1
|
Lebrun-Frenay C. The confavreux lecture: The radiologically isolated syndrome diagnosis, prognosis and perspectives. Mult Scler 2025; 31:249-256. [PMID: 39819268 DOI: 10.1177/13524585241311217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Radiologically isolated syndrome (RIS) is the earliest documented stage in the disease continuum of multiple sclerosis (MS). It is discovered incidentally in individuals who are asymptomatic but have typical lesions in the brain or spinal cord suggestive of autoimmune inflammatory demyelination. The revised 2023 RIS criteria aim to secure an accurate and timely diagnosis due to the presence of imaging mimics. These criteria require having at least one T2-weighted hyperintense lesion in one of the four suggestive MS locations along with two of the following three features: spinal cord lesion, cerebrospinal fluid (CSF)-restricted oligoclonal bands, or new T2 or gadolinium-enhancing lesion observed on a subsequent magnetic resonance imaging (MRI) study. Once the diagnosis is confirmed, established risk factors, including age, lesion location and CSF, significantly improve prognostic stratification, which is crucial for immunoactive interventions. Recent clinical trials have shown that oral disease-modifying treatments can delay or prevent the first clinical event in RIS patients. Consulting with an MS team for each RIS case is strongly recommended to enhance care and disease surveillance. The revised 2024 McDonald criteria will classify individuals with additional CSF and advanced MRI biomarkers as having preclinical MS, highlighting the importance of vigilance in this area.
Collapse
Affiliation(s)
- Christine Lebrun-Frenay
- UR2CA-URRIS, Université Nice Côte d'Azur, Nice, France
- CRCSEP Neurology, Neurologie CHU de Nice Pasteur 2, Nice, France
| |
Collapse
|
2
|
Dalmau J, Dalakas MC, Kolson DL, Pröbstel AK, Paul F, Zamvil SS. Ten Years of Neurology® Neuroimmunology & Neuroinflammation: Decade in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200363. [PMID: 39724529 DOI: 10.1212/nxi.0000000000200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Josep Dalmau
- IDIBAPS-CaixaResearch Institute, University Hospital Clínic of Barcelona, Barcelona, Spain
- University of Pennsylvania, Philadelphia
| | - Marinos C Dalakas
- University of Athens Medical School, Greece
- Jefferson University, Philadelphia, PA
| | | | - Anne-Katrin Pröbstel
- Departments of Neurology, University Hospital of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco
| |
Collapse
|
3
|
Zeydan B, Azevedo CJ, Makhani N, Cohen M, Tutuncu M, Thouvenot E, Siva A, Okuda DT, Kantarci OH, Lebrun-Frenay C. Early Disease-Modifying Treatments for Presymptomatic Multiple Sclerosis. CNS Drugs 2024; 38:973-983. [PMID: 39285136 PMCID: PMC11560559 DOI: 10.1007/s40263-024-01117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/08/2024]
Abstract
Radiologically isolated syndrome (RIS) is the earliest stage in the disease continuum of multiple sclerosis (MS). RIS is discovered incidentally in individuals who are asymptomatic but have typical lesions in the brain and/or spinal cord suggestive of demyelination. The 2009 and revised 2023 RIS criteria were developed for diagnosis. Presymptomatic individuals who fulfill the 2009 RIS criteria by having 3-4 of 4 dissemination in space McDonald 2005 MS criteria are still diagnosed with RIS using the revised 2023 RIS criteria. In presymptomatic individuals who do not fulfill the 2009 RIS criteria, the revised 2023 RIS criteria target to secure an accurate and timely diagnosis: In addition to (a) having one lesion in two of four locations (periventricular, juxtacortical/cortical, infratentorial, spinal cord), (b) two of three features (spinal cord lesion, cerebrospinal fluid (CSF)-restricted oligoclonal bands, and new T2 or gadolinium-enhancing lesion) should be fulfilled. Among laboratory biomarkers, CSF kappa-free light chain can also increase diagnostic accuracy. Once the diagnosis is confirmed, the established risk factors, including demographics, imaging, and laboratory biomarkers, should be evaluated for symptomatic MS transition and prognosis. Younger age, male sex, increased neurofilament-light chain, CSF abnormality, and the presence of infratentorial, spinal cord, or gadolinium-enhancing lesions on imaging are the main risk factors for transition to symptomatic MS. Two randomized clinical trials showed significant efficacy of disease-modifying treatments in delaying or preventing the development of the first clinical event in RIS. However, because some individuals remain as RIS, it is crucial to identify the individuals with a higher number of risk factors to optimize disease outcomes by early intervention while minimizing adverse events. Discussing each RIS case with an expert MS team is recommended because there is still a lack of clinical guidelines to improve care, counseling, and surveillance.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Radiology, Mayo Clinic, 200 First Street, SW, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Christina J Azevedo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naila Makhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mikael Cohen
- Department of Neurology, MS Clinic Nice, Pasteur 2 University Hospital, UR2CA-URRIS, Côte d'Azur University, Nice, France
| | - Melih Tutuncu
- Department of Neurology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Türkiye
| | - Eric Thouvenot
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France
- IGF, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Aksel Siva
- Department of Neurology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Türkiye
| | - Darin T Okuda
- Neuroinnovation Program and Multiple Sclerosis and Neuroimmunology Imaging Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Christine Lebrun-Frenay
- Department of Neurology, MS Clinic Nice, Pasteur 2 University Hospital, UR2CA-URRIS, Côte d'Azur University, Nice, France
| |
Collapse
|
4
|
Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, Kolind S, Krieger S, Laule C, Lincoln JA, Messina S, Oh J, Papinutto N, Smith SA, Traboulsee A. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun 2024; 6:fcae395. [PMID: 39611182 PMCID: PMC11604059 DOI: 10.1093/braincomms/fcae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord disease is important in most people with multiple sclerosis, but assessment remains less emphasized in patient care, basic and clinical research and therapeutic trials. The North American Imaging in Multiple Sclerosis Spinal Cord Interest Group was formed to determine and present the contemporary landscape of multiple sclerosis spinal cord evaluation, further existing and advanced spinal cord imaging techniques, and foster collaborative work. Important themes arose: (i) multiple sclerosis spinal cord lesions (differential diagnosis, association with clinical course); (ii) spinal cord radiological-pathological associations; (iii) 'critical' spinal cord lesions; (iv) multiple sclerosis topographical model; (v) spinal cord atrophy; and (vi) automated and special imaging techniques. Distinguishing multiple sclerosis from other myelopathic aetiology is increasingly refined by imaging and serological studies. Post-mortem spinal cord findings and MRI pathological correlative studies demonstrate MRI's high sensitivity in detecting microstructural demyelination and axonal loss. Spinal leptomeninges include immune inflammatory infiltrates, some in B-cell lymphoid-like structures. 'Critical' demyelinating lesions along spinal cord corticospinal tracts are anatomically consistent with and may be disproportionately associated with motor progression. Multiple sclerosis topographical model implicates the spinal cord as an area where threshold impairment associates with multiple sclerosis disability. Progressive spinal cord atrophy and 'silent' multiple sclerosis progression may be emerging as an important multiple sclerosis prognostic biomarker. Manual atrophy assessment is complicated by rater bias, while automation (e.g. Spinal Cord Toolbox), and artificial intelligence may reduce this. Collaborative research by the North American Imaging in Multiple Sclerosis and similar groups with experts combining distinct strengths is key to advancing assessment and treatment of people with multiple sclerosis spinal cord disease.
