1
|
Lynch DR, Shen M, Wilson RB. Friedreich ataxia: what can we learn from non-GAA repeat mutations? Neurodegener Dis Manag 2025; 15:17-26. [PMID: 39810561 PMCID: PMC11938963 DOI: 10.1080/17582024.2025.2452147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the FXN gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the FXN gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient. In this review, we propose explanations for such phenotypes based on the potential for activities of frataxin other than enhancement of iron-sulfur cluster synthesis, as well as crucial future experiments for fully understanding the role of frataxin in cells.
Collapse
Affiliation(s)
- David R. Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Shen
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B. Wilson
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Patel SH, Panagiotakaki E, Papadopoulou MT, Fons C, De Grandis E, Vezyroglou A, Balestrini S, Hong H, Liu B, Prange L, Arzimanoglou A, Vavassori R, Mikati MA. Methodology of a Natural History Study of a Rare Neurodevelopmental Disorder: Alternating Hemiplegia of Childhood as a Prototype Disease. J Child Neurol 2023; 38:597-610. [PMID: 37728088 DOI: 10.1177/08830738231197861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Here, we describe the process of development of the methodology for an international multicenter natural history study of alternating hemiplegia of childhood as a prototype disease for rare neurodevelopmental disorders. We describe a systematic multistep approach in which we first identified the relevant questions about alternating hemiplegia of childhood natural history and expected challenges. Then, based on our experience with alternating hemiplegia of childhood and on pragmatic literature searches, we identified solutions to determine appropriate methods to address these questions. Specifically, these solutions included development and standardization of alternating hemiplegia of childhood-specific spell video-library, spell calendars, adoption of tailored methodologies for prospective measurement of nonparoxysmal and paroxysmal manifestations, unified data collection protocols, centralized data platform, adoption of specialized analysis methods including, among others, Cohen kappa, interclass correlation coefficient, linear mixed effects models, principal component, propensity score, and ambidirectional analyses. Similar approaches can, potentially, benefit in the study of other rare pediatric neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shital H Patel
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, USA
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Children's Hospital, Member of the ERN EpiCARE, Barcelona, Spain
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, University College of London (UCL), Queen Square Institute of Neurology, London, UK
| | - Hwanhee Hong
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Beiyu Liu
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Lyndsey Prange
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, USA
| | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Rosaria Vavassori
- Euro Mediterranean Institute of Science and Technology IEMEST, Palermo, Italy
- Association AHC18+ e.V., member of the ERN EpiCARE Patient Advocacy Group (ePAG), Germany
| | - Mohamad A Mikati
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Rodden LN, McIntyre K, Keita M, Wells M, Park C, Profeta V, Waldman A, Rummey C, Balcer LJ, Lynch DR. Retinal hypoplasia and degeneration result in vision loss in Friedreich ataxia. Ann Clin Transl Neurol 2023; 10:1397-1406. [PMID: 37334854 PMCID: PMC10424660 DOI: 10.1002/acn3.51830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is an inherited condition caused by a GAA triplet repeat (GAA-TR) expansion in the FXN gene. Clinical features of FRDA include ataxia, cardiomyopathy, and in some, vision loss. In this study, we characterize features of vision loss in a large cohort of adults and children with FRDA. METHODS Using optical coherence tomography (OCT), we measured peripapillary retinal nerve fiber layer (RNFL) thickness in 198 people with FRDA, and 77 controls. Sloan letter charts were used to determine visual acuity. RNFL thickness and visual acuity were compared to measures of disease severity obtained from the Friedreich Ataxia Clinical Outcomes Measures Study (FACOMS). RESULTS The majority of patients, including children, had pathologically thin RNFLs (mean = 73 ± 13 μm in FRDA; 98 ± 9 μm in controls) and low-contrast vision deficits early in the disease course. Variability in RNFL thickness in FRDA (range: 36 to 107 μm) was best predicted by disease burden (GAA-TR length X disease duration). Significant deficits in high-contrast visual acuity were apparent in patients with an RNFL thickness of ≤68 μm. RNFL thickness decreased at a rate of -1.2 ± 1.4 μm/year and reached 68 μm at a disease burden of approximately 12,000 GAA years, equivalent to disease duration of 17 years for participants with 700 GAAs. INTERPRETATION These data suggest that both hypoplasia and subsequent degeneration of the RNFL may be responsible for the optic nerve dysfunction in FRDA and support the development of a vision-directed treatment for selected patients early in the disease to prevent RNFL loss from reaching the critical threshold.
