1
|
Mwale PF, Hsieh CT, Yen TL, Jan JS, Taliyan R, Yang CH, Yang WB. Chitinase-3-like-1: a multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications. Mol Neurodegener 2025; 20:7. [PMID: 39827337 PMCID: PMC11742494 DOI: 10.1186/s13024-025-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Chitinase-3-like-1 (CHI3L1) is an evolutionarily conserved protein involved in key biological processes, including tissue remodeling, angiogenesis, and neuroinflammation. It has emerged as a significant player in various neurodegenerative diseases and brain disorders. Elevated CHI3L1 levels have been observed in neurological conditions such as traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD), multiple sclerosis (MS), Neuromyelitis optica (NMO), HIV-associated dementia (HAD), Cerebral ischemic stroke (CIS), and brain tumors. This review explores the role of CHI3L1 in the pathogenesis of these disorders, with a focus on its contributions to neuroinflammation, immune cell infiltration, and neuronal degeneration. As a key regulator of neuroinflammation, CHI3L1 modulates microglia and astrocyte activity, driving the release of proinflammatory cytokines that exacerbate disease progression. In addition to its role in disease pathology, CHI3L1 has emerged as a promising biomarker for the diagnosis and monitoring of brain disorders. Elevated cerebrospinal fluid (CSF) levels of CHI3L1 have been linked to disease severity and cognitive decline, particularly in AD and MS, highlighting its potential for clinical diagnostics. Furthermore, therapeutic strategies targeting CHI3L1, such as small-molecule inhibitors and neutralizing antibodies, have shown promise in preclinical studies, demonstrating reduced neuroinflammation, amyloid plaque accumulation, and improved neuronal survival. Despite its therapeutic potential, challenges remain in developing selective and safe CHI3L1-targeted therapies, particularly in ensuring effective delivery across the blood-brain barrier and mitigating off-target effects. This review addresses the complexities of targeting CHI3L1, highlights its potential in precision medicine, and outlines future research directions aimed at unlocking its full therapeutic potential in treating neurodegenerative diseases and brain pathologies.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Cheng-Ta Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106438, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Jatczak-Pawlik I, Jurewicz A, Domowicz M, Ewiak-Paszyńska A, Stasiołek M. CHI3L1 in Multiple Sclerosis-From Bench to Clinic. Cells 2024; 13:2086. [PMID: 39768177 PMCID: PMC11674340 DOI: 10.3390/cells13242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with a complex and not fully understood etiopathological background involving inflammatory and neurodegenerative processes. CHI3L1 has been implicated in pathological conditions such as inflammation, injury, and neurodegeneration, and is likely to play a role in the physiological development of the CNS. CHI3L1 is primarily produced by CNS macrophages, microglia, and activated astrocytes. The CHI3L1 expression pattern in MS lesions might support the important role of astrocytes in modulating inflammatory processes in this disease. The potential applications of CHI3L1 as a biomarker in MS are multifactorial. The measurement of CHI3L1 in body fluids might find its role in the early diagnosis of MS. In further stages, the monitoring of CHI3L1 levels might provide information on disease severity and progression, enabling a better adjustment of therapeutic strategies. Importantly, CHI3L1 might potentially serve as a marker of ongoing glial activation, reflecting the dynamic response of the CNS cells to the inflammatory processes in MS. Although preliminary findings have been promising, further research is needed to validate the utility of CHI3L1 measurements in the diagnosis and prediction of the progression of MS. Additionally, comparisons with other biomarkers might be useful in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland; (I.J.-P.); (A.J.); (M.D.); (A.E.-P.)
| |
Collapse
|
3
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMID: 39769202 PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
4
|
Dankner M, Maritan SM, Priego N, Kruck G, Nkili-Meyong A, Nadaf J, Zhuang R, Annis MG, Zuo D, Nowakowski A, Biondini M, Kiepas A, Mourcos C, Le P, Charron F, Inglebert Y, Savage P, Théret L, Guiot MC, McKinney RA, Muller WJ, Park M, Valiente M, Petrecca K, Siegel PM. Invasive growth of brain metastases is linked to CHI3L1 release from pSTAT3-positive astrocytes. Neuro Oncol 2024; 26:1052-1066. [PMID: 38271182 PMCID: PMC11145453 DOI: 10.1093/neuonc/noae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.