Collapse
Affiliation(s)
- B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Imaging, Polytechnique Montreal, Montreal, Canada H3T 1J4
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric C Klawiter
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon Kolind
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Stephen Krieger
- Department of Neurology, Mount Sinai, New York City, NY 10029, USA
| | - Cornelia Laule
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - John A Lincoln
- McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Steven Messina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiwon Oh
- Division of Neurology, University of Toronto, Toronto, Canada M5B 1W8
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Aaron Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| |
Collapse
|
5
|
Epstein SE, Longbrake EE. Shifting our attention earlier in the multiple sclerosis disease course. Curr Opin Neurol 2024; 37:212-219. [PMID: 38546031 DOI: 10.1097/wco.0000000000001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW Revisions of multiple sclerosis (MS) diagnostic criteria enable clinicians to diagnose patients earlier in the biologic disease course. Prompt initiation of therapy correlates with improved clinical outcomes. This has led to increased attention on the earliest stages of MS, including the MS prodrome and radiologically isolated syndrome (RIS). Here, we review current understanding and approach to patients with preclinical MS. RECENT FINDINGS MS disease biology often begins well before the onset of typical MS symptoms, and we are increasingly able to recognize preclinical and prodromal stages of MS. RIS represents the best characterized aspect of preclinical MS, and its diagnostic criteria were recently revised to better capture patients at highest risk of conversion to clinical MS. The first two randomized control trials evaluating disease modifying therapy use in RIS also found that treatment could delay or prevent onset of clinical disease. SUMMARY Despite progress in our understanding of the earliest stages of the MS disease course, additional research is needed to systematically identify patients with preclinical MS as well as capture those at risk for developing clinical disease. Recent data suggests that preventive immunomodulatory therapies may be beneficial for high-risk patients with RIS; though management remains controversial.
Collapse
|
6
|
Troughton JG, Ansong Snr YO, Duobaite N, Proctor CM. Finite element analysis of electric field distribution during direct current stimulation of the spinal cord: Implications for device design. APL Bioeng 2023; 7:046109. [PMID: 37928641 PMCID: PMC10624505 DOI: 10.1063/5.0163264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Spinal cord injury (SCI) arises from damage to the spinal cord, often caused by trauma or disease. The resulting sensorimotor dysfunction is variable and dependent on the extent of the injury. Despite years of research, curative options for SCI remain limited. However, recent advancements in electric field stimulated axonal regrowth have shown promise for neuronal regeneration. One roadblock in the development of therapeutic treatments based on this is a lack of understanding of the exogenous electric field distribution in the injured tissue, and in particular, how this is influenced by electrode geometry and placement. To better understand this electric field, and provide a means by which it can be optimized, we have developed a finite element model of such spinal cord treatment. We investigate the impact of variations in electrode geometry, spinal cord size, and applied current magnitude as well as looking at several injury models in relation to clinically observed outcomes. Through this, we show that electrode shape has little effect on the induced electric field, that the placement of these electrodes has a noticeable influence on the field distribution, and that the magnitude of this field is governed by both the applied current and the spinal cord morphology. We also show that the injury modality influences the induced field distribution and that a stronger understanding of the injury will help decide treatment parameters. This work provides guidance in the design of electrodes for future clinical application in direct current electric field stimulation for axonal regeneration.
Collapse
Affiliation(s)
| | - Yaw O. Ansong Snr
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom
| | - Nida Duobaite
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom
| | - Christopher M. Proctor
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Lebrun-Frenay C, Kantarci O, Siva A, Azevedo CJ, Makhani N, Pelletier D, Okuda DT. Radiologically isolated syndrome. Lancet Neurol 2023; 22:1075-1086. [PMID: 37839432 DOI: 10.1016/s1474-4422(23)00281-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 10/17/2023]
Abstract
Individuals can be deemed to have radiologically isolated syndrome (RIS) if they have incidental demyelinating-appearing lesions in their brain or spinal cord that are highly suggestive of multiple sclerosis but their clinical history does not include symptoms consistent with multiple sclerosis. Data from international longitudinal cohorts indicate that around half of people with RIS will develop relapsing or progressive symptoms of multiple sclerosis within 10 years, suggesting that in some individuals, RIS is a presymptomatic stage of multiple sclerosis. Risk factors for progression from RIS to clinical multiple sclerosis include younger age (ie, <35 years), male sex, CSF-restricted oligoclonal bands, spinal cord or infratentorial lesions, and gadolinium-enhancing lesions. Other imaging, biological, genetic, and digital biomarkers that might be of value in identifying individuals who are at the highest risk of developing multiple sclerosis need further investigation. Two 2-year randomised clinical trials showed the efficacy of approved multiple sclerosis immunomodulatory medications in preventing the clinical conversion to multiple sclerosis in some individuals with RIS. If substantiated in longer-term studies, these data have the potential to transform our approach to care for the people with RIS who are at the greatest risk of diagnosis with multiple sclerosis.
Collapse
Affiliation(s)
- Christine Lebrun-Frenay
- CRC-SEP Nice, Neurologie CHU Nice, Hôpital Pasteur 2, UMR2CA-URRIS, Université Côte d'Azur, Nice, France.
| | | | - Aksel Siva
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, Turkiye
| | - Christina J Azevedo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naila Makhani
- Departments of Pediatrics and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Pelletier
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Darin T Okuda
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Collorone S, Foster MA, Toosy AT. Advanced central nervous system imaging biomarkers in radiologically isolated syndrome: a mini review. Front Neurol 2023; 14:1172807. [PMID: 37273705 PMCID: PMC10235479 DOI: 10.3389/fneur.2023.1172807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Radiologically isolated syndrome is characterised by central nervous system white-matter hyperintensities highly suggestive of multiple sclerosis in individuals without a neurological history of clinical demyelinating episodes. It probably represents the pre-symptomatic phase of clinical multiple sclerosis but is poorly understood. This mini review summarises our current knowledge regarding advanced imaging techniques in radiologically isolated syndrome that provide insights into its pathobiology and prognosis. The imaging covered will include magnetic resonance imaging-derived markers of central nervous system volumetrics, connectivity, and the central vein sign, alongside optical coherence tomography-related metrics.
Collapse
Affiliation(s)
| | | | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
9
|
Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis. Mult Scler Relat Disord 2023; 71:104545. [PMID: 36758461 DOI: 10.1016/j.msard.2023.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although cervical spinal cord (cSC) area is an established biomarker in MS, there is currently a lack of longitudinal assessments of cSC gray and white matter areas. OBJECTIVE We conducted an explorative analysis of longitudinal changes of cSC gray and white matter areas in MS patients. METHODS 65 MS patients (33 relapsing-remitting; 20 secondary progressive and 12 primary progressive) and 20 healthy controls (HC) received clinical and upper cSC MRI assessments over 1.10±0.28 years. cSC compartments were quantified on MRI using the novel averaged magnetization inversion recovery acquisitions sequence (in-plane resolution=0.67 × 0.67mm2), and in-house developed post-processing methods. Patients were stratified regarding clinical progression. RESULTS Patients with clinical progression showed faster reduction of cSC areas over time at the level of cSC enlargement (approximate vertebral level C4-C5) compared to stable patients (p<0.05). In addition, when compared to the rostral-cSC (approximate vertebral level C2-C3), a preferential reduction of cSC and white matter areas over time at the level of cSC enlargement (p<0.05 and p<0.01, respectively) was demonstrated only in patients with clinical progression, but not in stable MS patients and HC. Compared to HC, MS patients showed comparable changes over time in all cSC compartments. CONCLUSIONS MS patients with clinical disease progression demonstrate subtle signs of a more pronounced tissue loss at the level of cSC enlargement. Future studies should consider larger sample sizes and more extended observation periods.
