1
|
Galota F, Marcheselli S, De Biasi S, Gibellini L, Vitetta F, Fiore A, Smolik K, De Napoli G, Cardi M, Cossarizza A, Ferraro D. Impact of High-Efficacy Therapies for Multiple Sclerosis on B Cells. Cells 2025; 14:606. [PMID: 40277931 DOI: 10.3390/cells14080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative autoimmune disorder of the central nervous system characterized by demyelination and neurodegeneration. Traditionally considered a T-cell-mediated disease, the crucial role of B lymphocytes in its pathogenesis, through different mechanisms contributing to inflammation and autoreactivity, is increasingly recognized. The risk of long-term disability in MS patients can be reduced by an early treatment initiation, in particular with high-efficacy therapies. The aim of this review is to provide an overview of the mechanisms of action of high-efficacy therapies for MS, with a focus on their impact on B cells and how this contributes to the drugs' efficacy and safety profiles. Anti-CD20 monoclonal antibodies, Alemtuzumab, Cladribine and sequestering therapies encompassing Natalizumab and S1P receptors modulators will be discussed and emerging therapies, including Bruton's Tyrosine Kinase inhibitors, will be presented.
Collapse
Affiliation(s)
- Federica Galota
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Simone Marcheselli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy
| | - Francesca Vitetta
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Alessia Fiore
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Giulia De Napoli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Martina Cardi
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41125 Modena, Italy
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Neurology Unit, Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| |
Collapse
|
2
|
Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. FRONT BIOSCI-LANDMRK 2024; 29:386. [PMID: 39614433 DOI: 10.31083/j.fbl2911386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Collapse
Affiliation(s)
- Eiman M A Mohammed
- Kuwait Cancer Control Centre, Department of Medical Laboratory, Molecular Genetics Laboratory, Ministry of Health, 13001 Shuwaikh, Kuwait
| |
Collapse
|
3
|
Turčić A, Knežević J, Zaninović L, Habek M, Skorić MK, Babić A, Vogrinc Ž. Association between peripheral blood immunological status and intrathecal inflammatory markers differentiate multiple sclerosis clinical phenotypes. Acta Neurol Belg 2024:10.1007/s13760-024-02597-8. [PMID: 39095573 DOI: 10.1007/s13760-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The difference in the clinical course, response to therapy, and distribution of CNS inflammation in primary-progressive (PPMS) and relapsing-remitting multiple sclerosis (RRMS) suggests differences in the underlying immunological characteristics of the disease. We aimed to investigate differences in immunological profiles in relation to intrathecal inflammation in different MS forms. METHODS The peripheral blood (PB) proportions of CD4 + and CD8 + T-cells and CD19 + B-cells were retrospectively compared with the markers of intrathecal immunoglobulin G (IgG) synthesis at diagnosis: IgG index, percentage of intrathecal IgG synthesis (IF IgG), the number of oligoclonal bands (OCB), depending on the blood-brain barrier (BBB) function, and antibody specific index to neurotrophic viruses (MRZH reaction). RESULTS Thirty-six controls, 71 RRMS and 25 PPMS were enrolled. PPMS had higher percentage of CD4 + T-cells compared to RRMS (P = 0.043) and controls (P = 0.003). The percentage of CD8 + T-cells and CD19 + B-cells, and respective absolute cell counts did not differ according to the MS phenotype. In RRMS with the dysfunctional BBB, the IgG index (r = 0.642, P = 0.012) correlated significantly with the CD19 + B-cells while the CD4 + T-cells inversely correlated with IF IgG (r=-0.574, P = 0.039). Interestingly, in PPMS the number of OCB was positively associated with CD4+ (r = 0.603, P = 0.015) and negatively associated with CD8 + T-cells (r=-0.554, P = 0.033), while IF IgG negatively correlated with CD8 + T-cells (r=-0.689, P = 0.003), but only in the preserved BBB function. CONCLUSIONS The PB CD4 + T-cells and B-cells were associated with the intrathecal inflammation in RRMS with BBB dysfunction while CD8 + T-cells were involved in PPMS with CNS-compartmentalized inflammation.