Collapse
Affiliation(s)
- Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah M Maritan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Georgia Kruck
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rebecca Zhuang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew G Annis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marco Biondini
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Caitlyn Mourcos
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Phuong Le
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - François Charron
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Yanis Inglebert
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Paul Savage
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Louis Théret
- Research Institute of the University of Montreal (IRIC), Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - R Anne McKinney
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kevin Petrecca
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Schilke ED, Remoli G, Funelli E, Galimberti M, Fusco ML, Cereda D, Balducci C, Frigo M, Cavaletti G. Current use of fluid biomarkers as outcome measures in Multiple Sclerosis (MS): a review of ongoing pharmacological clinical trials. Neurol Sci 2024; 45:1931-1944. [PMID: 38117403 PMCID: PMC11021285 DOI: 10.1007/s10072-023-07228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
The present study aims to describe the state of the art of fluid biomarkers use in ongoing multiple sclerosis (MS) clinical trials.A review of 608 ongoing protocols in the clinicaltrials.gov and EudraCT databases was performed. The trials enrolled patients with a diagnosis of relapsing remitting MS, secondary progressive MS, and/or primary progressive MS according to Revised McDonald criteria or relapsing MS according to Lublin et al. (2014). The presence of fluid biomarkers among the primary and/or secondary study outcomes was assessed.Overall, 5% of ongoing interventional studies on MS adopted fluid biomarkers. They were mostly used as secondary outcomes in phase 3-4 clinical trials to support the potential disease-modifying properties of the intervention. Most studies evaluated neurofilament light chains (NfLs). A small number considered other novel fluid biomarkers of neuroinflammation and neurodegeneration such as glial fibrillary acid protein (GFAP).Considering the numerous ongoing clinical trials in MS, still a small number adopted fluid biomarkers as outcome measures, thus testifying the distance from clinical practice. In most protocols, fluid biomarkers were used to evaluate the effectiveness of approved second-line therapies, but also, new drugs (particularly Bruton kinase inhibitors). NfLs were also adopted to monitor disease progression after natalizumab suspension in stable patients, cladribine efficacy after anti-CD20 discontinuation, and the efficacy of autologous hematopoietic stem cell transplant (AHSCT) compared to medical treatment. Nevertheless, further validation studies are needed for all considered fluid biomarkers to access clinical practice, and cost-effectiveness in the "real word" remains to be clarified.
Collapse
Affiliation(s)
- Edoardo Dalmato Schilke
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy.
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy.
| | - Giulia Remoli
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Eugenio Funelli
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Michela Galimberti
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Maria Letizia Fusco
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Diletta Cereda
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Claudia Balducci
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Maura Frigo
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| | - Guido Cavaletti
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Desu HL, Sawicka KM, Wuerch E, Kitchin V, Quandt JA. A rapid review of differences in cerebrospinal neurofilament light levels in clinical subtypes of progressive multiple sclerosis. Front Neurol 2024; 15:1382468. [PMID: 38654736 PMCID: PMC11035744 DOI: 10.3389/fneur.2024.1382468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Multiple sclerosis (MS) is divided into three clinical phenotypes: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). It is unknown to what extent SPMS and PPMS pathophysiology share inflammatory or neurodegenerative pathological processes. Cerebrospinal (CSF) neurofilament light (NfL) has been broadly studied in different MS phenotypes and is a candidate biomarker for comparing MS subtypes. Research question Are CSF NfL levels different among clinical subtypes of progressive MS? Methods A search strategy identifying original research investigating fluid neurodegenerative biomarkers in progressive forms of MS between 2010 and 2022 was applied to Medline. Identified articles underwent title and abstract screen and full text review against pre-specified criteria. Data abstraction was limited to studies that measured NfL levels in the CSF. Reported statistical comparisons of NfL levels between clinical phenotypes were abstracted qualitatively. Results 18 studies that focused on investigating direct comparisons of CSF NfL from people with MS were included in the final report. We found NfL levels were typically reported to be higher in relapsing and progressive MS compared to healthy controls. Notably, higher NfL levels were not clearly associated with progressive MS subtypes when compared to relapsing MS, and there was no observed difference in NfL levels between PPMS and SPMS in articles that separately assessed these phenotypes. Conclusion CSF NfL levels distinguish individuals with MS from healthy controls but do not differentiate MS subtypes. Broad biological phenotyping is needed to overcome limitations of current clinical phenotyping and improve biomarker translatability to decision-making in the clinic.