Collapse
|
10
|
Ramezani M, Ryan F, Sahraian MA, Simani L. The impact of brain lesions on sexual dysfunction in patients with multiple sclerosis: A systematic review of magnetic resonance imaging studies. Mult Scler Relat Disord 2022; 57:103336. [PMID: 35158464 DOI: 10.1016/j.msard.2021.103336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sexual dysfunction is common but underestimated clinical symptom in MS patients. A growing body of evidence has been suggested the link between brain lesions and sexual dysfunction (SD) in patients with multiple sclerosis (MS). However, the clinical research investigating this relationship have shown inconsistent results. Here, we aimed to systematically review the magnetic resonance imaging (MRI) studies evaluating the association between the brain lesions and SD in MS patients. METHODS This study was provided according to the recommendations of the preferred reporting items for systematic reviews and meta-analyses statement. A comprehensive systematic search of online databases was performed to find eligible studies up to December 2020. The quality of studies was methodologically assessed using Newcastle-Ottawa Scale score. RESULTS We identified eight articles regarding MS brain lesions and SD through the search strategy. Seven studies showed significant associations between SD and brain lesions. Three studies investigated the brain stem, two studies the insular and occipital region, one study the frontal lobe, prefrontal cortex, and temporal lobe and one study the parietal area. CONCLUSION The results of this systematic review showed that lesions in different brain areas are correlated with SD in MS patients. Plaques in the occipital and hippocampus areas, as well as left insula appear to be related to dysfunction of sexual arousability or lubrication/erection in MS patients. Orgasmic dysfunction in MS patients may be associated with brain lesions in pons, left temporal periventricular, and right occipital areas.
Collapse
Affiliation(s)
- Mahtab Ramezani
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec, Canada
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Simani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells 2022; 11:cells11030440. [PMID: 35159249 PMCID: PMC8834068 DOI: 10.3390/cells11030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Iron deposition in the brain begins early in multiple sclerosis (MS) and continues unabated. Ferrous iron is toxic to neurons, yet the therapies used in MS do not counter iron neurotoxicity. Extracts of Hibiscus sabdariffa (HS) are used in many cultures for medicinal purposes. We collected a distinct HS extract and found that it abolished the killing of neurons by iron in culture; medications used in MS were ineffective when similarly tested. Neuroprotection by HS was not due to iron chelation or anthocyanin content. In free radical scavenging assays, HS was equipotent to alpha lipoic acid, an anti-oxidant being tested in MS. However, alpha lipoic acid was only modestly protective against iron-mediated killing. Moreover, a subfraction of HS without radical scavenging activity negated iron toxicity, whereas a commercial hibiscus preparation with anti-oxidant activity could not. The idea that HS might have altered properties within neurons to confer neuroprotection is supported by its amelioration of toxicity caused by other toxins: beta-amyloid, rotenone and staurosporine. Finally, in a mouse model of MS, HS reduced disability scores and ameliorated the loss of axons in the spinal cord. HS holds therapeutic potential to counter iron neurotoxicity, an unmet need that drives the progression of disability in MS.
Collapse
|
12
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
13
|
Abstract
A prodrome is an early set of signs, symptoms or other findings that occur before the onset of typical symptoms of a disease. Prodromal phases are well recognized in several neurological and inflammatory diseases, but the possibility of a prodrome in multiple sclerosis (MS) has received relatively little attention until the past few years. In this Perspective, we summarize what is currently known about the MS prodrome, including its possible duration, clinical features and potential biomarkers. We also consider what insights and lessons can be learned from knowledge of and research into the prodromal phases of other diseases. A better understanding of the MS prodrome could have profound clinical implications as it could enable earlier recognition of MS and earlier initiation of treatments that reduce relapse rates and long-term disability. Knowledge of the MS prodrome could also affect research into the causes of MS, and putative risk factors must be re-evaluated in light of the MS prodrome. We conclude by outlining the major knowledge gaps and propose future initiatives.
Collapse
Affiliation(s)
- Naila Makhani
- Departments of Pediatrics and of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Helen Tremlett
- Faculty of Medicine (Neurology), The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,
| |
Collapse
|
14
|
Early multiple sclerosis: diagnostic challenges in clinically and radiologically isolated syndrome patients. Curr Opin Neurol 2021; 34:277-285. [PMID: 33661162 DOI: 10.1097/wco.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW With the introduction of new diagnostic criteria, the sensibility for multiple sclerosis (MS) diagnosis increased and the number of cases with the clinically isolated syndrome (CIS) decreased. Nevertheless, a misdiagnosis might always be around the corner, and the exclusion of a 'better explanation' is mandatory.There is a pressing need to provide an update on the main prognostic factors that increase the risk of conversion from CIS or from radiologically isolated syndrome (RIS) to MS, and on the potential 'red flags' to consider during the diagnostic workup. RECENT FINDINGS We discuss diagnostic challenges when facing patients presenting with a first demyelinating attack or with a RIS, with a focus on recently revised diagnostic criteria, on other neuroinflammatory conditions to be considered in the differential diagnosis and on factors distinguishing patients at risk of developing MS.A correct definition of a 'typical' demyelinating attack, as well as a correct interpretation of MRI findings, remains crucial in the diagnostic process. The cerebrospinal fluid examination is warmly recommended to confirm the dissemination in time of the demyelinating process and to increase the diagnostic accuracy. SUMMARY An early and accurate diagnosis of MS requires careful consideration of all clinical, paraclinical and radiological data, as well the reliable exclusion of other mimicking pathological conditions. This is advocated to promptly initiate an appropriate disease-modifying therapy, which can impact positively on the long-term outcome of the disease.
Collapse
|
15
|
Radiologically isolated syndrome: from biological bases to practical management. Neurol Sci 2021; 42:1335-1344. [PMID: 33496891 DOI: 10.1007/s10072-021-05069-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Technological advances and greater availability of magnetic resonance imaging have prompted an increment on incidental and unexpected findings within the central nervous system. The concept of radiologically isolated syndrome characterizes a group of subjects with images suggestive of demyelinating disease in the absence of a clinical episode compatible with multiple sclerosis. Since the description of this entity, many questions have arisen; some have received responses but others remain unanswered. A panel of experts met with the objective of performing a critical review of the currently available evidence. Definition, prevalence, biological bases, published evidence, and implications on patient management were reviewed. Thirty to 50% of subjects with radiologically isolated syndrome will progress to multiple sclerosis in 5 years. Male sex, age < 37 years old, and spinal lesions increase the risk. These subjects should be evaluated by a multiple sclerosis specialist, carefully excluding alternative diagnosis. An initial evaluation should include a brain and complete spine magnetic resonance, visual evoked potentials, and identification of oligoclonal bands in cerebrospinal fluid. Disease-modifying therapies could be considered when oligoclonal bands or radiological progression is present. CONCLUSION At present time, radiologically isolated syndrome cannot be considered a part of the multiple sclerosis spectrum. However, a proportion of patients may evolve to multiple sclerosis, meaning it represents much more than just a radiological finding.