Collapse
Affiliation(s)
- Ana Turčić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia.
| | - Josip Knežević
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| | - Ljiljana Zaninović
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| | - Mario Habek
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
- Referral Center for Autonomic Nervous System Disorders, Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Magdalena Krbot Skorić
- Referral Center for Autonomic Nervous System Disorders, Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Antonija Babić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| | - Željka Vogrinc
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| |
Collapse
|
4
|
Höpner L, Proschmann U, Inojosa H, Ziemssen T, Akgün K. Corticosteroid-depending effects on peripheral immune cell subsets vary according to disease modifying strategies in multiple sclerosis. Front Immunol 2024; 15:1404316. [PMID: 38938576 PMCID: PMC11208457 DOI: 10.3389/fimmu.2024.1404316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background The primary treatment for acute relapses in multiple sclerosis (MS) is the intravenous administration of high-dose methylprednisolone (IVMP). However, the mechanisms through which corticosteroid treatment impacts acute neuroinflammation in people with MS (pwMS) remain not fully understood. In particular, the changes induced by glucocorticoids (GCs) on cells of the innate immune system and the differences between patients with distinct immunotherapies have received little attention to date. Methods We conducted immunophenotyping using flow cytometry on peripheral blood mononuclear cells of pwMS who received IVMP treatment during a relapse. We compared the impact of an IVMP treatment on a broad variety of immune cell subsets within three groups: twelve patients who were treatment-naïve to disease modifying therapies (wDMT) to ten patients on platform therapies (PT) and eighteen patients on fingolimod therapy (FTY). Results We observed pronounced interindividual short- and intermediate-term effects of IVMP on distinct immune cells subsets. In addition to the well-documented decrease in T-helper cells (Th cells), we detected significant alterations after the first IVMP infusion within the innate immune response among neutrophil, eosinophil and basophil granulocytes, monocytes and plasmacytoid dendritic cells (pDCs). When comparing patients wDMT to the PT and FTY cohorts, we found that IVMP had a similar impact on innate immune cells across all treatment groups. However, we did not observe a significant further decline in T lymphocyte counts during IVMP in patients with pre-existing lymphopenia under FTY treatment. Although T cell apoptosis is considered the main mechanism of action of GCs, patients with FTY still reported symptom improvement following IVMP treatment. Conclusion In addition to T cell suppression, our data suggests that further immunoregulatory mechanisms of GC, particularly on cells of the innate immune response, are of greater significance than previously understood. Due to the regulation of the adaptive immune cells by DMTs, the impact of GC on these cells varies depending on the underlying DMT. Additional studies involving larger cohorts and cerebrospinal fluid samples are necessary to gain a deeper understanding of the immune response to GC in pwMS with different DMTs during relapse to define and explain differences in clinical response profiles.
Collapse
Affiliation(s)
| | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
5
|
Zrzavy T, Rieder K, Wuketich V, Thalhammer R, Haslacher H, Altmann P, Kornek B, Krajnc N, Monschein T, Schmied C, Zebenholzer K, Zulehner G, Berger T, Rommer P, Leutmezer F, Bsteh G. Immunophenotyping in routine clinical practice for predicting treatment response and adverse events in patients with MS. Front Neurol 2024; 15:1388941. [PMID: 38689880 PMCID: PMC11058637 DOI: 10.3389/fneur.2024.1388941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background Recent studies proposed cellular immunoprofiling as a surrogate for predicting treatment response and/or stratifying the occurrence of adverse events (AEs) in persons with multiple sclerosis (pwMS). However, applicability in real-world circumstances is not sufficiently addressed. Objective We aimed to explore whether standard routine clinical leukocyte phenotyping before treatment initiation could help stratify patients according to treatment response or AEs in a real-world MS cohort. Methods In this retrospective study, 150 pwMS were included, who had been newly initiated on a disease-modifying drug (DMD) and had been assessed for standard immunophenotyping before DMD initiation (baseline) and at least once during the following year. Multivariate models were used to assess an association of immune subsets and the association between immune cell profiles regarding treatment response and AEs. Results We found that the composition of T cell subsets was associated with relapse activity, as an increased proportion of CD8+ lymphocytes at baseline indicated a higher likelihood of subsequent relapse (about 9% per 1% increase in CD8+ proportion of all CD3+ cells). This was particularly driven by patients receiving anti-CD20 therapy, where also EDSS worsening was associated with a higher number of CD8+ cells at baseline (3% increase per 10 cells). In the overall cohort, an increase in the proportion of NK cells was associated with a higher risk of EDSS worsening (5% per 1% increase). Occurrence of AEs was associated with a higher percentage of T cells and a lower number of percentual NKT cells at baseline. Conclusion Immune cell profiles are associated with treatment response and the occurrence of AEs in pwMS. Hence, immunophenotyping may serve as a valuable biomarker to enable individually tailored treatment strategies in pwMS.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Kerstin Rieder