Collapse
Affiliation(s)
- Layne N. Rodden
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Medina Keita
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mckenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amy Waldman
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Laura J. Balcer
- Departments of Neurology, Population Health and OphthalmologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Rodden LN, Rummey C, Dong YN, Lynch DR. Clinical Evidence for Variegated Silencing in Patients With Friedreich Ataxia. Neurol Genet 2022; 8:e683. [PMID: 35620135 PMCID: PMC9128033 DOI: 10.1212/nxg.0000000000000683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives Friedreich ataxia (FRDA) is a neurodegenerative disease caused by a GAA triplet repeat (GAA-TR) expansion in intron 1 of the FXN gene. Patients have 100-1,300 GAA triplets compared with less than 30 in healthy controls. The GAA-TR expansion leads to FXN silencing, and consequent frataxin protein deficiency results in progressive ataxia, scoliosis, cardiomyopathy, and diabetes. The overt heterogeneity in age at onset and disease severity is explained partly by the length of the GAA-TR, in which shorter repeats correlate with milder disease. Evidence of variegated silencing in FRDA suggests that patients with shorter repeats retain a significant proportion of cells with FXN genes that have escaped GAA-TR expansion-induced silencing, explaining the less severe frataxin deficiency in this subpopulation. In ex vivo experiments, the proportion of spared cells negatively correlates with GAA-TR length until it plateaus at 500 triplets, an indication that the maximal number of silenced cells has been reached. In this study, we assessed whether an analogous ceiling effect occurs in severity of clinical features of FRDA by analyzing clinical outcome data. Methods The FRDA Clinical Outcome Measures Study database was used for a cross-sectional analysis of 1,000 patients with FRDA. Frataxin levels were determined by lateral flow immunoassays. Results The length of the GAA-TR in our cohort predicted frataxin level (R2 = 0.38, p < 0.0001) and age at onset (R2 = 0.46, p < 0.0001) but only with GAA-TRs with ≤700 triplets. Age and disease duration predicted performance on clinical outcome measures, and such predictions in linear regression models statistically improved in the subcohort of patients with >700 GAA triplets. The prevalence of cardiomyopathy and scoliosis increased as GAA-TR length increased up to 700 GAA triplets where prevalence plateaued. Discussion Our data suggest that there is a ceiling effect on the clinical consequences of GAA-TR length in FRDA, as would be predicted by variegated silencing. Patients with GAA-TRs of >700 triplets represent a subgroup in which the severity of clinical manifestations based on GAA-TR length have reached maximal levels and therefore display limited clinical variability in disease progression.
Collapse
Affiliation(s)
- Layne N. Rodden
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Christian Rummey
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Yi Na Dong
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - David R. Lynch
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| |
Collapse
|
6
|
Recessive cerebellar and afferent ataxias - clinical challenges and future directions. Nat Rev Neurol 2022; 18:257-272. [PMID: 35332317 DOI: 10.1038/s41582-022-00634-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype-phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.