Collapse
|
16
|
Millward JM, Ramos Delgado P, Smorodchenko A, Boehmert L, Periquito J, Reimann HM, Prinz C, Els A, Scheel M, Bellmann-Strobl J, Waiczies H, Wuerfel J, Infante-Duarte C, Chien C, Kuchling J, Pohlmann A, Zipp F, Paul F, Niendorf T, Waiczies S. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight 2020; 5:140040. [PMID: 33148886 PMCID: PMC7710287 DOI: 10.1172/jci.insight.140040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset EAE, resolving upon clinical remission. VV changes coincided with blood-brain barrier disruption and inflammation. VV was normal at the termination of the experiment, when mice were still symptomatic. The majority of relapsing-remitting MS (RRMS) patients showed dynamic VV fluctuations. Patients with contracting VV had lower disease severity and a shorter duration. These changes demonstrate that VV does not necessarily expand irreversibly in MS but, over short time scales, can expand and contract. Frequent monitoring of VV in patients will be essential to disentangle the disease-related processes driving short-term VV oscillations from persistent expansion resulting from atrophy. Brain ventricle volumes expand and contract during experimental autoimmune encephalomyelitis and relapsing-remitting multiple sclerosis, suggesting that short-term inflammatory processes are interlaced with gradual brain atrophy.
Collapse
Affiliation(s)
- Jason M Millward
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alina Smorodchenko
- Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Laura Boehmert
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Henning M Reimann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Antje Els
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
17
|
Schmidt FA, Chien C, Kuchling J, Bellmann-Strobl J, Ruprecht K, Siebert N, Asseyer S, Jarius S, Brandt AU, Scheel M, Paul F. Differences in Advanced Magnetic Resonance Imaging in MOG-IgG and AQP4-IgG Seropositive Neuromyelitis Optica Spectrum Disorders: A Comparative Study. Front Neurol 2020; 11:499910. [PMID: 33101166 PMCID: PMC7554609 DOI: 10.3389/fneur.2020.499910] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Aims: To explore differences in advanced brain magnetic resonance imaging (MRI) characteristics between myelin oligodendrocyte (MOG) immunoglobulin (IgG) and aquaporin-4 (AQP4) IgG seropositive (+) neuromyelitis optica spectrum disorders (NMOSD). Methods: 33 AQP4-IgG and 18 MOG-IgG seropositive NMOSD patients and 61 healthy control (HC) subjects were included. All 112 participants were scanned with the same standardized MRI-protocol on a 3-Tesla MRI-scanner. Brain volume and diffusion tensor imaging (DTI) parameters were assessed. Results: MOG-IgG+ patients showed reduced parallel diffusivity within white matter tracts compared to HC whereas AQP4-IgG+ showed no significant brain parenchymal damage in DTI analysis. AQP4-IgG+ patients showed reduced whole brain volumes and reduced volumes of several deep gray matter structures compared to HC whereas MOG-IgG+ patients did not show reduced brain or deep gray matter volumes compared to HC. Conclusions: Microstructural brain parenchymal damage in MOG-IgG+ patients was more pronounced than in AQP4-IgG+ patients, compared with HC, whereas normalized brain volume reduction was more severe in AQP4-IgG+ patients. Longitudinal imaging studies are warranted to further investigate this trend in NMOSD. Our results suggest that MOG-IgG+ and AQP4-IgG+ NMOSD patients differ in cerebral MRI characteristics. Advanced MRI analysis did not help to differentiate between MOG-IgG+ and AQP4-IgG+ patients in our study.
Collapse
Affiliation(s)
- Felix A Schmidt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Siebert
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanna Asseyer
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Hosseiny M, Newsome SD, Yousem DM. Radiologically Isolated Syndrome: A Review for Neuroradiologists. AJNR Am J Neuroradiol 2020; 41:1542-1549. [PMID: 32763896 DOI: 10.3174/ajnr.a6649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Radiologically isolated syndrome refers to an entity in which white matter lesions fulfilling the criteria for multiple sclerosis occur in individuals without a history of a clinical demyelinating attack or alternative etiology. Since its introduction in 2009, the diagnostic criteria of radiologically isolated syndrome and its clinical relevance have been widely debated by neurologists and radiologists. The aim of the present study was to review the following: 1) historical evolution of radiologically isolated syndrome criteria, 2) clinical and imaging findings in adults and children with radiologically isolated syndrome, 3) imaging features of patients with radiologically isolated syndrome at high risk for conversion to MS, and 4) challenges and controversies for work-up, management, and therapeutic interventions of patients with radiologically isolated syndrome.
Collapse
Affiliation(s)
- M Hosseiny
- From the Department of Radiological Sciences (M.H.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California
| | - S D Newsome
- Department of Neurology (S.D.N.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D M Yousem
- Russell H. Morgan Department of Radiology and Radiological Sciences (D.M.Y.), Johns Hopkins Medical Institution, Baltimore, Maryland.
| |
Collapse
|
19
|
Sorensen PS, Sellebjerg F, Hartung HP, Montalban X, Comi G, Tintoré M. The apparently milder course of multiple sclerosis: changes in the diagnostic criteria, therapy and natural history. Brain 2020; 143:2637-2652. [DOI: 10.1093/brain/awaa145] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
In the past decade, changes have occurred in the spectrum of multiple sclerosis courses. The natural history of multiple sclerosis appears milder from the first sign of demyelinating disease to the progressive course, probably as a result of an interplay between several factors including changes in the diagnostic criteria, changes in the epidemiology of multiple sclerosis, impact of early and appropriate disease-modifying treatment and improvement of the general state of health in the population. It has been suggested to regard incidental findings of demyelinating lesions in MRI in individuals without any history of clinical symptoms consistent with neurological dysfunction, so-called radiological isolated syndrome, as the initial course of multiple sclerosis. New diagnostic criteria have enabled the multiple sclerosis diagnosis in many patients at the first clinical demyelinating event, clinically isolated syndrome. The remaining patients with clinically isolated syndrome have a more benign prognosis, and for relapsing-remitting multiple sclerosis, the prognosis has become more favourable. Reduced disease activity in patients with relapsing-remitting multiple sclerosis can partly be ascribed to more efficacious new disease-modifying therapies but decrease in disease activity has also be seen in placebo-treated patients in clinical trials. This may be explained by several factors: change in the diagnostic criteria, more explicit inclusion criteria, exclusion of high-risk patients e.g. patients with co-morbidities, and more rigorous definitions of relapses and disease worsening. However, these factors also make the disease course in patients treated with disease-modifying therapies seem more favourable. In addition, change in the therapeutic target to stable disease (no evidence of disease activity = no relapses, no disease worsening and no MRI activity) could by itself change the course in relapsing-remitting multiple sclerosis. The effectiveness of disease-modifying drugs has reduced the transition from relapsing-remitting to secondary progressive multiple sclerosis. The concept of progressive multiple sclerosis has also evolved from two very distinct categories (primary progressive and secondary progressive multiple sclerosis) to a unified category of progressive multiple sclerosis, which can then be split into the categories of active or inactive. Also, an increasing tendency to treat progressive multiple sclerosis with disease-modifying therapies may have contributed to change the course in progressive multiple sclerosis. In conclusion, during the past decade the entire course of multiple sclerosis from the first sign of a demyelinating disorder through the progressive course appears to be milder due to a complex interplay of several factors.