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Viktoria Wuketich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Monschein
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Andorra M, Freire A, Zubizarreta I, de Rosbo NK, Bos SD, Rinas M, Høgestøl EA, de Rodez Benavent SA, Berge T, Brune-Ingebretse S, Ivaldi F, Cellerino M, Pardini M, Vila G, Pulido-Valdeolivas I, Martinez-Lapiscina EH, Llufriu S, Saiz A, Blanco Y, Martinez-Heras E, Solana E, Bäcker-Koduah P, Behrens J, Kuchling J, Asseyer S, Scheel M, Chien C, Zimmermann H, Motamedi S, Kauer-Bonin J, Brandt A, Saez-Rodriguez J, Alexopoulos LG, Paul F, Harbo HF, Shams H, Oksenberg J, Uccelli A, Baeza-Yates R, Villoslada P. Predicting disease severity in multiple sclerosis using multimodal data and machine learning. J Neurol 2024; 271:1133-1149. [PMID: 38133801 PMCID: PMC10896787 DOI: 10.1007/s00415-023-12132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Multiple sclerosis patients would benefit from machine learning algorithms that integrates clinical, imaging and multimodal biomarkers to define the risk of disease activity. METHODS We have analysed a prospective multi-centric cohort of 322 MS patients and 98 healthy controls from four MS centres, collecting disability scales at baseline and 2 years later. Imaging data included brain MRI and optical coherence tomography, and omics included genotyping, cytomics and phosphoproteomic data from peripheral blood mononuclear cells. Predictors of clinical outcomes were searched using Random Forest algorithms. Assessment of the algorithm performance was conducted in an independent prospective cohort of 271 MS patients from a single centre. RESULTS We found algorithms for predicting confirmed disability accumulation for the different scales, no evidence of disease activity (NEDA), onset of immunotherapy and the escalation from low- to high-efficacy therapy with intermediate to high-accuracy. This accuracy was achieved for most of the predictors using clinical data alone or in combination with imaging data. Still, in some cases, the addition of omics data slightly increased algorithm performance. Accuracies were comparable in both cohorts. CONCLUSION Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of disability worsening.
Collapse
Affiliation(s)
- Magi Andorra
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Ana Freire
- School of Management, Pompeu Fabra University, Barcelona, Spain
- UPF Barcelona School of Management, Balmes 132, 08008, Barcelona, Spain
| | - Irati Zubizarreta
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Steffan D Bos
- University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Melanie Rinas
- Institute for Computational Biomedicine, Heidelberg University Hospital, and Heidelberg University, Heidelberg, Germany
| | - Einar A Høgestøl
- University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | | | - Tone Berge
- Oslo University Hospital, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | | | - Federico Ivaldi
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maria Cellerino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gemma Vila
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Elena H Martinez-Lapiscina
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Albert Saiz
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Eloy Martinez-Heras
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | - Elisabeth Solana
- Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) and Hospital Clinic Barcelona, Barcelona, Spain
| | | | | | | | - Susanna Asseyer
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Claudia Chien
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanna Zimmermann
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Alex Brandt
- Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University Hospital, and Heidelberg University, Heidelberg, Germany
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Athens, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Friedemann Paul
- Charité Universitaetsmedizin Berlin, Berlin, Germany
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanne F Harbo
- University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Hengameh Shams
- Department of Neurology, University of California, San Francisco, USA
| | - Jorge Oksenberg
- Department of Neurology, University of California, San Francisco, USA
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Pablo Villoslada
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
7
|
Kennedy KE, Kerlero de Rosbo N, Uccelli A, Cellerino M, Ivaldi F, Contini P, De Palma R, Harbo HF, Berge T, Bos SD, Høgestøl EA, Brune-Ingebretsen S, de Rodez Benavent SA, Paul F, Brandt AU, Bäcker-Koduah P, Behrens J, Kuchling J, Asseyer S, Scheel M, Chien C, Zimmermann H, Motamedi S, Kauer-Bonin J, Saez-Rodriguez J, Rinas M, Alexopoulos LG, Andorra M, Llufriu S, Saiz A, Blanco Y, Martinez-Heras E, Solana E, Pulido-Valdeolivas I, Martinez-Lapiscina EH, Garcia-Ojalvo J, Villoslada P. Multiscale networks in multiple sclerosis. PLoS Comput Biol 2024; 20:e1010980. [PMID: 38329927 PMCID: PMC10852301 DOI: 10.1371/journal.pcbi.1010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.