Collapse
Affiliation(s)
- Haritha L. Desu
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Katherine M. Sawicka
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Emily Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kitchin
- University of British Columbia Library, Vancouver, BC, Canada
| | - Jacqueline A. Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Maroto-García J, Martínez-Escribano A, Delgado-Gil V, Mañez M, Mugueta C, Varo N, García de la Torre Á, Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin Chim Acta 2023; 548:117471. [PMID: 37419300 DOI: 10.1016/j.cca.2023.117471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Although there is currently no definite cure for MS, new therapies have recently been developed based on a continuous search for new biomarkers. DEVELOPMENT MS diagnosis relies on the integration of clinical, imaging and laboratory findings as there is still no singlepathognomonicclinical feature or diagnostic laboratory biomarker. The most commonly laboratory test used is the presence of immunoglobulin G oligoclonal bands (OCB) in cerebrospinal fluid of MS patients. This test is now included in the 2017 McDonald criteria as a biomarker of dissemination in time. Nevertheless, there are other biomarkers currently in use such as kappa free light chain, which has shown higher sensitivity and specificity for MS diagnosis than OCB. In addition, other potential laboratory tests involved in neuronal damage, demyelination and/or inflammation could be used for detecting MS. CONCLUSIONS CSF and serum biomarkers have been reviewed for their use in MS diagnosis and prognosis to stablish an accurate and prompt MS diagnosis, crucial to implement an adequate treatment and to optimize clinical outcomes over time.
Collapse
Affiliation(s)
- Julia Maroto-García
- Biochemistry Department, Clínica Universidad de Navarra, Spain; Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain.
| | - Ana Martínez-Escribano
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Laboratory Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-ARRIXACA, Murcia, Spain
| | - Virginia Delgado-Gil
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Minerva Mañez
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Carmen Mugueta
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Ángela García de la Torre
- Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Maximiliano Ruiz-Galdón
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
8
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
9
|
Li F, Liu A, Zhao M, Luo L. Astrocytic Chitinase-3-like protein 1 in neurological diseases: Potential roles and future perspectives. J Neurochem 2023; 165:772-790. [PMID: 37026513 DOI: 10.1111/jnc.15824] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein characterized by its ability to regulate multiple biological processes, such as the inflammatory response and gene transcriptional signaling activation. Abnormal CHI3L1 expression has been associated with multiple neurological disorders and serves as a biomarker for the early detection of several neurodegenerative diseases. Aberrant CHI3L1 expression is also reportedly associated with brain tumor migration and metastasis, as well as contributions to immune escape, playing important roles in brain tumor progression. CHI3L1 is synthesized and secreted mainly by reactive astrocytes in the central nervous system. Thus, targeting astrocytic CHI3L1 could be a promising approach for the treatment of neurological diseases, such as traumatic brain injury, ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and glioma. Based on current knowledge of CHI3L1, we assume that it acts as a molecule mediating several signaling pathways driving the initiation and progression of neurological disorders. This narrative review is the first to introduce the potential roles of astrocytic CHI3L1 in neurological disorders. We also equally explore astrocytic CHI3L1 mRNA expression under physiological and pathological conditions. Inhibiting CHI3L1 and disrupting its interaction with its receptors through multiple mechanisms of action are briefly discussed. These endeavors highlight the pivotal roles of astrocytic CHI3L1 in neurological disorders and could contribute to the development of effective inhibitors based on the strategy of structure-based drug discovery, which could be an attractive therapeutic approach for neurological disease treatment.
