluations and 3 Tesla Magnetic Resonance Imaging scan. The presence, degree of severity, and distribution of WMH were evaluated with a semi-automated algorithm. Volumetric analysis of hippocampal structure was performed through voxel-based morphometry. A multivariable logistic regression analysis indicated that phenomenology of subclinical apathy and anxiety was associated with the presence of WMH. ROI-based analyses showed a volume reduction in the right hippocampus of WMH+. In healthy individuals, WMH are associated with significant preclinical neuropsychiatric phenomenology, as well as hippocampal atrophy, which are considered as risk factors to develop cognitive impairment and dementia.
Collapse
Affiliation(s)
- Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.S.); (F.P.); Tel.: +39-06-5150-1575; Fax: +39-06-5150-1575
| | - Mariangela Iorio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
- Molecular Neurology Unit, Center of Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
- Department of Psychology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
| | - Stefano L. Sensi
- Molecular Neurology Unit, Center of Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| | - Walter Gianni
- II Division of Internal Medicine and Geriatrics, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
| | - Carlo Caltagirone
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (M.I.); (D.V.); (F.P.); (V.C.); (N.B.); (F.A.); (C.C.)
- Correspondence: (G.S.); (F.P.); Tel.: +39-06-5150-1575; Fax: +39-06-5150-1575
| |
Collapse
|
20
|
Pimontel MA, Kanellopoulos D, Gunning FM. Neuroanatomical Abnormalities in Older Depressed Adults With Apathy: A Systematic Review. J Geriatr Psychiatry Neurol 2020; 33:289-303. [PMID: 31635522 DOI: 10.1177/0891988719882100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Apathy is a common phenomenon in late-life depression and is associated with poor outcomes. Apathy is often unrecognized in older depressed adults, and efficacious treatment options are lacking. This review provides a systematic review of the neuroanatomical abnormalities associated with apathy in late-life depression. In addition, the review summarizes the neuroimaging findings from studies of neurodegenerative and focal brain injury conditions that frequently present with apathy. The goal is to elucidate cerebral network abnormalities that give rise to apathy in older adults with mood disturbances and to inform future treatment targets. METHOD Systematic literature review. RESULTS The few studies that have directly examined the neuroanatomical abnormalities of apathy in late-life depression suggest disturbances in the anterior cingulate cortex, insula, orbital and dorsal prefrontal cortex, striatum, and limbic structures (ie, amygdala, thalamus, and hippocampus). Studies examining the neuroanatomical correlates of apathy in other aging populations are consistent with the pattern observed in late-life depression. CONCLUSIONS Apathy in late-life depression appears to be accompanied by neuroanatomical abnormalities in the salience and reward networks. These network findings are consistent with that observed in individuals presenting with apathy in other aging-related conditions. These findings may inform future treatments that target apathy.
Collapse
Affiliation(s)
- Monique A Pimontel
- Graduate Center, City University of New York, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
21
|
Delorme C, Adanyeguh I, Bendetowicz D, Le Ber I, Ponchel A, Kas A, Habert MO, Mochel F. Multimodal neurometabolic investigation of the effects of zolpidem on leukoencephalopathy-related apathy. Eur J Neurol 2020; 27:2297-2302. [PMID: 32757342 DOI: 10.1111/ene.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The symptomatic effect of zolpidem on apathy has been reported in neurological disorders such as strokes and post-anoxic brain injuries, but not in white-matter disease of the brain. METHODS A 38-year-old patient presenting with severe apathy related to a genetic leukoencephalopathy but showing marked improvement of apathy after taking 10 mg of zolpidem was studied. To understand what may mediate such a clinical effect, a multimodal neurometabolic approach using 18 F fluorodeoxyglucose positron emission tomography (FDG-PET) and a dedicated magnetic resonance spectroscopy (MRS) sequence for gamma aminobutyric acid (GABA) and glutamine + glutamate metabolism was undertaken. RESULTS Pre-zolpidem FDG-PET showed hypometabolism in the orbitofrontal cortex, dorsolateral cortex and basal ganglia compared to healthy controls. Post-zolpidem, FDG-PET displayed increased metabolism in the orbitofrontal cortex together with improvement in the emotional and auto-activation domains of apathy. There was no improvement in the cognitive domain of apathy, and no change in metabolism in the dorsolateral frontal cortex. Post-zolpidem, MRS showed increased GABA and glutamine + glutamate levels in the frontal cortex and pallidum. CONCLUSION Our multimodal neurometabolic study suggests that the effects of zolpidem on apathy are related to increased metabolism in the orbitofrontal cortex and basal ganglia secondary to GABA modulation. Zolpidem may improve apathy in other white-matter disorders.
Collapse
Affiliation(s)
- C Delorme
- Department of Neurology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - I Adanyeguh
- UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - D Bendetowicz
- Department of Neurology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| | - I Le Ber
- UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Reference Centre for Rare or Early Dementias, IM2A, Paris, France.,Institut du Cerveau et de la Moelle Epiniere (ICM), Frontlab, Paris, France
| | - A Ponchel
- Department of Neurology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| | - A Kas
- Laboratoire d'Imagerie Biomédicale, LIB, CNRS, INSERM, Sorbonne Université, Paris, France.,Médecine Nucléaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - M-O Habert
- Laboratoire d'Imagerie Biomédicale, LIB, CNRS, INSERM, Sorbonne Université, Paris, France.,Médecine Nucléaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - F Mochel
- UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
22
|
Maroney Z, Dale R. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL): A Rare Diagnosis in a Patient With Schizophrenia. PSYCHOSOMATICS 2020; 61:395-399. [PMID: 31924337 DOI: 10.1016/j.psym.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Zane Maroney
- Department of Psychiatry and Psychology, Cleveland Clinic Foundation, Neurologic Institute, Cleveland, OH.
| | - Roman Dale
- Department of Psychiatry and Psychology, Cleveland Clinic Foundation, Neurologic Institute, Cleveland, OH
| |
Collapse
|
23
|
Ouin E, Jouvent E. [Clinico-radiological spectrum of cerebral small vessel diseases]. Rev Med Interne 2020; 41:459-468. [PMID: 32540119 DOI: 10.1016/j.revmed.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
Cerebral small vessel diseases are frequent and can be seen through all ages. Although the most frequent forms related to age and hypertension or to cerebral amyloid angiopathy are mainly observed in subjects over 50 years of age, rarer forms may affect young people, sometimes even children. Some familial or inflammatory forms can be particularly misleading with some presentations very difficult to relate to a microvascular origin. Cerebral small vessel diseases thus raise both daily therapeutic issues and much rarer diagnostic questions, sometimes extremely complex. Our aim was to review the main clinical initial presentations and the clinico-radiological spectrum of associated underlying conditions.