Collapse
|
7
|
Mercado-Ayón E, Warren N, Halawani S, Rodden LN, Ngaba L, Dong YN, Chang JC, Fonck C, Mavilio F, Lynch DR, Lin H. Cerebellar Pathology in an Inducible Mouse Model of Friedreich Ataxia. Front Neurosci 2022; 16:819569. [PMID: 35401081 PMCID: PMC8987918 DOI: 10.3389/fnins.2022.819569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA. However, the exact correlation of frataxin deficiency with cerebellar neuropathology remains unclear. Here we report that doxycycline-induced frataxin knockdown in a mouse model of FRDA (FRDAkd) leads to synaptic cerebellar degeneration that can be partially reversed by AAV8-mediated frataxin restoration. Loss of cerebellar Purkinje neurons and large DN principal neurons are observed in the FRDAkd mouse cerebellum. Levels of the climbing fiber-specific glutamatergic synaptic marker VGLUT2 decline starting at 4 weeks after dox induction, whereas levels of the parallel fiber-specific synaptic marker VGLUT1 are reduced by 18-weeks. These findings suggest initial selective degeneration of climbing fiber synapses followed by loss of parallel fiber synapses. The GABAergic synaptic marker GAD65 progressively declined during dox induction in FRDAkd mice, while GAD67 levels remained unaltered, suggesting specific roles for frataxin in maintaining cerebellar synaptic integrity and function during adulthood. Expression of frataxin following AAV8-mediated gene transfer partially restored VGLUT1/2 levels. Taken together, our findings show that frataxin knockdown leads to cerebellar degeneration in the FRDAkd mouse model, suggesting that frataxin helps maintain cerebellar structure and function.
Collapse
Affiliation(s)
- Elizabeth Mercado-Ayón
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan Warren
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah Halawani
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Layne N. Rodden
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lucie Ngaba
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Carlos Fonck
- Audentes Therapeutics, San Francisco, CA, United States
| | - Fulvio Mavilio
- Audentes Therapeutics, San Francisco, CA, United States
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - David R. Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hong Lin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Krishna R, Pathirana PN, Horne MK, Szmulewicz DJ, Corben LA. Objective Assessment of Progression and Disease Characterization of Friedreich Ataxia via an Instrumented Drinking Cup: Preliminary Results. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2365-2377. [PMID: 34727035 DOI: 10.1109/tnsre.2021.3124869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The monitoring of disease progression in certain neurodegenerative conditions can significantly be quantified with the help of objective assessments. The severity assessment of diseases like Friedreich ataxia (FRDA) are usually based on different subjective measures. The ability of a participant with FRDA to perform standard neurological tests is the most common way of assessing disease progression. In this feasibility study, an Ataxia Instrumented Measurement-Cup (AIM-C) is proposed to quantify the disease progression of 10 participants (mean age 39 years, onset of disease 16.3 years) in longitudinal timepoints. The device consists of a sensing system with the provision of extracting both kinetic and kinematic information while engaging in an activity closely associated with activities of daily living (ADL). A common functional task of simulated drinking was used to capture features that possesses disease progression information as well as certain other features which intrinsically correlate with commonly used clinical scales such as the modified Friedreich Ataxia Rating Scale (mFARS), the Functional Staging of Ataxia score and the ADL scale. Frequency and time-frequency domain features allowed the longitudinal assessment of participants with FRDA. Furthermore, both kinetic and kinematic measures captured clinically relevant features and correlated 85% with clinical assessments.
Collapse
|
9
|
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by deficiency of frataxin, an essential mitochondrial protein involved in iron sulfur cluster biogenesis, oxidative phosphorylation and other processes. FRDA most notably affects the heart, sensory neurons, spinal cord, cerebellum, and other brain regions, and manifests clinically as ataxia, sensory loss, dysarthria, spasticity, and hypertrophic cardiomyopathy. Therapeutic approaches in FRDA have consisted of two different approaches: (1) augmenting or restoring frataxin production and (2) modulating a variety of downstream processes related to mitochondrial dysfunction, including reactive oxygen species production, ferroptosis, or Nrf2 activation. AREAS COVERED In this review, we summarize data from major phase II clinical trials in FRDA published between 2015 and 2020, which includes A0001/EPI743, Omaveloxolone, RT001, and Actimmune. EXPERT OPINION A growing number of drug candidates are being tested in phase II clinical trials for FRDA; however, most have not met their primary endpoints, and none have received FDA approval. In this review, we aim to summarize completed phase II clinical trials in FRDA, outlining critical lessons that have been learned and that should be incorporated into future trial design to ultimately optimize drug development in FRDA.