Collapse
Affiliation(s)
- Keith E. Kennedy
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicole Kerlero de Rosbo
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
- TomaLab, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Antonio Uccelli
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Maria Cellerino
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Federico Ivaldi
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Paola Contini
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Raffaele De Palma
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Hanne F. Harbo
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Steffan D. Bos
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Einar A. Høgestøl
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Synne Brune-Ingebretsen
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sigrid A. de Rodez Benavent
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Friedemann Paul
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Alexander U. Brandt
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Department of Neurology, University of California, Irvine, California, United States of America
| | - Priscilla Bäcker-Koduah
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Janina Behrens
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Susanna Asseyer
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Scheel
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Claudia Chien
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanna Zimmermann
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Seyedamirhosein Motamedi
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Josef Kauer-Bonin
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Melanie Rinas
- Institute for Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Leonidas G. Alexopoulos
- ProtATonce Ltd, Athens, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Magi Andorra
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Elena H. Martinez-Lapiscina
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pablo Villoslada
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Neurology, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
8
|
Wang M, Dehlinger A, Zapata CF, Golan M, Gallaccio G, Sander LE, Schlickeiser S, Kunkel D, Schmitz-Hübsch T, Sawitzki B, Karni A, Braun J, Loyal L, Thiel A, Bellmann-Strobl J, Paul F, Meyer-Arndt L, Böttcher C. Associations of myeloid cells with cellular and humoral responses following vaccinations in patients with neuroimmunological diseases. Nat Commun 2023; 14:7728. [PMID: 38007484 PMCID: PMC10676398 DOI: 10.1038/s41467-023-43553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.
Collapse
Affiliation(s)
- Meng Wang
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Camila Fernández Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maya Golan
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gerardina Gallaccio
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow&MassCytometry Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arnon Karni
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - Julian Braun
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Lucie Loyal
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Andreas Thiel
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
9
|
Brune-Ingebretsen S, Høgestøl EA, de Rosbo NK, Berg-Hansen P, Brunborg C, Blennow K, Zetterberg H, Paul F, Uccelli A, Villoslada P, Harbo HF, Berge T. Immune cell subpopulations and serum neurofilament light chain are associated with increased risk of disease worsening in multiple sclerosis. J Neuroimmunol 2023; 382:578175. [PMID: 37573634 DOI: 10.1016/j.jneuroim.2023.578175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Changes is lymphocyte subpopulations in peripheral blood have been proposed as biomarkers for evaluation of disease activity in multiple sclerosis (MS). Serum neurofilament light chain (sNfL) is a biomarker reflecting neuro-axonal injury in MS that could be used to monitor disease activity, response to drugs and to prognosticate disease course. Here we show a moderate correlation between sNfL and lymphocyte cell subpopulations, and our data furthermore suggest that sNfL and specific immune cell subpopulations together could predict future disease worsening in MS.
Collapse
Affiliation(s)
- Synne Brune-Ingebretsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Einar A Høgestøl
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; TomaLab, Institute of Nanotechnology, National Research Council (CNR), Rome, Italy
| | - Pål Berg-Hansen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany; NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pablo Villoslada
- Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Tone Berge
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway; Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
10
|
Proschmann U, Shalchi Amirkhiz P, Andres P, Haase R, Inojosa H, Ziemssen T, Akgün K. Influence of Pre-Analytic Conditions on Quantity of Lymphocytes. Int J Mol Sci 2023; 24:13479. [PMID: 37686285 PMCID: PMC10487632 DOI: 10.3390/ijms241713479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Lymphocytes are key players in the pathogenesis of multiple sclerosis and a distinct target of several immunomodulatory treatment strategies. In this study, we aim to evaluate the effect of various pre-analytic conditions on immune cell counts to conclude the relevance for clinical implications. Twenty healthy donors were assessed for the effects of distinct storage temperatures and times after blood draws, different durations of tourniquet application, body positions and varying aspiration forces during blood draws. Immune cell frequencies were analyzed using multicolor flowcytometry. While storage for 24 h at 37 °C after blood draws was associated with significantly lower cell counts, different durations of tourniquet application, body positions and varying aspirations speeds did not have significant impacts on the immune cell counts. Our data suggest that immune cell counts are differently affected by pre-analytic conditions being more sensitive to storage temperature. Pre-analytic conditions should be carefully considered when interpreting the laboratory values of immune cell subpopulations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, University of Technology, 01307 Dresden, Germany; (U.P.); (H.I.); (T.Z.)