Collapse
Affiliation(s)
- E Ouin
- Inserm U1141, service de neurologie et centre des maladies vasculaires rares du cerveau et de l'œil (CERVCO), hôpital Lariboisière, université de Paris, AP-HP, 75475 Paris, France; Département de neurologie, hôpitaux universitaires d'Amiens, Amiens, France
| | - E Jouvent
- Inserm U1141, service de neurologie et centre des maladies vasculaires rares du cerveau et de l'œil (CERVCO), hôpital Lariboisière, université de Paris, AP-HP, 75475 Paris, France.
| |
Collapse
|
24
|
Chabriat H, Joutel A, Tournier‐Lasserve E, Bousser MG. CADASIL: yesterday, today, tomorrow. Eur J Neurol 2020; 27:1588-1595. [DOI: 10.1111/ene.14293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Affiliation(s)
- H. Chabriat
- Department of Neurology and CERVCO Reference Center for Rare Vascular Diseases of the Eye and Brain Hôpital Lariboisiére, APHP Paris France
- INSERM U 1141 Paris France
- University of Paris Paris France
| | - A. Joutel
- University of Paris Paris France
- Institute of Psychiatry and Neurosciences of Paris INSERM U1266 Paris France
| | - E. Tournier‐Lasserve
- INSERM U 1141 Paris France
- University of Paris Paris France
- Molecular Genetics Department and CERVCO Reference Center for Rare Vascular Diseases of the Eye and Brain Hopital Lariboisiére, APHP Paris France
| | - M. G. Bousser
- Department of Neurology and CERVCO Reference Center for Rare Vascular Diseases of the Eye and Brain Hôpital Lariboisiére, APHP Paris France
- University of Paris Paris France
| |
Collapse
|
25
|
Tay J, Lisiecka-Ford DM, Hollocks MJ, Tuladhar AM, Barrick TR, Forster A, O'Sullivan MJ, Husain M, de Leeuw FE, Morris RG, Markus HS. Network neuroscience of apathy in cerebrovascular disease. Prog Neurobiol 2020; 188:101785. [PMID: 32151533 DOI: 10.1016/j.pneurobio.2020.101785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/15/2023]
Abstract
Apathy is a reduction in motivated goal-directed behavior (GDB) that is prevalent in cerebrovascular disease, providing an important opportunity to study the mechanistic underpinnings of motivation in humans. Focal lesions, such as those seen in stroke, have been crucial in developing models of brain regions underlying motivated behavior, while studies of cerebral small vessel disease (SVD) have helped define the connections between brain regions supporting such behavior. However, current lesion-based models cannot fully explain the neurobiology of apathy in stroke and SVD. To address this, we propose a network-based model which conceptualizes apathy as the result of damage to GDB-related networks. A review of the current evidence suggests that cerebrovascular disease-related pathology can lead to network changes outside of initially damaged territories, which may propagate to regions that share structural or functional connections. The presentation and longitudinal trajectory of apathy in stroke and SVD may be the result of these network changes. Distinct subnetworks might support cognitive components of GDB, the disruption of which results in specific symptoms of apathy. This network-based model of apathy may open new approaches for investigating its underlying neurobiology, and presents novel opportunities for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jonathan Tay
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | | | - Matthew J Hollocks
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Thomas R Barrick
- Neuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, London, UK
| | - Anne Forster
- Academic Unit of Elderly Care and Rehabilitation, University of Leeds, Leeds, UK
| | - Michael J O'Sullivan
- University of Queensland Centre for Clinical Research, University of Queensland Australia, Brisbane, Australia
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences & Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Robin G Morris
- Department of Psychology, King's College London, London, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Ungaro C, Sprovieri T. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Rare Dis 2020. [DOI: 10.5772/intechopen.87248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Locatelli M, Padovani A, Pezzini A. Pathophysiological Mechanisms and Potential Therapeutic Targets in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL). Front Pharmacol 2020; 11:321. [PMID: 32231578 PMCID: PMC7082755 DOI: 10.3389/fphar.2020.00321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), is a hereditary small-vessels angiopathy caused by mutations in the NOTCH 3 gene, located on chromosome 19, usually affecting middle-ages adults, whose clinical manifestations include migraine with aura, recurrent strokes, mood disorders, and cognitive impairment leading to dementia and disability. In this review, we provide an overview of the current knowledge on the pathogenic mechanisms underlying the disease, focus on the corresponding therapeutic targets, and discuss the most promising treatment strategies currently under investigations. The hypothesis that CADASIL is an appropriate model to explore the pathogenesis of sporadic cerebral small vessel disease is also reviewed.
Collapse
Affiliation(s)
- Martina Locatelli
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - Alessandro Pezzini
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
Raimo S, Trojano L, Gaita M, Spitaleri D, Santangelo G. Assessing apathy in multiple sclerosis: Validation of the dimensional apathy scale and comparison with apathy evaluation scale. Mult Scler Relat Disord 2019; 38:101870. [PMID: 31830701 DOI: 10.1016/j.msard.2019.101870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/09/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Apathy is a predictor of cognitive decline in the course of multiple sclerosis (MS). Early identification of apathetic patients is relevant in clinical settings. OBJECTIVE To assess applicability and psychometric properties of the self-rated version of the Dimensional Apathy Scale (DAS) in a large cohort of patients with MS and to compare its diagnosing accuracy with that of the Apathy Evaluation Scale (AES). METHODS One hundred and twenty-four patients underwent clinical interview based on diagnostic criteria for apathy, DAS, AES, and assessment of depression, global cognitive functioning, and non-verbal intelligence. RESULTS According to diagnostic criteria, apathy occurred in 33.4% of the patients. The DAS showed high consistency, and good convergent, discriminant and criterion validity. Factor analysis indicated a three-factor structure: executive, behavioural and emotional apathy. Unlike AES, no significant association between DAS score and severity of neurological disability (expressed by EDSS total score) was found, suggesting that the DAS might be less related to levels of disability. Receiver operating characteristics analyses, with clinical diagnostic criteria for apathy as the gold standard, revealed that a DAS score of 28/29 and an AES score of 35/36 were optimal cut-off values for identifying clinically relevant apathy. The two scales had similar diagnostic accuracy in the present sample. CONCLUSIONS The DAS is a valid and reliable multidimensional tool to assess apathy in MS, with diagnostic accuracy similar to that of the AES. However, the DAS score appears to be less strongly related to neurological disability.