Collapse
Affiliation(s)
- Per Soelberg Sorensen
- Danish Multiple Sclerosis Center, Department of Neurology, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | - Hans-Peter Hartung
- Department of Neurology, University Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Xavier Montalban
- Department of Neurology, Hospital General Universitari Vall D’Hebron, Cemcat, Barcelona, Spain
- Division of Neurology, University of Toronto, St. Michael’s Hospital, Toronto, Canada
| | - Giancarlo Comi
- Department of Neurology and Institute of Experimental Neurology, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D’Hebron, Cemcat, Barcelona, Spain
| |
Collapse
|
20
|
Kuchling J, Paul F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front Neurol 2020; 11:450. [PMID: 32625158 PMCID: PMC7311777 DOI: 10.3389/fneur.2020.00450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system conditions with increasing incidence and prevalence. While MS is the most frequent inflammatory CNS disorder in young adults, NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts for approximately 1% of demyelinating disorders, with the relative proportion within the demyelinating CNS diseases varying widely among different races and regions. Most immunomodulatory drugs used in MS are inefficacious or even harmful in NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction from MS. Despite distinct immunopathology and differences in disease course and severity there might be considerable overlap in clinical and imaging findings, posing a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal cord is of paramount importance when managing patients with autoimmune CNS conditions. Once a diagnosis has been established, imaging techniques are often deployed at regular intervals over the disease course as surrogate measures for disease activity and progression and to surveil treatment effects. While the application of some imaging modalities for monitoring of disease course was established decades ago in MS, the situation is unclear in NMOSD where work on longitudinal imaging findings and their association with clinical disability is scant. Moreover, as long-term disability is mostly attack-related in NMOSD and does not stem from insidious progression as in MS, regular follow-up imaging might not be useful in the absence of clinical events. However, with accumulating evidence for covert tissue alteration in NMOSD and with the advent of approved immunotherapies the role of imaging in the management of NMOSD may be reconsidered. By contrast, MS management still faces the challenge of implementing imaging techniques that are capable of monitoring progressive tissue loss in clinical trials and cohort studies into treatment algorithms for individual patients. This article reviews the current status of imaging research in MS and NMOSD with an emphasis on emerging modalities that have the potential to be implemented in clinical practice.
Collapse
Affiliation(s)
- Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Durand-Dubief F. Should spinal cord MRI be systematically performed for diagnosis and follow-up of multiple sclerosis? Synthesis. Rev Neurol (Paris) 2020; 176:490-493. [DOI: 10.1016/j.neurol.2020.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
|
22
|
Sevim S, Demirkıran M, Terzi M, Yüceyar N, Taşdelen B, İdiman E, Kürtüncü M, Boz C, Tuncel D, Karabudak R, Siva A, Özcan A, Neyal M, Göksel BK, Balal M, Şen S, Ekmekçi Ö, Öksüz N, Kaya D. 'Is RLS a harbinger and consequence of MS?: Striking results of the 'RELOMS-T' study'. Mult Scler Relat Disord 2020; 42:102055. [PMID: 32473575 DOI: 10.1016/j.msard.2020.102055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although studies report a high prevalence rate of restless legs syndrome (RLS) among patients with multiple sclerosis (PwMS) ranging from 13.3 to 65.1%, little is known about the causes of this relationship. METHODS To ascertain the prevalence, features and impact of RLS among PwMS a nation-wide, multicenter, prospective and a cross-sectional survey, designed to reflect all of the PwMS throughout Turkey, was conducted in 13 centers. Exploring the relationship of the two conditions could possibly contribute to the understanding of the causes of the high and wide-ranging prevalence rates and the pathophysiology of both diseases. RESULTS Of the 1068 participants 173 (16,2%) found to have RLS [RLS(+)] and 895 (83,8%) did not [RLS(-)]. Among the RLS(+) 173, all but 8 patients (4,6%) were underdiagnosed in terms of RLS. More than half of the patients with RLS had 'severe' or 'very severe' RLS. The onset of RLS was before or synchronous with the onset of MS in about a half of our patients. CONCLUSION We conclude that RLS should be meticulously investigated in PwMS and MS can be a direct cause of RLS at least in part of PwMS. Our data about the timing of the onset of MS and RLS, along with the high prevalence of RLS in PwMS suggest that the pathologic changes in the initial phases of MS can possibly trigger RLS symptoms.
Collapse
Affiliation(s)
| | | | - Murat Terzi
- Ondokuz Mayıs University, Neurology, Samsun, Turkey
| | | | | | | | | | - Cavit Boz
- Karadeniz Technical University, Trabzon, Turkey
| | | | | | - Aksel Siva
- Istanbul University, Cerrahpaşa, Istanbul, Turkey
| | | | | | | | | | - Sedat Şen
- Ondokuz Mayıs University, Neurology, Samsun, Turkey
| | | | - Nevra Öksüz
- Mersin University, Neurology, Mersin, Turkey
| | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review provides the reader with updated information needed to make an accurate diagnosis of radiologically isolated syndrome (RIS), discusses controversies and considerations related to therapeutic intervention in RIS, and summarizes ongoing clinical intervention trials. RECENT FINDINGS Individuals with RIS lack clinical neurological symptoms but are at risk for the subsequent development of a first clinical neurological event consistent with a diagnosis of multiple sclerosis. There are two ongoing clinical intervention trials to determine whether disease-modifying treatments for multiple sclerosis can delay or prevent a first clinical event in individuals with RIS. If clinical trials demonstrate a beneficial effect of disease-modifying therapy, such interventions should be considered in individuals with RIS.
Collapse
|
24
|
Chien C, Juenger V, Scheel M, Brandt AU, Paul F. Considerations for Mean Upper Cervical Cord Area Implementation in a Longitudinal MRI Setting: Methods, Interrater Reliability, and MRI Quality Control. AJNR Am J Neuroradiol 2020; 41:343-350. [PMID: 31974079 DOI: 10.3174/ajnr.a6394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spinal cord atrophy is commonly measured from cerebral MRIs, including the upper cervical cord. However, rescan intraparticipant measures have not been investigated in healthy cohorts. This study investigated technical and rescan variability in the mean upper cervical cord area calculated from T1-weighted cerebral MRIs. MATERIALS AND METHODS In this retrospective study, 8 healthy participants were scanned and rescanned with non-distortion- and distortion-corrected MPRAGE sequences (11-50 sessions in 6-8 months), and 50 participants were scanned once with distortion-corrected MPRAGE sequences in the Day2day daily variability study. From another real-world observational cohort, we collected non-distortion-corrected MPRAGE scans from 27 healthy participants (annually for 2-4 years) and cross-sectionally from 77 participants. Statistical analyses included coefficient of variation, smallest real difference, intraclass correlation coefficient, Bland-Altman limits of agreement, and paired t tests. RESULTS Distortion- versus non-distortion-corrected MPRAGE-derived mean upper cervical cord areas were similar; however, a paired t test showed incomparability (t = 11.0, P = <.001). Higher variability was found in the mean upper cervical cord areas calculated from an automatic segmentation method. Interrater analysis yielded incomparable measures in the same participant scans (t = 4.5, P = <.001). Non-distortion-corrected mean upper cervical cord area measures were shown to be robust in real-world data (t = -1.04, P = .31). The main sources of variability were found to be artifacts from movement, head/neck positioning, and/or metal implants. CONCLUSIONS Technical variability in cord measures decreased using non-distortion-corrected MRIs, a semiautomatic segmentation approach, and 1 rater. Rescan variability was within ±4.4% for group mean upper cervical cord area when MR imaging quality criteria were met.