Collapse
Affiliation(s)
- Fei Li
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Pharmacy, The Hospital of 92880 Troops, PLA Navy, Zhoushan, Zhejiang, China
| | - An Liu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Shaanxi, Xi'an, China
| | - Lanxin Luo
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Shaanxi, Xi'an, China
| |
Collapse
|
10
|
Zhang F, Gao X, Liu J, Zhang C. Biomarkers in autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1111719. [PMID: 37090723 PMCID: PMC10113662 DOI: 10.3389/fimmu.2023.1111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The autoimmune diseases of the central nervous system (CNS) represent individual heterogeneity with different disease entities. Although clinical and imaging features make it possible to characterize larger patient cohorts, they may not provide sufficient evidence to detect disease activity and response to disease modifying drugs. Biomarkers are becoming a powerful tool due to their objectivity and easy access. Biomarkers may indicate various aspects of biological processes in healthy and/or pathological states, or as a response to drug therapy. According to the clinical features described, biomarkers are usually classified into predictive, diagnostic, monitoring and safety biomarkers. Some nerve injury markers, humoral markers, cytokines and immune cells in serum or cerebrospinal fluid have potential roles in disease severity and prognosis in autoimmune diseases occurring in the CNS, which provides a promising approach for clinicians to early intervention and prevention of future disability. Therefore, this review mainly summarizes the potential biomarkers indicated in autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
- Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
11
|
Abstract
This review aimed to elucidate protein biomarkers in body fluids, such as blood and cerebrospinal fluid (CSF), to identify those that may be used for early diagnosis of multiple sclerosis (MS), prediction of disease activity, and monitoring of treatment response among MS patients. The potential biomarkers elucidated in this review include neurofilament proteins (NFs), glial fibrillary acidic protein (GFAP), leptin, brain-derived neurotrophic factor (BDNF), chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine 13 (CXCL13), and osteopontin (OPN), with each biomarker playing a different role in MS. GFAP, leptin, and CHI3L1 levels were increased in MS patient groups compared to the control group. NFs are the most studied proteins in the MS field, and significant correlations with disease activity, future progression, and treatment outcomes are evident. GFAP CSF level shows a different pattern by MS subtype. Increased concentration of CHI3L1 in the blood/CSF of clinically isolated syndrome (CIS) is an independent predictive factor of conversion to definite MS. BDNF may be affected by chronic progression of MS. CHI3L1 has potential as a biomarker for early diagnosis of MS and prediction of disability progression, while CXCL13 has potential as a biomarker of prognosis of CIS and reflects MS disease activity. OPN was an indicator of disease severity. A periodic detailed patient evaluation should be performed for MS patients, and broadly and easily accessible biomarkers with higher sensitivity and specificity in clinical settings should be identified.
Collapse
Affiliation(s)
- Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
13
|
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 146:105035. [PMID: 36608917 DOI: 10.1016/j.neubiorev.2023.105035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is associated with cognitive impairment (CI) such as slowed information processing speed (IPS). Currently, no immunocellular or molecular markers have been established in cerebrospinal fluid and serum analysis as surrogate biomarkers with diagnostic or predictive value for the development of CI. This systematic review and meta-analysis aims to sum up the evidence regarding currently discussed markers for CI in MS. METHODS A literature search was conducted on molecular biomarkers of CI in MS, such as neurofilament light chain, chitinases, and vitamin D. RESULTS 5543 publications were screened, of which 77 entered the systematic review. 13 studies were included in the meta-analysis. Neurofilament light chain (CSF: rp = -0.294, p = 0.003; serum: rp = -0.137, p = 0.001) and serum levels of vitamin D (rp = 0.190, p = 0.014) were associated with IPS outcomes. CONCLUSIONS Neurofilament light chain and vitamin D are promising biomarkers to track impairments in IPS in MS. Further longitudinal research is needed to establish the use of molecular biomarkers to monitor cognitive decline.