Collapse
Affiliation(s)
- S Raimo
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, Caserta 81100, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - L Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, Caserta 81100, Italy
| | - M Gaita
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, Caserta 81100, Italy
| | - D Spitaleri
- Neurology Unit "San Giuseppe Moscati," Hospital Avellino, Avellino, Italy
| | - G Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, Caserta 81100, Italy.
| |
Collapse
|
29
|
The impact of vascular burden on behavioural and psychological symptoms in older adults with dementia: the BEVASDE study. Neurol Sci 2019; 41:165-174. [DOI: 10.1007/s10072-019-04071-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
|
30
|
De Paepe AE, Sierpowska J, Garcia-Gorro C, Martinez-Horta S, Perez-Perez J, Kulisevsky J, Rodriguez-Dechicha N, Vaquer I, Subira S, Calopa M, Muñoz E, Santacruz P, Ruiz-Idiago J, Mareca C, de Diego-Balaguer R, Camara E. White matter cortico-striatal tracts predict apathy subtypes in Huntington's disease. Neuroimage Clin 2019; 24:101965. [PMID: 31401404 PMCID: PMC6700450 DOI: 10.1016/j.nicl.2019.101965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Apathy is the neuropsychiatric syndrome that correlates most highly with Huntington's disease progression, and, like early patterns of neurodegeneration, is associated with lesions to cortico-striatal connections. However, due to its multidimensional nature and elusive etiology, treatment options are limited. OBJECTIVES To disentangle underlying white matter microstructural correlates across the apathy spectrum in Huntington's disease. METHODS Forty-six Huntington's disease individuals (premanifest (N = 22) and manifest (N = 24)) and 35 healthy controls were scanned at 3-tesla and underwent apathy evaluation using the short-Problem Behavior Assessment and short-Lille Apathy Rating Scale, with the latter being characterized into three apathy domains, namely emotional, cognitive, and auto-activation deficit. Diffusion tensor imaging was used to study whether individual differences in specific cortico-striatal tracts predicted global apathy and its subdomains. RESULTS We elucidate that apathy profiles may develop along differential timelines, with the auto-activation deficit domain manifesting prior to motor onset. Furthermore, diffusion tensor imaging revealed that inter-individual variability in the disruption of discrete cortico-striatal tracts might explain the heterogeneous severity of apathy profiles. Specifically, higher levels of auto-activation deficit symptoms significantly correlated with increased mean diffusivity in the right uncinate fasciculus. Conversely, those with severe cognitive apathy demonstrated increased mean diffusivity in the right frontostriatal tract and left dorsolateral prefrontal cortex to caudate nucleus tract. CONCLUSIONS The current study provides evidence that white matter correlates associated with emotional, cognitive, and auto-activation subtypes may elucidate the heterogeneous nature of apathy in Huntington's disease, as such opening a door for individualized pharmacological management of apathy as a multidimensional syndrome in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Audrey E De Paepe
- Department of Neuroscience, Pomona College, Claremont, CA, United States; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joanna Sierpowska
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Education Psychology, Universitat de Barcelona, Barcelona, Spain; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Psychology, Nijmegen, The Netherlands
| | - Clara Garcia-Gorro
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Education Psychology, Universitat de Barcelona, Barcelona, Spain
| | - Saül Martinez-Horta
- European Huntington's Disease Network, Germany; Movement Disorders Unit, Department of Neurology, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jesus Perez-Perez
- European Huntington's Disease Network, Germany; Movement Disorders Unit, Department of Neurology, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- European Huntington's Disease Network, Germany; Movement Disorders Unit, Department of Neurology, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III Institute, Madrid, Spain
| | | | - Irene Vaquer
- Hestia Duran i Reynals. Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Subira
- Hestia Duran i Reynals. Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain; IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Jesus Ruiz-Idiago
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain; Hospital Mare de Deu de la Mercè, Barcelona, Spain
| | - Celia Mareca
- Hospital Mare de Deu de la Mercè, Barcelona, Spain
| | - Ruth de Diego-Balaguer
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Education Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; ICREA (Catalan Institute for Research and Advanced Studies), Barcelona, Spain
| | - Estela Camara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute - IDIBELL, 08097 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
31
|
Le Heron C, Manohar S, Plant O, Muhammed K, Griffanti L, Nemeth A, Douaud G, Markus HS, Husain M. Dysfunctional effort-based decision-making underlies apathy in genetic cerebral small vessel disease. Brain 2018; 141:3193-3210. [PMID: 30346491 PMCID: PMC6202575 DOI: 10.1093/brain/awy257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
Apathy is a syndrome of reduced motivation that commonly occurs in patients with cerebral small vessel disease, including those with the early onset form, CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). The cognitive mechanisms underlying apathy are poorly understood and treatment options are limited. We hypothesized that disrupted effort-based decision-making, the cognitive process by which potential rewards and the effort cost required to obtain them is integrated to drive behaviour, might underlie the apathetic syndrome. Nineteen patients with a genetic diagnosis of CADASIL, as a model of 'pure' vascular cognitive impairment, and 19 matched controls were assessed using two different behavioural paradigms and MRI. On a decision-making task, participants decided whether to accept or reject sequential offers of monetary reward in return for exerting physical effort via handheld dynamometers. Six levels of reward and six levels of effort were manipulated independently so offers spanned the full range of possible combinations. Choice, decision time and force metrics were recorded. Each participant's effort and reward sensitivity was estimated using a computational model of choice. On a separate eye movement paradigm, physiological reward sensitivity was indexed by measuring pupillary dilatation to increasing monetary incentives. This metric was related to apathy status and compared to the behavioural metric of reward sensitivity on the decision-making task. Finally, high quality diffusion imaging and tract-based spatial statistics were used to determine whether tracts linking brain regions implicated in effort-based decision-making were disrupted in apathetic patients. Overall, apathetic patients with CADASIL rejected significantly more offers on the decision-making task, due to reduced reward sensitivity rather than effort hypersensitivity. Apathy was also associated with blunted pupillary responses to incentives. Furthermore, these independent behavioural and physiological markers of reward sensitivity were significantly correlated. Non-apathetic patients with CADASIL did not differ from controls on either task, whilst actual motor performance of apathetic patients in both tasks was also normal. Apathy was specifically associated with reduced fractional anisotropy within tracts connecting regions previously associated with effort-based decision-making. These findings demonstrate behavioural, physiological and anatomical evidence that dysfunctional effort-based decision-making underlies apathy in patients with CADASIL, a model disorder for sporadic small vessel disease. Reduced incentivization by rewards rather than hypersensitivity to effort costs drives this altered pattern of behaviour. The study provides empirical evidence of a cognitive mechanism for apathy in cerebral small vessel disease, and identifies a promising therapeutic target for interventions to improve this debilitating condition.