| |
Collapse
|
11
|
Tsaktanis T, Linnerbauer M, Lößlein L, Farrenkopf D, Vandrey O, Peter A, Cirac A, Beyer T, Nirschl L, Grummel V, Mühlau M, Bussas M, Hemmer B, Quintana FJ, Rothhammer V. Regulation of the programmed cell death protein 1/programmed cell death ligand 1 axis in relapsing-remitting multiple sclerosis. Brain Commun 2023; 5:fcad206. [PMID: 37564830 PMCID: PMC10411318 DOI: 10.1093/braincomms/fcad206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The programmed cell death protein 1/programmed cell death ligand 1 axis plays an important role in the adaptive immune system and has influence on neoplastic and inflammatory diseases, while its role in multiple sclerosis is unclear. Here, we aimed to analyse expression patterns of programmed cell death protein 1 and programmed cell death ligand 1 on peripheral blood mononuclear cells and their soluble variants in multiple sclerosis patients and controls, to determine their correlation with clinical disability and disease activity. In a cross-sectional study, we performed in-depth flow cytometric immunophenotyping of peripheral blood mononuclear cells and analysed soluble programmed cell death protein 1 and programmed cell death ligand 1 serum levels in patients with relapsing-remitting multiple sclerosis and controls. In comparison to control subjects, relapsing-remitting multiple sclerosis patients displayed distinct cellular programmed cell death protein 1/programmed cell death ligand 1 expression patterns in immune cell subsets and increased soluble programmed cell death ligand 1 levels, which correlated with clinical measures of disability and MRI activity over time. This study extends our knowledge of how programmed cell death protein 1 and programmed cell death ligand 1 are expressed in the membranes of patients with relapsing-remitting multiple sclerosis and describes for the first time the elevation of soluble programmed cell death ligand 1 in the blood of multiple sclerosis patients. The distinct expression pattern of membrane-bound programmed cell death protein 1 and programmed cell death ligand 1 and the correlation between soluble programmed cell death ligand 1, membrane-bound programmed cell death ligand 1, disease and clinical factors may offer therapeutic potential in the setting of multiple sclerosis and might improve future diagnosis and clinical decision-making.
Collapse
Affiliation(s)
- Thanos Tsaktanis
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Matthias Bussas
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eli and Edythe L Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| |
Collapse
|
12
|
Different Susceptibility of T and B Cells to Cladribine Depends On Their Levels of Deoxycytidine Kinase Activity Linked to Activation Status. J Neuroimmune Pharmacol 2022; 17:195-205. [PMID: 33851318 PMCID: PMC9726780 DOI: 10.1007/s11481-021-09994-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Deoxycytidine kinase (dCK) and 5' deoxynucleotidase (NT5C2) are involved in metabolism of cladribine (2CdA), the immunomodulatory drug for multiple sclerosis; by mediating phosphorylation (activation) or phosphorolysis (deactivation) of 2CdA, respectively, these enzymes promote or prevent its accumulation in the cell, which leads to cell death. In particular, lymphocytes which present with a high intracellular dCK/NT5C2 ratio are more sensitive to 2CdA than other immune cells. We aim at determining if the expression of these enzymes and/or their activity differ in specific progenitor and mature immune cells and are influenced by cellular activation and/or exposure to 2CdA. Flow cytometry analysis showed no difference in dCK/NT5C2 ratio in progenitor and mature immune cells. 2CdA induced apoptosis in stimulated T and B cells and unstimulated B cells. dCK expression was enhanced by 2CdA at mRNA and protein levels in activated T cells and mRNA level in activated B cells. dCK activity, measured through an in-house luminescence release enzyme assay was higher in activated T and B cells, and such an increase was abrogated in activated B cells, but not T cells, upon exposure to 2CdA. These results reveal an important relationship between dCK activity and the effect of 2CdA on B and T cells, according to their activation status. Further study is warranted to evaluate whether dCK activity could, in the future, be a suitable predictive biomarker of lymphocyte response to 2CdA.