Collapse
|
10
|
Harding IH, Lynch DR, Koeppen AH, Pandolfo M. Central Nervous System Therapeutic Targets in Friedreich Ataxia. Hum Gene Ther 2021; 31:1226-1236. [PMID: 33238751 PMCID: PMC7757690 DOI: 10.1089/hum.2020.264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive inherited multisystem disease, characterized by marked differences in the vulnerability of neuronal systems. In general, the proprioceptive system appears to be affected early, while later in the disease, the dentate nucleus of the cerebellum and, to some degree, the corticospinal tracts degenerate. In the current era of expanding therapeutic discovery in FRDA, including progress toward novel gene therapies, a deeper and more specific consideration of potential treatment targets in the nervous system is necessary. In this work, we have re-examined the neuropathology of FRDA, recognizing new issues superimposed on classical findings, and dissected the peripheral nervous system (PNS) and central nervous system (CNS) aspects of the disease and the affected cell types. Understanding the temporal course of neuropathological changes is needed to identify areas of modifiable disease progression and the CNS and PNS locations that can be targeted at different time points. As most major targets of long-term therapy are in the CNS, this review uses multiple tools for evaluation of the importance of specific CNS locations as targets. In addition to clinical observations, the conceptualizations in this study include physiological, pathological, and imaging approaches, and animal models. We believe that this review, through analysis of a more complete set of data derived from multiple techniques, provides a comprehensive summary of therapeutic targets in FRDA.
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arnulf H Koeppen
- Research, Neurology, and Pathology Services, Veterans Affairs Medical Center and Departments of Neurology and Pathology, Albany Medical College, Albany, New York, USA
| | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Neuro-Ophthalmological Findings in Friedreich's Ataxia. J Pers Med 2021; 11:jpm11080708. [PMID: 34442352 PMCID: PMC8398238 DOI: 10.3390/jpm11080708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by a severe autosomal recessive genetic disorder of the central nervous (CNS) and peripheral nervous system (PNS), affecting children and young adults. Its onset is before 25 years of age, with mean ages of onset and death between 11 and 38 years, respectively. The incidence is 1 in 30,000–50,000 persons. It is caused, in 97% of cases, by a homozygous guanine-adenine-adenine (GAA) trinucleotide mutation in the first intron of the frataxin (FXN) gene on chromosome 9 (9q13–q1.1). The mutation of this gene causes a deficiency of frataxin, which induces an altered inflow of iron into the mitochondria, increasing the nervous system’s vulnerability to oxidative stress. The main clinical signs include spinocerebellar ataxia with sensory loss and disappearance of deep tendon reflexes, cerebellar dysarthria, cardiomyopathy, and scoliosis. Diabetes, hearing loss, and pes cavus may also occur, and although most patients with FRDA do not present with symptomatic visual impairment, 73% present with clinical neuro-ophthalmological alterations such as optic atrophy and altered eye movement, among others. This review provides a brief overview of the main aspects of FRDA and then focuses on the ocular involvement of this pathology and the possible use of retinal biomarkers.
Collapse
|
12
|
Correlation of Visual Quality of Life With Clinical and Visual Status in Friedreich Ataxia. J Neuroophthalmol 2021; 40:213-217. [PMID: 31977662 DOI: 10.1097/wno.0000000000000878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The primary objective was to determine the association of patient-reported vision-specific quality of life to disease status and visual function in patients with Friedreich's ataxia (FRDA). METHODS Patients with FRDA were assessed with the 25-Item National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25) along with measures of disease status (ataxia stage) and visual function (low- and high-contrast letter acuity scores). The relations of NEI-VFQ-25 scores to those for disease status and visual function were examined. RESULTS Scores for the NEI-VFQ-25 were lower in patients with FRDA (n = 99) compared with published disease-free controls, particularly reduced in a subgroup of FRDA patients with features of early onset, older age, and abnormal visual function. CONCLUSIONS The NEI-VFQ-25 captures the subjective component of visual function in patients with FRDA.