Collapse
Affiliation(s)
- Campbell Le Heron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Kinan Muhammed
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| | - Ludovica Griffanti
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andrea Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
32
|
Shi Y, Li S, Li W, Zhang C, Guo L, Pan Y, Zhou X, Wang X, Niu S, Yu X, Tang H, Chen B, Zhang Z. MRI Lesion Load of Cerebral Small Vessel Disease and Cognitive Impairment in Patients With CADASIL. Front Neurol 2018; 9:862. [PMID: 30459701 PMCID: PMC6232772 DOI: 10.3389/fneur.2018.00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Background and objective: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the best known and the most common monogenic small vessel disease (SVD). Cognitive impairment is an inevitable feature of CADASIL. Total SVD score and global cortical atrophy (GCA) scale were found to be good predictors of poor cognitive performance in community-dwelling adults. We aimed to estimate the association between the total SVD score, GCA scale and the cognitive performance in patients with CADASIL. Methods: We enrolled 20 genetically confirmed CADASIL patients and 20 controls matched by age, gender, and years of education. All participants underwent cognitive assessments to rate the global cognition and individual domain of executive function, information processing speed, memory, language, and visuospatial function. The total SVD score and GCA scale were rated. Results: The CADASIL group performed worse than the controls on all cognition measures. Neither global cognition nor any separate domain of cognition was significantly different among patients grouped by total SVD score. Negative correlations between the GCA score and cognitive performance were observed. Approximately 40% of the variance was explained by the total GCA score in the domains of executive function, information processing speed, and language. The superficial atrophy score was associated with poor performance in most of the domains of cognition. Adding the superficial atrophy score decreased the prediction power of the deep atrophy score on cognitive impairment alone. Conclusions: The GCA score, not the total SVD score, was significantly associated with poor cognitive performance in patients with CADASIL. Adding the superficial atrophy score attenuated the prediction power of the deep atrophy score on cognitive impairment alone.
Collapse
Affiliation(s)
- YuZhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - ShaoWu Li
- Department of Functional Neuroimaging, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - LiYing Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - YunZhu Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - XueMei Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - XinGao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - XueYing Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - HeFei Tang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - ZaiQiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Le Heron C, Apps MAJ, Husain M. The anatomy of apathy: A neurocognitive framework for amotivated behaviour. Neuropsychologia 2018; 118:54-67. [PMID: 28689673 PMCID: PMC6200857 DOI: 10.1016/j.neuropsychologia.2017.07.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
Abstract
Apathy is a debilitating syndrome associated with many neurological disorders, including several common neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, and focal lesion syndromes such as stroke. Here, we review neuroimaging studies to identify anatomical correlates of apathy, across brain disorders. Our analysis reveals that apathy is strongly associated with disruption particularly of dorsal anterior cingulate cortex (dACC), ventral striatum (VS) and connected brain regions. Remarkably, these changes are consistent across clinical disorders and imaging modalities. Review of the neuroimaging findings allows us to develop a neurocognitive framework to consider potential mechanisms underlying apathy. According to this perspective, an interconnected group of brain regions - with dACC and VS at its core - plays a crucial role in normal motivated behaviour. Specifically we argue that motivated behaviour requires a willingness to work, to keep working, and to learn what is worth working for. We propose that deficits in any one or more of these processes can lead to the clinical syndrome of apathy, and outline specific approaches to test this hypothesis. A richer neurobiological understanding of the mechanisms underlying apathy should ultimately facilitate development of effective therapies for this disabling condition.
Collapse
Affiliation(s)
- C Le Heron
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - M A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - M Husain
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
34
|
Massimo L, Kales HC, Kolanowski A. State of the Science: Apathy As a Model for Investigating Behavioral and Psychological Symptoms in Dementia. J Am Geriatr Soc 2018; 66 Suppl 1:S4-S12. [PMID: 29659001 PMCID: PMC5905718 DOI: 10.1111/jgs.15343] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 12/01/2022]
Abstract
Apathy is one of the most common and pervasive of the behavioral and psychological symptoms of dementia (BPSDs). Apathy has profound consequences for morbidity, mortality, and caregiver burden. Treatment of apathy has been hindered because of poor understanding of the mechanisms underlying this heterogeneous syndrome. Research has demonstrated that apathy is associated with disruption of the frontal-striatal system in individuals with neurodegenerative disease. As with other BPSDs, these neural mechanisms alone do not completely account for the syndrome; individual, caregiver, and environmental factors also contribute to apathy. In this article, we modify a current conceptual model of the factors contributing to BPSDs to examine determinants of apathy. This integrative model provides a more complete and theoretically informed understanding of apathy, allowing for greater insight into potential targets for research, intervention, and care. We end by proposing an agenda for moving the science of BPSDs in general, and apathy in particular, forward.
Collapse
Affiliation(s)
- Lauren Massimo
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania
- Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Helen C Kales
- Program for Positive Aging, Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Ann Kolanowski
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
35
|
Panahi M, Yousefi Mesri N, Samuelsson EB, Coupland KG, Forsell C, Graff C, Tikka S, Winblad B, Viitanen M, Karlström H, Sundström E, Behbahani H. Differences in proliferation rate between CADASIL and control vascular smooth muscle cells are related to increased TGFβ expression. J Cell Mol Med 2018. [PMID: 29536621 PMCID: PMC5980144 DOI: 10.1111/jcmm.13534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cerebral autosomal‐dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial fatal progressive degenerative disorder. One of the pathological hallmarks of CADASIL is a dramatic reduction of vascular smooth muscle cells (VSMCs) in cerebral arteries. Using VSMCs from the vasculature of the human umbilical cord, placenta and cerebrum of CADASIL patients, we found that CADASIL VSMCs had a lower proliferation rate compared to control VSMCs. Exposure of control VSMCs and endothelial cells (ECs) to media derived from CADASIL VSMCs lowered the proliferation rate of all cells examined. By quantitative RT‐PCR analysis, we observed increased Transforming growth factor‐β (TGFβ) gene expression in CADASIL VSMCs. Adding TGFβ‐neutralizing antibody restored the proliferation rate of CADASIL VSMCs. We assessed proliferation differences in the presence or absence of TGFβ‐neutralizing antibody in ECs co‐cultured with VSMCs. ECs co‐cultured with CADASIL VSMCs exhibited a lower proliferation rate than those co‐cultured with control VSMCs, and neutralization of TGFβ normalized the proliferation rate of ECs co‐cultured with CADASIL VSMCs. We suggest that increased TGFβ expression in CADASIL VSMCs is involved in the reduced VSMC proliferation in CADASIL and may play a role in situ in altered proliferation of neighbouring cells in the vasculature.