Collapse
|
13
|
Palmeri S, Ponzano M, Ivaldi F, Signori A, Lapucci C, Casella V, Ferrò MT, Vigo T, Inglese M, Mancardi GL, Uccelli A, Laroni A. Impact of Natural Killer (NK) Cells on Immune Reconstitution, and Their Potential as a Biomarker of Disease Activity, in Alemtuzumab-Treated Patients with Relapsing Remitting Multiple Sclerosis: An Observational Study. CNS Drugs 2022; 36:83-96. [PMID: 34894339 DOI: 10.1007/s40263-021-00875-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Defining immune mechanisms leading to multiple sclerosis (MS) is difficult, due to the great inter-individual difference in immune system responses. The anti-CD52 antibody alemtuzumab transiently abolishes differences in immune parameters among individuals, allowing analysis of subsequent immune cell repopulation patterns, and their possible role in MS. OBJECTIVE To evaluate the correlation between innate and adaptive immune cell subsets and disease activity in MS in the context of treatment with alemtuzumab. METHODS A two-center observational cohort of patients treated with alemtuzumab underwent immune profiling of T, B, and natural killer (NK) cells, biomarker, clinical and radiological follow-up. RESULTS After treatment, the percentage of NK and B cells increased; NK, T- and B-cell populations underwent a profound rearrangement. Within the effector T-cell compartment, treatment led to a transient decrease, followed by an increase, of T-helper 1 cells, and to a transient decrease of T-helper 17 cells. Within the T-regulatory compartment, naïve T-regulatory cells increased. Within the B-cell compartment, memory B cells and mature B cells decreased, whereas transitional B cells increased. Within the NK cell compartment, CD56bright NK cells increased. Subjects without disease activity had a greater decrease in serum NfL and greater NK cell/CD3+ T cell ratio. NK cell numbers at baseline and after treatment influenced reconstitution of T and B cells, being inversely correlated with the reconstitution of proinflammatory CD3+ T cells and mature B cells, and directly correlated to the increase in transitional B cells. CONCLUSIONS The results of this study provide novel evidence that NK cells influence reconstitution of adaptive immune cells upon alemtuzumab and that patients with a successful response to alemtuzumab have an early immune reconstitution dominated by NK cells.
Collapse
Affiliation(s)
- Serena Palmeri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,University of Genova and IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Ponzano
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genoa, Italy
| | - Federico Ivaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genoa, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Valentina Casella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy
| | - Maria Teresa Ferrò
- Neuroimmunology, Center for Multiple Sclerosis, Cerebrovascular Department, ASST Crema, Crema, Italy
| | - Tiziana Vigo
- IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy. .,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy.
| |
Collapse
|
14
|
Colombo E, Farina C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol Ther 2021; 230:107971. [PMID: 34450231 DOI: 10.1016/j.pharmthera.2021.107971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive sphingolipid binding to specific G protein-coupled receptors expressed in several organs. The relevance of S1P-S1P receptor axis in the pathophysiology of immune and nervous systems has encouraged the development of S1P receptor modulators for the treatment of neurological, autoimmune and/or inflammatory disorders. Currently, four S1P receptor modulators are approved drugs for multiple sclerosis (MS), an inflammatory disorder of the central nervous system. As main pharmacologic effect, these treatments induce lymphopenia due to the loss of responsiveness to S1P gradients guiding lymphocyte egress from lymphoid organs into the bloodstream. Recent data point to immunological effects of the S1P modulators beyond the inhibition of lymphocyte trafficking. Further, these drugs may cross the blood-brain barrier and directly target CNS resident cells expressing S1P receptors. Here we review the role of S1P signalling in neuroimmunology at the light of the evidences generated from the study of the mechanism of action of S1P receptor modulators in MS and integrate this information with findings derived from neuroinflammatory animal models and in vitro observations. These insights can direct the application of therapeutic approaches targeting S1P receptors in other disease areas.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy.
| |
Collapse
|
15
|
Schwichtenberg SC, Wisgalla A, Schroeder-Castagno M, Alvarez-González C, Schlickeiser S, Siebert N, Bellmann-Strobl J, Wernecke KD, Paul F, Dörr J, Infante-Duarte C. Fingolimod Therapy in Multiple Sclerosis Leads to the Enrichment of a Subpopulation of Aged NK Cells. Neurotherapeutics 2021; 18:1783-1797. [PMID: 34244929 PMCID: PMC8608997 DOI: 10.1007/s13311-021-01078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56dimCD94low mature NK cells, while the CD56bright fraction and CD127+ innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56dimCD16++KIR+/-NKG2A-CD94-CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++CD127+ increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients.