Collapse
Affiliation(s)
- C Chien
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
| | - V Juenger
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
- Departments of Neuroradiology (V.J., M.S.)
| | - M Scheel
- Departments of Neuroradiology (V.J., M.S.)
| | - A U Brandt
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
- Department of Neurology (A.U.B.), University of California, Irvine, Irvine, California
| | - F Paul
- From the Experimental and Clinical Research Center (C.C., V.J., A.U.B., F.P.), Max Delbrück Center for Molecular Medicine & Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center (C.C., V.J., M.S., A.U.B., F.P.)
- Neurology (F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Gehr S, Kaiser T, Kreutz R, Ludwig WD, Paul F. Suggestions for improving the design of clinical trials in multiple sclerosis-results of a systematic analysis of completed phase III trials. EPMA J 2019; 10:425-436. [PMID: 31832116 PMCID: PMC6883016 DOI: 10.1007/s13167-019-00192-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
This manuscript reviews the primary and secondary endpoints of pivotal phase III trials with immunomodulatory drugs in multiple sclerosis (MS). Considering the limitations of previous trial designs, we propose new standards for the planning of clinical trials, taking into account latest insights into MS pathophysiology and patient-relevant aspects. Using a systematic overview of published phase III (pivotal) trials performed as part of application for drug market approval, we evaluate the following characteristics: trial duration, number of trial participants, comparators, and endpoints (primary, secondary, magnetic resonance imaging outcome, and patient-reported outcomes). From a patient perspective, the primary and secondary endpoints of clinical trials are only partially relevant. High-quality trial data pertaining to efficacy and safety that stretch beyond the time frame of pivotal trials are almost non-existent. Understanding of long-term benefits and risks of disease-modifying MS therapy is largely lacking. Concrete proposals for the trial designs of relapsing (remitting) multiple sclerosis/clinically isolated syndrome, primary progressive multiple sclerosis, and secondary progressive multiple sclerosis (e.g., study duration, mechanism of action, and choice of endpoints) are presented based on the results of the systematic overview. Given the increasing number of available immunotherapies, the therapeutic strategy in MS has shifted from a mere "relapse-prevention" approach to a personalized provision of medical care as to the choice of the appropriate drugs and their sequential application over the course of the disease. This personalized provision takes patient preferences as well as disease-related factors into consideration such as objective clinical and radiographic findings but also very burdensome symptoms such as fatigue, depression, and cognitive impairment. Future trial designs in MS will have to assign higher relevance to these patient-reported outcomes and will also have to implement surrogate measures that can serve as predictive markers for individual treatment response to new and investigational immunotherapies. This is an indispensable prerequisite to maximize the benefit of individual patients when participating in clinical trials. Moreover, such appropriate trial designs and suitable enrolment criteria that correspond to the mode of action of the study drug will facilitate targeted prevention of adverse events, thus mitigating risks for individual study participants.
Collapse
Affiliation(s)
- Sinje Gehr
- Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Kaiser
- Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (Institute for Quality and Efficiency in Health Care) (IQWiG), Im Mediapark 8, 50670 Köln, Germany
| | - Reinhold Kreutz
- Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolf-Dieter Ludwig
- Arzneimittelkommission der deutschen Ärzteschaft (Drug Commission of the German Medical Association), Herbert-Lewin-Platz 1, 10623 Berlin, Germany
| | - Friedemann Paul
- Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
26
|
Snow NJ, Wadden KP, Chaves AR, Ploughman M. Transcranial Magnetic Stimulation as a Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future Research. Neural Plast 2019; 2019:6430596. [PMID: 31636661 PMCID: PMC6766108 DOI: 10.1155/2019/6430596] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P. Wadden
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Arthur R. Chaves
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
Bisulca J, De Lury A, Coyle PK, Syritsyna O, Peyster R, Bangiyev L, Duong TQ. MRI features associated with high likelihood of conversion of radiologically isolated syndrome to multiple sclerosis. Mult Scler Relat Disord 2019; 36:101381. [PMID: 31518773 DOI: 10.1016/j.msard.2019.101381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
Abstract
Radiologically isolated syndrome (RIS) is the asymptomatic precursor to clinically isolated syndrome, relapsing-remitting multiple sclerosis (MS) or primary progressive MS. RIS is frequently diagnosed when an individual gets an MRI for an unrelated medical issue, such as headache or trauma. Treating RIS patients is controversial, but physicians may be inclined to offer prophylactic treatment for high-risk RIS patients. Identifying imaging and clinical features associated with high likelihood of early clinical conversion may prove helpful to identify a high-risk subset for potential MS therapy. The goal of this paper is to review current literatures to identify imaging and clinical features that predict early (within 5 years) conversion from RIS to MS.
Collapse
Affiliation(s)
- Joseph Bisulca
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Amy De Lury
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Patricia K Coyle
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Olga Syritsyna
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Robert Peyster
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Lev Bangiyev
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Tim Q Duong
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA.
| |
Collapse
|
28
|
Hartung HP, Graf J, Aktas O, Mares J, Barnett MH. Diagnosis of multiple sclerosis: revisions of the McDonald criteria 2017 – continuity and change. Curr Opin Neurol 2019; 32:327-337. [DOI: 10.1097/wco.0000000000000699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Moccia M, Ruggieri S, Ianniello A, Toosy A, Pozzilli C, Ciccarelli O. Advances in spinal cord imaging in multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419840593. [PMID: 31040881 PMCID: PMC6477770 DOI: 10.1177/1756286419840593] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
The spinal cord is frequently affected in multiple sclerosis (MS), causing motor, sensory and autonomic dysfunction. A number of pathological abnormalities, including demyelination and neuroaxonal loss, occur in the MS spinal cord and are studied in vivo with magnetic resonance imaging (MRI). The aim of this review is to summarise and discuss recent advances in spinal cord MRI. Advances in conventional spinal cord MRI include improved identification of MS lesions, recommended spinal cord MRI protocols, enhanced recognition of MRI lesion characteristics that allow MS to be distinguished from other myelopathies, evidence for the role of spinal cord lesions in predicting prognosis and monitoring disease course, and novel post-processing methods to obtain lesion probability maps. The rate of spinal cord atrophy is greater than that of brain atrophy (-1.78% versus -0.5% per year), and reflects neuroaxonal loss in an eloquent site of the central nervous system, suggesting that it can become an important outcome measure in clinical trials, especially in progressive MS. Recent developments allow the calculation of spinal cord atrophy from brain volumetric scans and evaluation of its progression over time with registration-based techniques. Fully automated analysis methods, including segmentation of grey matter and intramedullary lesions, will facilitate the use of spinal cord atrophy in trial designs and observational studies. Advances in quantitative imaging techniques to evaluate neuroaxonal integrity, myelin content, metabolic changes, and functional connectivity, have provided new insights into the mechanisms of damage in MS. Future directions of research and the possible impact of 7T scanners on spinal cord imaging will be discussed.