Collapse
Affiliation(s)
- Mahmod Panahi
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Naeimeh Yousefi Mesri
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | | | - Kirsten G Coupland
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Charlotte Forsell
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Caroline Graff
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden.,Department of Geriatric Medicine, Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Saara Tikka
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Bengt Winblad
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Matti Viitanen
- Department of Geriatrics, Turun Kaupunginsairaala, University Hospital of Turku, University of Turku, Turku, Finland.,Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska University Hospital, Huddinge, Sweden
| | - Helena Karlström
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Huddinge, Sweden.,Stockholms Sjukhem, R&D unit, Stockholm, Sweden
| | - Homira Behbahani
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Huddinge, Sweden
| |
Collapse
|
36
|
Abstract
Cerebral small-vessel disease is a prevalent condition that is strongly associated with ischemic stroke and dementia. The most prevalent inherited cause of cerebral small-vessel disease is CADASIL, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, a disorder linked to mutations in NOTCH3. The most common symptoms of CADASIL are small ischemic strokes and/or transient ischemic attacks and cognitive impairment, appearing in middle age, that may progress to frank vascular dementia. However, it is increasingly recognized that individual symptom types, onset, and disease severity span a wide spectrum, even among individuals in the same family. Magnetic resonance imaging in CADASIL reveals severe white-matter hyperintensities, evidence of prior subcortical strokes, and, in some cases, microhemorrhages. Several hundred mutations in NOTCH3 have been described worldwide in CADASIL, and virtually all of these mutations alter the cysteine content of the extracellular NOTCH3 gene product. This molecular genetic signature of CADASIL has led to the hypothesis that structural abnormalities in the vascular smooth-muscle protein NOTCH3 trigger arterial degeneration, vascular protein accumulation, and cerebrovascular failure.
Collapse
|
37
|
Kolanowski A, Boltz M, Galik E, Gitlin LN, Kales HC, Resnick B, Van Haitsma KS, Knehans A, Sutterlin JE, Sefcik JS, Liu W, Petrovsky DV, Massimo L, Gilmore-Bykovskyi A, MacAndrew M, Brewster G, Nalls V, Jao YL, Duffort N, Scerpella D. Determinants of behavioral and psychological symptoms of dementia: A scoping review of the evidence. Nurs Outlook 2017; 65:515-529. [PMID: 28826872 PMCID: PMC6579119 DOI: 10.1016/j.outlook.2017.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/20/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Behavioral and psychological symptoms of dementia (BPSD) are prevalent in people with neurodegenerative diseases. PURPOSE In this scoping review the Kales, Gitlin and Lykestos framework is used to answer the question: What high quality evidence exists for the patient, caregiver and environmental determinants of five specific BPSD: aggression, agitation, apathy, depression and psychosis? METHOD An a priori review protocol was developed; 692 of 6013 articles retrieved in the search were deemed eligible for review. Gough's Weight of Evidence Framework and the Cochrane Collaboration's tool for assessing risk of bias were used. The findings from 56 high quality/low bias articles are summarized. DISCUSSION Each symptom had its own set of determinants, but many were common across several symptoms: neurodegeneration, type of dementia, severity of cognitive impairments, and declining functional abilities, and to a lesser extent, caregiver burden and communication. CONCLUSION Research and policy implications are relevant to the National Plan to Address Alzheimer's Disease.
Collapse
Affiliation(s)
| | - Marie Boltz
- College of Nursing, Penn State, University Park, PA
| | | | - Laura N Gitlin
- Department of Community-Public Health, Center for Innovative Care in Aging, Johns Hopkins School of Nursing, Baltimore, MD; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Helen C Kales
- The Program for Positive Aging, University of Michigan, Ann Arbor, MI; VA Center for Clinical Management Research, Ann Arbor, MI
| | | | - Kimberly S Van Haitsma
- Program for Person Centered Living Systems of Care, College of Nursing, The Pennsylvania State University, University Park, PA; Polisher Research Institute, Madlyn & Leonard Abramson Center for Jewish Life, North Wales, PA
| | - Amy Knehans
- Penn State College of Medicine, Harrell Health Sciences Library, Research & Learning Commons, Hershey, PA
| | | | | | - Wen Liu
- College of Nursing, The University of Iowa, Iowa City, IA
| | | | | | | | - Margaret MacAndrew
- Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Glenna Brewster
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Danny Scerpella
- Center for Innovative Care in Aging, Johns Hopkins School of Nursing, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
38
|
Cadasil. Neurologia 2017. [DOI: 10.1016/s1634-7072(17)85562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
39
|
Chen S, Ni W, Yin XZ, Liu HQ, Lu C, Zheng QJ, Zhao GX, Xu YF, Wu L, Zhang L, Wang N, Li HF, Wu ZY. Clinical features and mutation spectrum in Chinese patients with CADASIL: A multicenter retrospective study. CNS Neurosci Ther 2017; 23:707-716. [PMID: 28710804 DOI: 10.1111/cns.12719] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
AIM To characterize clinical features and mutation spectrum in Chinese patients with CADASIL. METHODS We collected 261 clinically suspected Chinese CADASIL patients from three hospitals located in different regions of China. Sanger sequencing is performed to screen the exons 2 to 24 of NOTCH3 gene. Clinical and genetic data were retrospectively studied. Haplotype analyses were performed in patients carrying p.Arg544Cys and p.Arg607Cys, respectively. RESULTS A total of 214 patients were finally genetically diagnosed as CADASIL, with 45 known NOTCH3 mutations and a novel c.1817G>T mutation. We found that patients carrying p.Arg607Cys or p.Arg544Cys mutation located in exon 11 occupied nearly 35% in our mutation spectrum. In retrospectively study of clinical data, we found a higher number of patients having cognitive impairment and a lower number of patients having migraine with aura. Furthermore, we identified that patients carrying mutations in exon 11 seemed to experience a later disease onset (p=6.8×10-5 ). Additionally, a common haplotype was found in patients from eastern China carrying p.Arg607Cys, and the patients from Fujian carrying p.Arg544Cys shared the same haplotype with patients from Taiwan carrying p.Arg544Cys. CONCLUSIONS These findings broaden the mutational and clinical spectrum of CADASIL and provide additional evidences for the existence of founder effect in CADASIL patients.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Zhen Yin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Qiu Liu
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Lu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qiao-Juan Zheng
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Gui-Xian Zhao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Feng Xu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Di Donato I, Bianchi S, De Stefano N, Dichgans M, Dotti MT, Duering M, Jouvent E, Korczyn AD, Lesnik-Oberstein SAJ, Malandrini A, Markus HS, Pantoni L, Penco S, Rufa A, Sinanović O, Stojanov D, Federico A. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Med 2017; 15:41. [PMID: 28231783 PMCID: PMC5324276 DOI: 10.1186/s12916-017-0778-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common and best known monogenic small vessel disease. Here, we review the clinical, neuroimaging, neuropathological, genetic, and therapeutic aspects based on the most relevant articles published between 1994 and 2016 and on the personal experience of the authors, all directly involved in CADASIL research and care. We conclude with some suggestions that may help in the clinical practice and management of these patients.