Collapse
|
13
|
Lynch DR, Schadt K, Kichula E, McCormack S, Lin KY. Friedreich Ataxia: Multidisciplinary Clinical Care. J Multidiscip Healthc 2021; 14:1645-1658. [PMID: 34234452 PMCID: PMC8253929 DOI: 10.2147/jmdh.s292945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Friedreich ataxia (FRDA) is a multisystem disorder affecting 1 in 50,000-100,000 person in the United States. Traditionally viewed as a neurodegenerative disease, FRDA patients also develop cardiomyopathy, scoliosis, diabetes and other manifestation. Although it usually presents in childhood, it continues throughout life, thus requiring expertise from both pediatric and adult subspecialist in order to provide optimal management. The phenotype of FRDA is unique, giving rise to specific loss of neuronal pathways, a unique form of cardiomyopathy with early hypertrophy and later fibrosis, and diabetes incorporating components of both type I and type II disease. Vision loss, hearing loss, urinary dysfunction and depression also occur in FRDA. Many agents are reaching Phase III trials; if successful, these will provide a variety of new treatments for FRDA that will require many specialists who are not familiar with FRDA to provide clinical therapy. This review provides a summary of the diverse manifestation of FRDA, existing symptomatic therapies, and approaches for integrative care for future therapy in FRDA.
Collapse
Affiliation(s)
- David R Lynch
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kim Schadt
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Elizabeth Kichula
- Division of Neurology, Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Uchitel J, Wallace K, Tran L, Abrahamsen T, Hunanyan A, Prange L, Jasien J, Caligiuri L, Pratt M, Rikard B, Fons C, De Grandis E, Vezyroglou A, Heinzen EL, Goldstein DB, Vavassori R, Papadopoulou MT, Cocco I, Moré R, Arzimanoglou A, Panagiotakaki E, Mikati MA. Alternating hemiplegia of childhood: evolution over time and mouse model corroboration. Brain Commun 2021; 3:fcab128. [PMID: 34396101 PMCID: PMC8361420 DOI: 10.1093/braincomms/fcab128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Keri Wallace
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Linh Tran
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Tavis Abrahamsen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Arsen Hunanyan
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Laura Caligiuri
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Milton Pratt
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Blaire Rikard
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Children’s Hospital, Member of the ERN EpiCARE, Barcelona 08950, Spain
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa 16147, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London WC1N 3JH, UK
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Rosaria Vavassori
- Euro Mediterranean Institute of Science and Technology I.E.ME.ST, Palermo 90139, Italy
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Isabella Cocco
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Rebecca Moré
- Department of Paediatric Neurology Outpatient Clinic/Neonatal Paediatrics and Intensive Care, University Hospital of Rouen, Rouen 76000, France
| | | | | | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
15
|
Ihl T, Kadas EM, Oberwahrenbrock T, Endres M, Klockgether T, Schroeter J, Brandt AU, Paul F, Minnerop M, Doss S, Schmitz-Hübsch T, Zimmermann HG. Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. CEREBELLUM (LONDON, ENGLAND) 2020; 19:469-482. [PMID: 32338350 PMCID: PMC7351844 DOI: 10.1007/s12311-020-01130-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxia type 14 (SCA-PRKCG, formerly SCA14) is a rare, slowly progressive disorder caused by conventional mutations in protein kinase Cγ (PKCγ). The disease usually manifests with ataxia, but previous reports suggested PRKCG variants in retinal pathology. To systematically investigate for the first time visual function and retinal morphology in patients with SCA-PRKCG. Seventeen patients with PRKCG variants and 17 healthy controls were prospectively recruited, of which 12 genetically confirmed SCA-PRKCG patients and 14 matched controls were analyzed. We enquired a structured history for visual symptoms. Vision-related quality of life was obtained with the National Eye Institute Visual Function Questionnaire (NEI-VFQ) including the Neuro-Ophthalmic Supplement (NOS). Participants underwent testing of visual acuity, contrast sensitivity, visual fields, and retinal morphology with optical coherence tomography (OCT). Measurements of the SCA-PRKCG group were analyzed for their association with clinical parameters (ataxia rating and disease duration). SCA-PRKCG patients rate their vision-related quality of life in NEI-VFQ significantly worse than controls. Furthermore, binocular visual acuity and contrast sensitivity were worse in SCA-PRKCG patients compared with controls. Despite this, none of the OCT measurements differed between groups. NEI-VFQ and NOS composite scores were related to ataxia severity. Additionally, we describe one patient with a genetic variant of uncertain significance in the catalytic domain of PKCγ who, unlike all confirmed SCA-PRKCG, presented with a clinically silent epitheliopathy. SCA-PRKCG patients had reduced binocular vision and vision-related quality of life. Since no structural retinal damage was found, the pathomechanism of these findings remains unclear.