Collapse
Affiliation(s)
- Svenja C Schwichtenberg
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
| | - Anne Wisgalla
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for "Psychiatrie Und Medizinische Klinik M.S. Psychosomatik,", Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Maria Schroeder-Castagno
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Cesar Alvarez-González
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Föhrer Str. 15, 13353, Berlin, Germany
| | - Nadja Siebert
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin and CRO SOSTANA GmbH, Wildensteiner Straße 27, 10318, Berlin, Germany
| | - Friedemann Paul
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jan Dörr
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Current Affiliation: Multiple Sclerosis Center, Oberhavel Kliniken, Marwitzer Straße 91, 16761, Hennigsdorf, Germany
| | - Carmen Infante-Duarte
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany.
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
16
|
Landi D, Signori A, Cellerino M, Fenu G, Nicoletti CG, Ponzano M, Mancuso E, Fronza M, Ricchiuto ME, Boffa G, Inglese M, Marfia GA, Cocco E, Frau J. What happens after fingolimod discontinuation? A multicentre real-life experience. J Neurol 2021; 269:796-804. [PMID: 34136943 DOI: 10.1007/s00415-021-10658-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyse the course of multiple sclerosis (MS) after fingolimod withdrawal in a multicentre cohort. METHODS Patients who discontinued fingolimod were included. Relapses, Expanded Disability Status Scale (EDSS), and new/gadolinium-enhancing lesions on magnetic resonance imaging (MRI) were assessed during the last year on fingolimod, and in the year after discontinuation. Wilcoxon test was used to analyse the difference in EDSS and relapses between the two periods, and to compare lymphocyte counts at discontinuation and 3 months later. Demographic and clinical variables were evaluated using univariable and multivariable logistic regression analyses. RESULTS Patients were 230 (females 66.1%; mean age 38 years; median EDSS 3). Fingolimod was discontinued due to inefficacy in 57%, and 87.4% started another treatment. Relapse was observed in 33% of the patients in the year after discontinuation. Severe reactivation was observed in 15%. During the first 6 months after discontinuation, new/enhancing lesions were seen in 62/116 patients. Higher age at the fingolimod discontinuation was found to be associated with a lower probability of inflammatory activity (p = 0.001) and severe reactivation (p = 0.007) during the year after discontinuation. Lower lymphocyte count was a risk factor for clinical, radiological, and severe activity (p = 0.02, p = 0.002, p = 0.01, respectively). CONCLUSIONS The main reason for the discontinuation of fingolimod was inefficacy. One-third of the patients had a relapse during the year after discontinuation, 15% experienced a severe reactivation, and approximately 50% of patients with available MRI scan had new/enhancing lesions. The risk factors for disease activity after discontinuation were low lymphocyte count and younger age.
Collapse
Affiliation(s)
- Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giuseppe Fenu
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, University of Cagliari, Via Is Guadazzonis, 2, 09126, Cagliari, Italy
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Ponzano
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Elisabetta Mancuso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Marzia Fronza
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, University of Cagliari, Via Is Guadazzonis, 2, 09126, Cagliari, Italy
| | - Maria Elena Ricchiuto
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli, IS, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, University of Cagliari, Via Is Guadazzonis, 2, 09126, Cagliari, Italy
| | - Jessica Frau
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, University of Cagliari, Via Is Guadazzonis, 2, 09126, Cagliari, Italy.
| |
Collapse
|
17
|
Laroni A, Schiavetti I, Sormani MP, Uccelli A. COVID-19 in patients with multiple sclerosis undergoing disease-modifying treatments. Mult Scler 2020; 27:2126-2136. [PMID: 33205695 DOI: 10.1177/1352458520971817] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CoronaVirus Disease 19 (COVID-19) pandemic is a threat of particular concern for people affected by chronic immune-mediated diseases, such as multiple sclerosis (MS), who are often treated with immunomodulatory and immunosuppressive drugs, which may increase the risk of infections in general. At the beginning of the COVID-19 pandemic, empirical guidelines on how to manage treatments for immune-mediated diseases, including MS, were released. Subsequently, the first clinical pictures and data sets have been published, describing the outcomes of COVID-19 in patients with MS treated with immunomodulatory and immunosuppressive drugs. Here we will review available information on how infections by human coronaviruses affect the immune system in untreated subjects and in patients affected by MS treated with drugs which modulate the immune system.