Collapse
Affiliation(s)
- Marcello Moccia
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Federico II University of Naples, via Sergio Pansini, 5, Edificio 17 - piano terra, Napoli, 80131 Naples, Italy
| | - Serena Ruggieri
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Ahmed Toosy
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
30
|
McGinley M, Ontaneda D. MS progression is predominantly driven by age-related mechanisms - NO. Mult Scler 2019; 25:904-906. [PMID: 30747571 DOI: 10.1177/1352458518819712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Marisa McGinley
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
31
|
No evidence of disease activity status over 3 years in a real-world cohort of relapsing remitting MS patients in Germany. Mult Scler Relat Disord 2019; 27:133-138. [DOI: 10.1016/j.msard.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
|
32
|
Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 2018; 19:31-43. [PMID: 30587061 DOI: 10.1080/14737175.2019.1559051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Multiple Sclerosis (MS) is the most common chronic autoimmune neuroinflammatory condition in young adults. It is often accompanied by optic neuritis (ON) and retinal neuro-axonal damage causing visual disturbances. Optical coherence tomography (OCT) is a sensitive non-invasive method for quantifying intraretinal layer volumes. Recently, OCT not only showed to be a reliable marker for ON-associated damage, but also proved its high prognostic value for functional outcome and disability accrual in patients with MS. Consequently, OCT is discussed as a potential marker for monitoring disease severity and therapeutic response in individual patients. Areas covered: This article summarizes our current understanding of structural retinal changes in MS and describes the future potential of OCT for differential diagnosis, monitoring of the disease course and for clinical trials. Expert commentary: Today, OCT is used in clinical practice in specialized MS centers. Standardized parameters across devices are urgently needed for supporting clinical utility. Novel parameters are desirable to increase sensitivity and specificity in terms of MS.
Collapse
Affiliation(s)
- Frederike C Oertel
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Hanna G Zimmermann
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Alexander U Brandt
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,b Department of Neurology , University of California Irvine , Irvine , CA , USA
| | - Friedemann Paul
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,c Department of Neurology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,d Experimental and Clinical Research Center , Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| |
Collapse
|
33
|
Pawlitzki M, Sweeney-Reed CM, Bittner D, Lux A, Vielhaber S, Schreiber S, Paul F, Neumann J. CSF-Progranulin and Neurofilament Light Chain Levels in Patients With Radiologically Isolated Syndrome-Sign of Inflammation. Front Neurol 2018; 9:1075. [PMID: 30619038 PMCID: PMC6305325 DOI: 10.3389/fneur.2018.01075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Cerebrospinal fluid (CSF) markers of disease in patients with radiologically isolated syndrome (RIS) are the subject of intense investigation, because they have the potential to enhance our understanding of the natural disease course and provide insights into similarities and differences between RIS and other multiple sclerosis (MS) disease identities. Methods: Here we compared neurofilament light chain (NFL) and progranulin (PGRN) levels in the CSF in RIS patients with levels in patients with different subtypes of MS and healthy controls (HC) using Kruskal–Wallis one-way analysis of variance. Results: Median CSF NFL concentrations in RIS patients did not differ to those in HC and clinically isolated syndrome (CIS) patients, but were significantly lower than in relapsing remitting (RRMS) and primary progressive (PPMS) MS patients. In contrast, RIS patients exhibited higher median CSF PGRN levels than HC and showed no significant differences compared with CIS, RRMS, and PPMS cases. Conclusion: We postulate that elevated PGRN values in the CSF of RIS patients might indicate inflammatory and repair activity prior to axonal disintegration.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Department of Neurology with Institute of Translational Neurology, University Hospital of Muenster, Münster, Germany
| | | | - Daniel Bittner
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anke Lux
- Department for Biometrics and Medical Informatics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
34
|
Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J Clin Med 2018; 7:E511. [PMID: 30513926 PMCID: PMC6306801 DOI: 10.3390/jcm7120511] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong autoimmune, neurodegenerative, and neuroinflammatory component. Most of the common disease modifying treatments (DMTs) for MS modulate the immune response targeting disease associated T and B cells and while none directly target neutrophils, several DMTs do impact their abundance or function. The role of neutrophils in MS remains unknown and research is ongoing to better understand the phenotype, function, and contribution of neutrophils to both disease onset and stage of disease. Here we summarize the current state of knowledge of neutrophils and their function in MS, including in the rodent based MS model, and we discuss the potential effects of current treatments on these functions. We propose that neutrophils are likely to participate in MS pathogenesis and their abundance and function warrant monitoring in MS.
Collapse
Affiliation(s)
- Tonia Woodberry
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Sophie E Bouffler
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Rebecca L Buckland
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
35
|
Gebhardt M, Kropp P, Hoffmann F, Zettl UK. Headache in the course of multiple sclerosis: a prospective study. J Neural Transm (Vienna) 2018; 126:131-139. [PMID: 30506270 DOI: 10.1007/s00702-018-1959-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is the most common immune-mediated inflammatory disease of the central nervous system (CNS). Early diagnosis and treatment is important to prevent progression of disability in the course of the chronic disease. Therefore, correct and fast identification of early symptoms is vital. Headache is generally not recognized as an early symptom of MS, although numerous studies could show a high prevalence of headache in MS patients. The most common misdiagnosis is migraine. The aim of this study is to investigate the prevalence as well as the phenomenology of headache in MS especially with regard to the progression of the disease. In a prospective, multicenter study, we unbiasedly recruited 150 patients with manifest MS based on the criteria of McDonald. 50 patients at the timepoint of initial diagnosis and 100 of them with a long-term course of the disease were included. Based on a semi-structured interview, we evaluated the occurrence of headache over the last 4 weeks as well as case history, clinical-neurological investigation and questionnaires about depression, fatigue, and quality of life. Prevalence of headache in all patients was 67%. Patients at the timepoint of symptom manifestation of MS showed the highest prevalence of headache that was ever been recorded of 78%. In general, patients with headache were younger, had a shorter duration of the disease, and were less physically affected. We noticed frequent occurrence of migraine and migraine-like headache. In the course of the disease, patients without disease-modifying drug (DMD) complained more frequently headaches than patients with any kind of therapy. Headache is an important early symptom of MS. This could be shown especially among 78% of patients with clinically isolated syndrome (CIS). Therefore, young people with frequent headache should undergo MRI of the head and in the case of abnormal findings a consecutive detailed differential diagnosis. This could reduce the latency until final diagnosis of MS, which is in general much too long. That way these patients could get the earliest possible treatment, which is important to stop the progression of the disease.