Collapse
Affiliation(s)
- Ilaria Di Donato
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany
| | - Eric Jouvent
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1161 INSERM, F-75205, Paris, France.,Department of Neurology, AP-HP, Lariboisière Hospital, F-75475, Paris, France.,DHU NeuroVasc Sorbonne Paris Cité, Paris, France
| | - Amos D Korczyn
- Department of Neurology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Saskia A J Lesnik-Oberstein
- Department of Clinical Genetics, K5-R Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Leonardo Pantoni
- NEUROFARBA Department, Neuroscience section, Largo Brambilla 3, 50134, Florence, Italy
| | - Silvana Penco
- Medical Genetic Unit, Department of Laboratory Medicine, Niguarda Hospital, Milan, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy
| | - Osman Sinanović
- Department of Neurology, University Clinical Center Tuzla, School of Medicine University of Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - Dragan Stojanov
- Faculty of Medicine, University of Nis, Bul. Dr. Zorana Djindjica 81, Nis, 18000, Serbia
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Medical School, University of Siena, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
41
|
Søndergaard CB, Nielsen JE, Hansen CK, Christensen H. Hereditary cerebral small vessel disease and stroke. Clin Neurol Neurosurg 2017; 155:45-57. [PMID: 28254515 DOI: 10.1016/j.clineuro.2017.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/31/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022]
Abstract
Cerebral small vessel disease is considered hereditary in about 5% of patients and is characterized by lacunar infarcts and white matter hyperintensities on MRI. Several monogenic hereditary diseases causing cerebral small vessel disease and stroke have been identified. The purpose of this systematic review is to provide a guide for determining when to consider molecular genetic testing in patients presenting with small vessel disease and stroke. CADASIL, CARASIL, collagen type IV mutations (including PADMAL), retinal vasculopathy with cerebral leukodystrophy, Fabry disease, hereditary cerebral hemorrhage with amyloidosis, and forkhead box C1 mutations are described in terms of genetics, pathology, clinical manifestation, imaging, and diagnosis. These monogenic disorders are often characterized by early-age stroke, but also by migraine, mood disturbances, vascular dementia and often gait disturbances. Some also present with extra-cerebral manifestations such as microangiopathy of the eyes and kidneys. Many present with clinically recognizable syndromes. Investigations include a thorough family medical history, medical history, neurological examination, neuroimaging, often supplemented by specific examinations e.g of the of vision, retinal changes, as well as kidney and heart function. However molecular genetic analysis is the final gold standard of diagnosis. There are increasing numbers of reports on new monogenic syndromes causing cerebral small vessel disease. Genetic counseling is important. Enzyme replacement therapy is possible in Fabry disease, but treatment options remain overall very limited.
Collapse
Affiliation(s)
| | - Jørgen Erik Nielsen
- Department of Cellular and Molecular Medicine, Section of Neurogenetics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Hanne Christensen
- Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| |
Collapse
|
42
|
Abstract
In this chapter we review the optimal imaging modalities for subacute and chronic stroke. We discuss the utility of computed tomography (CT) and multimodal CT imaging. Further, we analyze the importance of specific magnetic resonance imaging sequences, such as diffusion-weighted imaging for acute ischemic stroke, T2/fluid-attenuated inversion recovery for subacute and chronic stroke, and susceptibility imaging for detection of intracranial hemorrhages. Different ischemic stroke mechanisms are reviewed, and how these imaging modalities may aid in the determination of such. Further, we analyze how topographic patterns in ischemic stroke may provide important clues to the diagnosis, in addition to the temporal evolution of the stroke. Lastly, specific cerebrovascular occlusive diseases are reviewed, with emphasis on the optimal imaging modalities and their findings in each condition.
Collapse
|
43
|
Jouvent E, Reyes S, De Guio F, Chabriat H. Reaction Time is a Marker of Early Cognitive and Behavioral Alterations in Pure Cerebral Small Vessel Disease. J Alzheimers Dis 2016; 47:413-9. [PMID: 26401563 DOI: 10.3233/jad-150083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The assessment of early and subtle cognitive and behavioral effects of cerebral small vessel disease (SVD) requires specific and long-lasting evaluations performed by experienced neuropsychologists. Simpler tools would be helpful for daily clinical practice. OBJECTIVE To determine whether a simple reaction time task that lasts 5 minutes and can be performed without external supervision on any tablet or laptop can be used as a proxy of early cognitive and behavioral alterations in CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic form of pure SVD related to NOTCH3 mutations. METHODS Twenty-two genetically confirmed patients with CADASIL having preserved global cognitive abilities and without disability (MMSE >24 and modified Rankin's scale ≤1) were compared to 29 age-and-gender matched controls to determine group differences according to: 1) conventional neuropsychological and behavioral testing; 2) a computerized battery evaluating reaction time, processing speed, and executive functions. In a second step, correlations between reaction time and cognitive and behavioral alterations detected using both conventional and computerized testing were tested in patients. RESULTS Reaction time was significantly higher in patients than in controls (mean in patients: 283 ms - in controls: 254 ms, p = 0.03). In patients, reaction time was significantly associated with conventional and chronometric tests of executive functions, working memory, and apathy. CONCLUSION Reaction time obtained using a very simple task may serve as a proxy of early cognitive and behavioral alterations in SVD and could be easily used in daily clinical practice.