Collapse
Affiliation(s)
- Thomas Ihl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ella M Kadas
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Timm Oberwahrenbrock
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site, Berlin, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jan Schroeter
- University Tissue Bank, Cornea Bank Berlin, Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah Doss
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurological Sciences, Movement Disorders Section, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
16
|
Xiong E, Lynch AE, Corben LA, Delatycki MB, Subramony SH, Bushara K, Gomez CM, Hoyle JC, Yoon G, Ravina B, Mathews KD, Wilmot G, Zesiewicz T, Susan Perlman M, Farmer JM, Rummey C, Lynch DR. Health related quality of life in Friedreich Ataxia in a large heterogeneous cohort. J Neurol Sci 2019; 410:116642. [PMID: 31901720 DOI: 10.1016/j.jns.2019.116642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION This study assessed the Health Related Quality of Life (HRQOL) of individuals with Friedreich Ataxia (FRDA) through responses to HRQOL questionnaires. METHODS The SF-36, a generic HRQOL instrument, and symptom specific scales examining vision, fatigue, pain and bladder function were administered to individuals with FRDA and analyzed by comparison with disease features. Multiple linear regression models were used to study independent effects of genetic severity and age. Assessments were performed at baseline then intermittently after that. RESULTS Subjects were on average young adults. For the SF36, the subscale with the lowest HRQOL score was the physical function scale, while the emotional well-being score was the highest. The physical function scale correlated with age of onset, duration, and subject age. In assessment of symptom specific scales, bladder control scores (BLCS) correlated with duration and age, while impact of visual impairment scores (IVIS) correlated with duration. In linear regression models, the BLCS, Pain Effect Score, and IVIS scores were predicted by age and GAA length; modified fatigue impact scale scores were predicted only by GAA length. Physical function and role limitation scores declined over time. No change was seen over time in other SF-36 subscores. Symptom specific scales also worsened over time, most notably the IVIS and BLCS. CONCLUSION The SF-36 and symptom specific scales capture dysfunction in FRDA in a manner that reflects disease status. HRQOL dysfunction was greatest on physically related scales; such scales correlated with disease duration, indicating that they worsen with progressing disease.
Collapse
Affiliation(s)
- Emily Xiong
- Division of Neurology, Children's Hospital of Philadelphia, 502 Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, United States of America
| | - Abigail E Lynch
- Division of Neurology, Children's Hospital of Philadelphia, 502 Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, United States of America
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville 3052, Victoria, Australia
| | - S H Subramony
- Department of Neurology, McKnight Brain Institute, Room L3-100, 1149 Newell Drive, Gainesville, FL 32611, United States of America
| | | | | | | | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Canada Hospital, University of Toronto, Toronto, ON, United States of America
| | | | | | | | | | - M Susan Perlman
- Uniersity of California Los Angeles, United States of America
| | - Jennifer M Farmer
- Friedreich's Ataxia Research Alliance, 533 W Uwchlan Ave, Downingtown, PA 19335, United States of America
| | | | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, 502 Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, United States of America.
| |
Collapse
|