Collapse
Affiliation(s)
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Germany
| | | |
Collapse
|
14
|
Zondra Revendova K, Starvaggi Cucuzza C, Manouchehrinia A, Khademi M, Bar M, Leppert D, Sandberg E, Ouellette R, Granberg T, Piehl F. Demographic and disease-related factors impact on cerebrospinal fluid neurofilament light chain levels in multiple sclerosis. Brain Behav 2023; 13:e2873. [PMID: 36573731 PMCID: PMC9847611 DOI: 10.1002/brb3.2873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neurofilament light (NfL) levels reflect inflammatory disease activity in multiple sclerosis (MS), but it is less clear if NfL also can serve as a biomarker for MS progression in treated patients without relapses and focal lesion accrual. In addition, it has not been well established if clinically effective treatment re-establishes an age and sex pattern for cerebrospinal fluid NfL (cNfL) as seen in controls, and to what degree levels are affected by disability level and magnetic resonance imaging (MRI) atrophy metrics. METHODS We included subjects for whom cNfL levels had been determined as per clinical routine or in clinical research, classified as healthy controls (HCs, n = 89), MS-free disease controls (DCs, n = 251), untreated MS patients (uMS; n = 296), relapse-free treated MS patients (tMS; n = 78), and ProTEct-MS clinical trial participants (pMS; n = 41). RESULTS Using linear regression, we found a positive association between cNfL and age, as well as lower concentrations among women, in all groups, except for uMS patients. In contrast, disability level in the entire MS cohort, or T1 and T2 lesion volumes, brain parenchymal fraction, thalamic fraction, and cortical thickness in the pMS trial cohort, did not correlate with cNfL concentrations. Furthermore, the cNfL levels in tMS and pMS groups did not differ. CONCLUSIONS In participants with MS lacking signs of inflammatory disease activity, disease modulatory therapy reinstates an age and sex cNfL pattern similar to that of control subjects. No significant association was found between cNfL levels and clinical worsening, disability level, or MRI metrics.
Collapse
Affiliation(s)
- Kamila Zondra Revendova
- Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Centre for Neurology, Academic Specialist Center, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Chiara Starvaggi Cucuzza
- Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Centre for Neurology, Academic Specialist Center, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Manouchehrinia
- Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Khademi
- Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michal Bar
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - David Leppert
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | - Elisabeth Sandberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Russell Ouellette
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Centre for Neurology, Academic Specialist Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
16
|
Pitt D, Lo CH, Gauthier SA, Hickman RA, Longbrake E, Airas LM, Mao-Draayer Y, Riley C, De Jager PL, Wesley S, Boster A, Topalli I, Bagnato F, Mansoor M, Stuve O, Kister I, Pelletier D, Stathopoulos P, Dutta R, Lincoln MR. Toward Precision Phenotyping of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200025. [PMID: 36041861 PMCID: PMC9427000 DOI: 10.1212/nxi.0000000000200025] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
Abstract
The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.
Collapse
Affiliation(s)
- David Pitt
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada.