Collapse
|
44
|
The Behavioral and Cognitive Executive Disorders of Stroke: The GREFEX Study. PLoS One 2016; 11:e0147602. [PMID: 26824746 PMCID: PMC4732595 DOI: 10.1371/journal.pone.0147602] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many studies have highlighted the high prevalence of executive disorders in stroke. However, major uncertainties remain due to use of variable and non-validated methods. The objectives of this study were: 1) to characterize the executive disorder profile in stroke using a standardized battery, validated diagnosis criteria of executive disorders and validated framework for the interpretation of neuropsychological data and 2) examine the sensitivity of the harmonization standards protocol proposed by the National Institute of Neurological Disorders and Stroke and Canadian Stroke Network (NINDS-CSN) for the diagnosis of Vascular Cognitive Impairment. METHODS 237 patients (infarct: 57; cerebral hemorrhage: 54; ruptured aneurysm of the anterior communicating artery (ACoA): 80; cerebral venous thrombosis (CVT): 46) were examined by using the GREFEX battery. The patients' test results were interpreted with a validated framework derived from normative data from 780 controls. RESULTS Dysexecutive syndrome was observed in 88 (55.7%; 95%CI: 48-63.4) out of the 156 patients with full cognitive and behavioral data: 40 (45.5%) had combined behavioral and cognitive syndromes, 29 (33%) had a behavioral disorder alone and 19 (21.6%) had a cognitive syndrome alone. The dysexecutive profile was characterized by prominent impairments of initiation and generation in the cognitive domain and by hypoactivity with disinterest and anticipation loss in the behavioral domain. Cognitive impairment was more frequent (p = 0.014) in hemorrhage and behavioral disorders were more frequent (p = 0.004) in infarct and hemorrhage. The harmonization standards protocol underestimated (p = 0.007) executive disorders in CVT or ACoA. CONCLUSIONS This profile of executive disorders implies that the assessment should include both cognitive tests and a validated inventory for behavioral dysexecutive syndrome. Initial assessment may be performed with a short cognitive battery, such as the harmonization standards protocol. However, administration of a full cognitive battery is required in selected patients.
Collapse
|
45
|
CADASIL. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Sorond FA, Cruz-Almeida Y, Clark DJ, Viswanathan A, Scherzer CR, De Jager P, Csiszar A, Laurienti PJ, Hausdorff JM, Chen WG, Ferrucci L, Rosano C, Studenski SA, Black SE, Lipsitz LA. Aging, the Central Nervous System, and Mobility in Older Adults: Neural Mechanisms of Mobility Impairment. J Gerontol A Biol Sci Med Sci 2015; 70:1526-32. [PMID: 26386013 DOI: 10.1093/gerona/glv130] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mobility is crucial for successful aging and is impaired in many older adults. We know very little about the subtle, subclinical age-related changes in the central nervous system (CNS) that mediate mobility impairment. METHODS A conference series focused on aging, the CNS, and mobility was launched. The second conference addressed major age-associated mechanisms of CNS-mediated mobility impairment. Speakers and conference attendees recommended key areas for future research, identified barriers to progress, and proposed strategies to overcome them. RESULTS Priorities identified for future research include (a) studying interactions among different mechanisms; (b) examining effects of interventions targeting these mechanisms; (c) evaluating the effect of genetic polymorphisms on risks and course of age-related mobility impairment; and (d) examining the effect of age on CNS repair processes, neuroplasticity, and neuronal compensatory mechanisms. Key strategies to promote research include (a) establish standard measures of mobility across species; (b) evaluate the effect of aging in the absence of disease on CNS and mobility; and (c) use advanced computational methods to better evaluate the interactions between CNS and other systems involved in mobility. CONCLUSIONS CNS is a major player in the process, leading to mobility decline with aging. Future research in this area has the potential to prolong independence in older persons. Better interactions among disciplines and shared research paradigms are needed to make progress. Research priorities include the development of innovative approaches to integrate research on aging, cognition, and movement with attention to neurovascular function, neuroplasticity, and neurophysiological reserve.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Yenisel Cruz-Almeida
- Institute on Aging, Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville
| | - David J Clark
- Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, Department of Aging and Geriatric Research, University of Florida, Gainesville
| | - Anand Viswanathan
- Department of Neurology, Stroke Division, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Clemens R Scherzer
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip De Jager
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center
| | - Paul J Laurienti
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeffery M Hausdorff
- Department of Medicine, Tel-Aviv University, Tel-Aviv Sourasky Medical Center, Israel
| | - Wen G Chen
- Sensory and Motor Disorders of Aging and
| | - Luiggi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Bethesda, Maryland
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Stephanie A Studenski
- Department of Medicine, Division of Geriatric Medicine, Pittsburgh Healthcare System, Pennsylvania
| | - Sandra E Black
- Department of Neurology, University of Toronto, Sunnybrook Research Institute, Canada
| | - Lewis A Lipsitz
- Institute for Aging Research, Research, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Goldman JS. Genetic testing and counseling in the diagnosis and management of young-onset dementias. Psychiatr Clin North Am 2015; 38:295-308. [PMID: 25998117 DOI: 10.1016/j.psc.2015.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Young-onset dementia is hereditary, multifactorial, or sporadic. The most common hereditary dementias include Alzheimer disease, frontotemporal degeneration, Huntington disease, prion diseases, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Careful attainment of family history assists with diagnosis and determining the likelihood of a genetic cause, and can direct genetic testing. The type of genetic testing depends on confidence of the diagnosis, patient's and affected relatives' symptoms, and the number of disease genes. Single gene, disease-specific gene panels, and large dementia panels are available. Genetic counseling should be given and informed consent obtained. Predictive testing follows the Huntington disease protocol.
