1
|
Buainain RP, Boschiero MN, Camporeze B, de Aguiar PHP, Marson FAL, Ortega MM. Single-Nucleotide Variants in microRNAs Sequences or in their Target Genes Might Influence the Risk of Epilepsy: A Review. Cell Mol Neurobiol 2022; 42:1645-1658. [PMID: 33666796 PMCID: PMC11421741 DOI: 10.1007/s10571-021-01058-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Single-nucleotide variant (SNV) is a single base mutation at a specific location in the genome and may play an import role in epilepsy pathophysiology. The aim of this study was to review case-control studies that have investigated the relationship between SNVs within microRNAs (miRs) sequences or in their target genes and epilepsy susceptibility from January 1, 2010 to October 31, 2020. Nine case-control studies were included in the present review. The mainly observed SNVs associated with drug-resistant epilepsy (DRE) risk were SNVs n.60G > C (rs2910164) and n.-411A > G (rs57095329), both located at miR-146a mature sequence and promoter region, respectively. In addition, the CC haplotype (rs987195-rs969885) and the AA genotype at rs4817027 in the MIR155HG/miR-155 tagSNV were also genetic susceptibility markers for early-onset epilepsy. MiR-146a has been observed as upregulated in human astrocytes in epileptogenesis and it regulates inflammatory process through NF-κB signaling by targeting tumor necrosis factor-associated factor 6 (TRAF6) gene. The SNVs rs2910164 and rs57095329 may modify the expression level of mature miR-146a and the risk for epilepsy and SNVs located at rs987195-rs969885 haplotype and at rs4817027 in the MIR155HG/miR-155 tagSNV could interfere in the miR-155 expression modulating inflammatory pathway genes involved in the development of early-onset epilepsy. In addition, SNVs rs662702, rs3208684, and rs35163679 at 3'untranslated region impairs the ability of miR-328, let-7b, and miR-200c binding affinity with paired box protein PAX-6 (PAX6), BCL2 like 1 (BCL2L1), and DNA methyltransferase 3 alpha (DNMT3A) target genes. The SNV rs57095329 might be correlated with DRE when a larger number of patients are evaluated. Thus, we concluded that the main drawback of most of studies is the small number of individuals enrolled, which lacks sample power.
Collapse
Affiliation(s)
- Renata Parissi Buainain
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Bruno Camporeze
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Paulo Henrique Pires de Aguiar
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
- Departament of Neurosurgery, Hospital Santa Paula, São Paulo, São Paulo, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.
| |
Collapse
|
3
|
Kananen J, Tuovinen T, Ansakorpi H, Rytky S, Helakari H, Huotari N, Raitamaa L, Raatikainen V, Rasila A, Borchardt V, Korhonen V, LeVan P, Nedergaard M, Kiviniemi V. Altered physiological brain variation in drug-resistant epilepsy. Brain Behav 2018; 8:e01090. [PMID: 30112813 PMCID: PMC6160661 DOI: 10.1002/brb3.1090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Functional magnetic resonance imaging (fMRI) combined with simultaneous electroencephalography (EEG-fMRI) has become a major tool in mapping epilepsy sources. In the absence of detectable epileptiform activity, the resting state fMRI may still detect changes in the blood oxygen level-dependent signal, suggesting intrinsic alterations in the underlying brain physiology. METHODS In this study, we used coefficient of variation (CV) of critically sampled 10 Hz ultra-fast fMRI (magnetoencephalography, MREG) signal to compare physiological variance between healthy controls (n = 10) and patients (n = 10) with drug-resistant epilepsy (DRE). RESULTS We showed highly significant voxel-level (p < 0.01, TFCE-corrected) increase in the physiological variance in DRE patients. At individual level, the elevations range over three standard deviations (σ) above the control mean (μ) CVMREG values solely in DRE patients, enabling patient-specific mapping of elevated physiological variance. The most apparent differences in group-level analysis are found on white matter, brainstem, and cerebellum. Respiratory (0.12-0.4 Hz) and very-low-frequency (VLF = 0.009-0.1 Hz) signal variances were most affected. CONCLUSIONS The CVMREG increase was not explained by head motion or physiological cardiorespiratory activity, that is, it seems to be linked to intrinsic physiological pulsations. We suggest that intrinsic brain pulsations play a role in DRE and that critically sampled fMRI may provide a powerful tool for their identification.
Collapse
Affiliation(s)
- Janne Kananen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Timo Tuovinen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Hanna Ansakorpi
- Research Unit of Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Department of Neurology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Seppo Rytky
- Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Ville Raatikainen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Aleksi Rasila
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Viola Borchardt
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Pierre LeVan
- Faculty of Medicine, Department of Radiology - Medical Physics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester, Rochester, New York.,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Douglas DB, Chaudhari R, Zhao JM, Gullo J, Kirkland J, Douglas PK, Wolin E, Walroth J, Wintermark M. Perfusion Imaging in Acute Traumatic Brain Injury. Neuroimaging Clin N Am 2018; 28:55-65. [PMID: 29157853 PMCID: PMC7890940 DOI: 10.1016/j.nic.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a significant problem worldwide and neuroimaging plays a critical role in diagnosis and management. Recently, perfusion neuroimaging techniques have been explored in TBI to determine and characterize potential perfusion neuroimaging biomarkers to aid in diagnosis, treatment, and prognosis. In this article, computed tomography (CT) bolus perfusion, MR imaging bolus perfusion, MR imaging arterial spin labeling perfusion, and xenon CT are reviewed with a focus on their applications in acute TBI. Future research directions are also discussed.
Collapse
Affiliation(s)
- David B Douglas
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA; Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Ruchir Chaudhari
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA
| | - Jason M Zhao
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - James Gullo
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Jared Kirkland
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Pamela K Douglas
- Institute for Simulation and Training, University of Central Florida, 3100 Technology Parkway, Orlando, FL 32826, USA
| | - Ely Wolin
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - James Walroth
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA.
| |
Collapse
|