Collapse
Affiliation(s)
- Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy/IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genova, Italy
| | - Maria Pia Sormani
- IRCCS Ospedale Policlinico San Martino, Genova, Italy/Department of Health Sciences, Section of Biostatistics, University of Genova, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy/IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
18
|
Comi G, Bar-Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, Sørensen PS, Hohlfeld R, Hauser SL. Role of B Cells in Multiple Sclerosis and Related Disorders. Ann Neurol 2020; 89:13-23. [PMID: 33091175 DOI: 10.1002/ana.25927] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The success of clinical trials of selective B-cell depletion in patients with relapsing multiple sclerosis (MS) and primary progressive MS has led to a conceptual shift in the understanding of MS pathogenesis, away from the classical model in which T cells were the sole central actors and toward a more complex paradigm with B cells having an essential role in both the inflammatory and neurodegenerative components of the disease process. The role of B cells in MS was selected as the topic of the 27th Annual Meeting of the European Charcot Foundation. Results of the meeting are presented in this concise review, which recaps current concepts underlying the biology and therapeutic rationale behind B-cell-directed therapeutics in MS, and proposes strategies to optimize the use of existing anti-B-cell treatments and provide future directions for research in this area. ANN NEUROL 2021;89:13-23.
Collapse
Affiliation(s)
- Giancarlo Comi
- Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Amit Bar-Or
- Department of Neurology, Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA
| | - Hans Lassmann
- Department of Neuroimmunology (Center for Brain Research), University Hospital Vienna, Vienna, Austria
| | - Antonio Uccelli
- Department of Neuroscience, Genetic Ophthalmology, and Infant Maternity Science, San Martino Polyclinic Hospital, Genoa, Italy
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xavier Montalban
- Neurology-Neuroimmunology Department and Neurorehabilitation Unit, Multiple Sclerosis Center of Catalonia, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Per Solberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University of Munich and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
19
|
The immune signatures of multiple sclerosis: Lessons from twin studies. Proc Natl Acad Sci U S A 2020; 117:24013-24015. [PMID: 32929024 DOI: 10.1073/pnas.2016711117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
20
|
Bäcker-Koduah P, Infante-Duarte C, Ivaldi F, Uccelli A, Bellmann-Strobl J, Wernecke KD, Sy M, Demetriou M, Dörr J, Paul F, Ulrich Brandt A. Effect of vitamin D supplementation on N-glycan branching and cellular immunophenotypes in MS. Ann Clin Transl Neurol 2020; 7:1628-1641. [PMID: 32830462 PMCID: PMC7480923 DOI: 10.1002/acn3.51148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the effect of cholecalciferol (vitamin D3) supplementation on peripheral immune cell frequency and N‐glycan branching in patients with relapsing‐remitting multiple sclerosis (RRMS). Methods Exploratory analysis of high‐dose (20 400 IU) and low‐dose (400 IU) vitamin D3 supplementation taken every other day of an 18‐month randomized controlled clinical trial including 38 RRMS patients on stable immunomodulatory therapy (NCT01440062). We investigated cholecalciferol treatment effects on N‐glycan branching using L‐PHA stain (phaseolus vulgaris leukoagglutinin) at 6 months and frequencies of T‐, B‐, and NK‐cell subpopulations at 12 months with flow cytometry. Results High‐dose supplementation did not change CD3+ T cell subsets, CD19+ B cells subsets, and NK cells frequencies, except for CD8+ T regulatory cells, which were reduced in the low‐dose arm compared to the high‐dose arm at 12 months. High‐dose supplementation decreased N‐glycan branching on T and NK cells, measured as L‐PHA mean fluorescence intensity (MFI). A reduction of N‐glycan branching in B cells was not significant. In contrast, low‐dose supplementation did not affect N‐glycan branching. Changes in N‐glycan branching did not correlate with cell frequencies. Interpretation Immunomodulatory effect of vitamin D may involve regulation of N‐glycan branching in vivo. Vitamin D3 supplementation did at large not affect the frequencies of peripheral immune cells.
Collapse
Affiliation(s)
- Priscilla Bäcker-Koduah
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, Berlin, Germany
| | - Federico Ivaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, CEBR University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, CEBR University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, NeuroCure Cluster of Excellence, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Institute of Biometry and Clinical Epidemiology, Charité -Universitatsmedizin Berlin and CRO SOSTANA GmbH, Berlin, Germany
| | - Michael Sy
- Department of Neurology, University of California, Irvine, CA, USA
| | | | - Jan Dörr
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Multiple Sclerosis Center Hennigsdorf, Oberhavel Clinics, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, NeuroCure Cluster of Excellence, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Ulrich Brandt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|