Collapse
Affiliation(s)
- Jill S Goldman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, Box 16, New York, NY 10032, USA.
| |
Collapse
|
48
|
Nannucci S, Donnini I, Pantoni L. Inherited leukoencephalopathies with clinical onset in middle and old age. J Neurol Sci 2014; 347:1-13. [PMID: 25307983 DOI: 10.1016/j.jns.2014.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 01/30/2023]
Abstract
The currently widespread use of neuroimaging has led neurologists to often face the problem of the differential diagnosis of white matter diseases. There are various forms of leukoencephalopathies (vascular, inflammatory and immunomediated, infectious, metabolic, neoplastic) and sometimes white matter lesions are expression of a genetic disease. While many inherited leukoencephalopathies fall in the child neurologist's interest, others may have a delayed or even a typical onset in the middle or old age. This field is rapidly growing and, in the last few years, many new inherited white matter diseases have been described and genetically defined. A non-delayed recognition of middle and old age inherited leukoencephalopathies appears important to avoid unnecessary tests and therapies in the patient and to possibly anticipate the diagnosis in relatives. The aim of this review is to provide a guide to direct the diagnostic process when facing a patient with a suspicion of an inherited form of leukoencephalopathy and with clinical onset in middle or old age. Based on a MEDLINE search from 1990 to 2013, we identified 24 middle and old age onset inherited leukoencephalopathies and reviewed in this relation the most recent findings focusing on their differential diagnosis. We provide summary tables to use as a check list of clinical and neuroimaging findings that are most commonly associated with these forms of leukoencephalopathies. When present, we reported specific characteristics of single diseases. Several genetic diseases may be suspected in patients with middle or old age and white matter abnormalities. In only few instances, pathognomonic clinical or associated neuroimaging features help identifying a specific disease. Therefore, a comprehensive knowledge of the characteristics of these inherited white matter diseases appears important to improve the diagnostic work-up, optimize the choice of genetic tests, increase the number of diagnosed patients, and stimulate the research interest in this field.
Collapse
Affiliation(s)
- Serena Nannucci
- NEUROFARBA Department, Neuroscience section, University of Florence, Florence, Italy
| | - Ida Donnini
- NEUROFARBA Department, Neuroscience section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| |
Collapse
|
49
|
Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H. CADASIL and CARASIL. Brain Pathol 2014; 24:525-44. [PMID: 25323668 PMCID: PMC8029192 DOI: 10.1111/bpa.12181] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
CADASIL and CARASIL are hereditary small vessel diseases leading to vascular dementia. CADASIL commonly begins with migraine followed by minor strokes in mid-adulthood. Dominantly inherited CADASIL is caused by mutations (n > 230) in NOTCH3 gene, which encodes Notch3 receptor expressed in vascular smooth muscle cells (VSMC). Notch3 extracellular domain (N3ECD) accumulates in arterial walls followed by VSMC degeneration and subsequent fibrosis and stenosis of arterioles, predominantly in cerebral white matter, where characteristic ischemic MRI changes and lacunar infarcts emerge. The likely pathogenesis of CADASIL is toxic gain of function related to mutation-induced unpaired cysteine in N3ECD. Definite diagnosis is made by molecular genetics but is also possible by electron microscopic demonstration of pathognomonic granular osmiophilic material at VSMCs or by positive immunohistochemistry for N3ECD in dermal arteries. In rare, recessively inherited CARASIL the clinical picture and white matter changes are similar as in CADASIL, but cognitive decline begins earlier. In addition, gait disturbance, low back pain and alopecia are characteristic features. CARASIL is caused by mutations (presently n = 10) in high-temperature requirement. A serine peptidase 1 (HTRA1) gene, which result in reduced function of HTRA1 as repressor of transforming growth factor-β (TGF β) -signaling. Cerebral arteries show loss of VSMCs and marked hyalinosis, but not stenosis.
Collapse
Affiliation(s)
- Saara Tikka
- Protein Chemistry Unit, Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
| | - Marc Baumann
- Protein Chemistry Unit, Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
| | - Maija Siitonen
- Department of Medical Biochemistry and Genetics, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Petra Pasanen
- Department of Medical Biochemistry and Genetics, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Minna Pöyhönen
- Department of Clinical GeneticsHelsinki University Hospital, HUSLABHelsinkiFinland
| | - Liisa Myllykangas
- Department of PathologyHaartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - Matti Viitanen
- Turku City HospitalTurkuFinland
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Toshio Fukutake
- Department of NeurologyKameda Medical CenterKamogawaChibaJapan
| | - Emmanuel Cognat
- INSERMU1161ParisFrance
- Université Paris DiderotSorbonne Paris CitéUMRS 1161ParisFrance
| | - Anne Joutel
- INSERMU1161ParisFrance
- Université Paris DiderotSorbonne Paris CitéUMRS 1161ParisFrance
| | - Hannu Kalimo
- Department of PathologyHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- Institute of BiomedicineDepartment of Forensic MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
50
|
Ince B, Benbir G, Siva A, Saip S, Utku U, Celik Y, Necioglu-Orken D, Ozturk S, Afsar N, Aktan S, Asil T, Bakac G, Ekmekci H, Gokce M, Krespi Y, Midi I, Varlibas F, Citci-Yalcinkaya B, Goksan B, Uluduz D, Uyguner O. Clinical and radiological features in CADASIL and NOTCH3-negative patients: a multicenter study from Turkey. Eur Neurol 2014; 72:125-31. [PMID: 25095812 DOI: 10.1159/000360530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/09/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The diversity of clinical presentation and neuroimaging findings of CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) from different regions of the world has not yet been studied in depth. Here we investigated the variability of clinical, radiological and genetic data of 48 patients analyzed for NOTCH3 mutation in Turkey. METHODS Clinical evaluation was made according to a preformed questionnaire. Cranial neuroimaging findings were determined on the basis of T1, T2, FLAIR and proton-density magnetic resonance scans. For genetic analysis, polymerase chain reaction was performed with primers flanking exons 2-6 and 11 of NOTCH3 gene. RESULTS Twenty-five patients (52.1%) were diagnosed as CADASIL with NOTCH3 mutation, while 23 patients (47.9%) had no mutation (NOTCH3-negative patients). The mean age and age at stroke onset were lower in male CADASIL patients (p < 0.03). A family history of migraine (p = 0.012), stroke (p < 0.001), recurrent strokes (p = 0.020) and dementia (p = 0.012) was more common in CADASIL patients. Temporal pole involvement was more common in CADASIL patients (p = 0.004). CONCLUSION It is of clinical importance to identify the heterogeneity of CADASIL from different countries due to a low correlation of clinical and radiological data with respect to NOTCH3 mutation.
Collapse
Affiliation(s)
- Birsen Ince
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|