Collapse
Affiliation(s)
- Marcel Gebhardt
- Klinik für Neurologie, Krankenhaus Martha-Maria Halle-Dölau, Röntgenstraße 1, 06120, Halle, Germany.
| | - Peter Kropp
- Institute of Medical Psychology and Medical Sociology, Medical Faculty, University of Rostock, Gehlsheimer Straße 20, 18147, Rostock, Germany
| | - Frank Hoffmann
- Klinik für Neurologie, Krankenhaus Martha-Maria Halle-Dölau, Röntgenstraße 1, 06120, Halle, Germany
| | - Uwe K Zettl
- Neuroimmunological Section, Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
36
|
Rasche L, Paul F. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother 2018; 19:2073-2086. [PMID: 30407868 DOI: 10.1080/14656566.2018.1540592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Ozanimod is a selective sphingosine 1-phosphate receptor 1 and 5 modulator under development by Celgene, for the treatment of relapsing remitting multiple sclerosis. Extensive clinical experience has become available for the related compound fingolimod, favoring the sphingosine 1-phosphate therapeutic concept. Off-target effects have been attributed to its low receptor specificity and have prompted the development of next generation sphingosine 1-phosphate receptor modulators. Areas covered: The authors evaluate the literature of ozanimod, using the PubMed database as well as repositories of the European Committee for Treatment and Research in Multiple Sclerosis and the American and European Academy of Neurology. Specifically, the authors cover and discuss the preclinical data on ozanimod, pharmacokinetics and dynamics, and data on efficacy and safety from the pivotal trials. Expert opinion: Superiority of ozanimod over intramuscular interferon β-1a with regard to reduction in annualized relapse rate and magnetic resonance imaging outcomes has been shown in two phase III trials. The beneficial effect on brain volume and gray matter loss are encouraging and in line with data on other newer immunomodulators. Ozanimod is a valuable contribution to the therapeutic armamentarium in MS, although the effect on disability progression is unclear and requires further investigations.
Collapse
Affiliation(s)
- Ludwig Rasche
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health , Berlin , Germany
| | - Friedemann Paul
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health , Berlin , Germany.,b Experimental and Clinical Research Center , Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health , Berlin , Germany.,c Department of Neurology , Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| |
Collapse
|
37
|
Rasche L, Scheel M, Otte K, Althoff P, van Vuuren AB, Gieß RM, Kuchling J, Bellmann-Strobl J, Ruprecht K, Paul F, Brandt AU, Schmitz-Hübsch T. MRI Markers and Functional Performance in Patients With CIS and MS: A Cross-Sectional Study. Front Neurol 2018; 9:718. [PMID: 30210439 PMCID: PMC6123531 DOI: 10.3389/fneur.2018.00718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction: Brain atrophy is a widely accepted marker of disease severity with association to clinical disability in multiple sclerosis (MS). It is unclear to which extent this association reflects common age effects on both atrophy and function. Objective: To explore how functional performance in gait, upper extremities and cognition is associated with brain atrophy in patients with Clinically Isolated Syndrome (CIS) and relapsing-remitting MS (RRMS), controlling for effects of age and sex. Methods: In 27 patients with CIS, 59 with RRMS (EDSS ≤3) and 63 healthy controls (HC), 3T MRI were analyzed for T2 lesion count (T2C), volume (T2V) and brain volumes [normalized brain volume (NBV), gray matter volume (NGMV), white matter volume (NWMV), thalamic volume (NThalV)]. Functional performance was measured with short maximum walking speed (SMSW speed), 9-hole peg test (9HPT) and symbol digit modalities test (SDMT). Linear regression models were created for functional variables with stepwise inclusion of age, sex and MR imaging markers. Results: CIS differed from HC only in T2C and T2V. RRMS differed from HC in NBV, NGMV and NThalV, T2C and T2V, but not in NWMV. A strong association with age was seen in HC, CIS and RRMS groups for NBV (r = -0.5 to -0.6) and NGMV (r = -0.6 to -0.8). Associations with age were seen in HC and RRMS but not CIS for NThalV (r = -0.3; r = -0.5), T2C (rs = 0.3; rs = 0.2) and T2V (rs = 0.3; rs = 0.3). No effect of age was seen on NWMV. Correlations of functional performance with age in RRMS were seen for SMSW speed, 9HPTand SDMT (r = -0.27 to -0.46). Regression analyses yielded significant models only in the RRMS group for 9HPT, SMSW speed and EDSS. These included NBV, NGMV, NThalV, NWMV, logT2V, age and sex as predictors. NThalV was the only MRI variable predicting a functional measure (9HPTr) with a higher standardized beta than age and sex (R2 = 0.36, p < 1e-04). Conclusion: Thalamic atrophy was a stronger predictor of hand function (9HPT) in RRMS, than age and sex. This underlines the clinical relevance of thalamic atrophy and the relevance of hand function as a clinical marker even in mildly disabled patients.
Collapse
Affiliation(s)
- Ludwig Rasche
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karen Otte
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Motognosis GmbH, Berlin, Germany
| | - Patrik Althoff
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Annemieke B. van Vuuren
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- VU University Medical Center, Amsterdam, Netherlands
| | - Rene M. Gieß
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexander U. Brandt
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
38
|
Solmaz V, Ozlece HK, Him A, Güneş A, Cordano C, Aksoy D, Çelik Y. Evaluation of the association between sexual dysfunction and demyelinating plaque location and number in female multiple sclerosis patients. Neurol Res 2018; 40:683-688. [PMID: 29663848 DOI: 10.1080/01616412.2018.1462752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose To investigate the frequency of sexual dysfunction (SD) in female multiple sclerosis (MS) patients and to explore its association with the location and number of demyelinating lesions. Material and Methods We evaluated 42 female patients and 41 healthy subjects. All patients underwent neurological examination and 1.5 T brain and full spinal MRI. All subjects completed the female sexual function index (FSFI), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), and Short-Form 36 Quality of Life Scale (SF-36). All participants were also evaluated for serum thyroid stimulating hormone (TSH), T4, estradiol, and total testosterone. Results No statistically significant differences between the MS and control groups were found for age, body mass index (BMI), serum TSH, T4, E2, and total testosterone level. MS patients had a statistically significantly lower FSFI and SF-36 scores and higher BDI and BAI scores compared with healthy subjects. The location and number of demyelinating lesions were not associated with SD. Conclusion In our cohort, this difference in SD appears unrelated to the location and number of demyelinating lesions. These findings highlight the importance of the assessment and treatment of psychiatric comorbidities, such as depression and anxiety, in MS patients reporting SD.
Collapse
Affiliation(s)
- Volkan Solmaz
- a Department of Neurology , Trakya University Medical Faculty , Edirne , Turkey
| | - Hatice Kose Ozlece
- a Department of Neurology , Trakya University Medical Faculty , Edirne , Turkey
| | - Aydın Him
- b Department of Physiology , Ondokuzmayıs University Medical Faculty , Samsun , Turkey
| | - Ayfer Güneş
- a Department of Neurology , Trakya University Medical Faculty , Edirne , Turkey
| | - Christian Cordano
- c Department of Neurology, Multiple Sclerosis Center , University of California , San Francisco , CA , USA
| | - Durdane Aksoy
- d Department of Neurology , Gaziosmanpasa University Medical Faculty , Tokat , Turkey
| | - Yahya Çelik
- a Department of Neurology , Trakya University Medical Faculty , Edirne , Turkey
| |
Collapse
|