| | - Chih Hung Lo
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Susan A Gauthier
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Richard A Hickman
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Erin Longbrake
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Laura M Airas
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Yang Mao-Draayer
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Claire Riley
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Philip Lawrence De Jager
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Sarah Wesley
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Aaron Boster
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Ilir Topalli
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Francesca Bagnato
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Mohammad Mansoor
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Olaf Stuve
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Ilya Kister
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Daniel Pelletier
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Panos Stathopoulos
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Ranjan Dutta
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| | - Matthew R Lincoln
- From the Yale University (David Pitt, C.H.L., E.L., M.M., M.R.L.), New Haven; Nanyang Technological University (C.H.L.), Singapore; Weill Cornell Medicine (S.A.G.), New York; Memorial Sloan Kettering Cancer Center (R.A.H.), New York; University of Turku (L.M.A.), Finland; University of Michigan Medical School (Y.M.-D.), Ann Arbor; Columbia University Medical Center (C.R., P.L.D.J., S.W.), New York; The Boster Center for Multiple Sclerosis (A.B.), Columbus, OH; Cerneris Inc (I.T.), Wilmington, DE; Vanderbilt University Medical Center (F.B.), Nashville, TN; University of Texas Southwestern Medical Center (O.S.), Dallas; NYU Langone Medical Center (I.K.), New York; University of Southern California (Daniel Pelletier), Los Angeles; National and Kapodistrian University of Athens Medical School (P.S.), Greece; Cleveland Clinic Lerner College of Medicine (R.D.), Case Western Reserve University, OH; and University of Toronto and St. Michael's Hospital (M.L.), ON, Canada
| |
Collapse
|
17
|
Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of Chitinase 3-like 1 as a Biomarker in Multiple Sclerosis: A Systematic Review and Meta-analysis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1164. [PMID: 35534236 PMCID: PMC9128043 DOI: 10.1212/nxi.0000000000001164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/17/2022] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is an autoimmune disease confined in the CNS, and its course is frequently subtle and variable. Therefore, predictive biomarkers are needed. In this scenario, we conducted a systematic review and meta-analysis to evaluate the reliability of chitinase 3-like 1 as a biomarker of MS. METHODS Research through the main scientific databases (PubMed, Scopus, Web of Science, and Cochrane Library) published from January 2010 to December 2020 was performed using the following keywords: "chitinase 3-like 1 and multiple sclerosis" and "YKL40 and multiple sclerosis." Articles were selected according to the 2020 updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines by 2 authors independently, and data were extracted; 20 of the 90 studies screened were included in the meta-analysis. The main efficacy measure was represented by the standardized mean difference of CSF and blood CHI3L1 levels; Review Manager version 5.4 and R software applications were used for analysis. RESULTS Higher levels of CHI3L1 were found in CSF of 673 patients with MS compared with 336 healthy controls (size-weighted mean difference [SMD] 50.88; 95% CI = 44.98-56.79; p < 0.00001) and in 461 patients with MS than 283 patients with clinically isolated syndrome (CIS) (SMD 28.18; 95% CI = 23.59-32.76; p < 0.00001). Mean CSF CHI3L1 levels were significantly higher in 561 converting than 445 nonconverting CIS (SMD 30.6; 95% CI = 28.31-32.93; p < 0.00001). CSF CHI3L1 levels were significantly higher in patients with primary progressive MS (PPMS) than in patients with relapsing-remitting MS (RRMS) (SMD 43.15; 95% CI = 24.41-61.90; p < 0.00001) and in patients with secondary progressive MS (SMD 41.86 with 95% CI = 32.39-51.33; p < 0.00001). CSF CHI3L1 levels in 407 patients with MS during remission phase of disease were significantly higher than those in 395 patients with MS with acute relapse (SMD 10.48; 95% CI = 08.51-12.44; p < 0.00001). The performances of CHI3L1 in blood for differentiating patients with MS from healthy controls were not significant (SMD 0.48; 95% CI = -1.18 to 2.14; p: 0.57). DISCUSSION CSF levels of CHI3L1 have a strong correlation with the MS pathologic course, in particular with the mechanism of progression of the disease; it helps to distinguish the PPMS from the RRMS. The potential role of CHI3L1 in serum needs to be further studied in the future.
Collapse
Affiliation(s)
- Stefano Floro
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Tiziana Carandini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Anna Margherita Pietroboni
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Milena Alessandra De Riz
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Elio Scarpini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Daniela Galimberti
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| |
Collapse
|
18
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
19
|
Berek K, Bsteh G, Auer M, Di Pauli F, Zinganell A, Berger T, Deisenhammer F, Hegen H. Cerebrospinal Fluid Findings in 541 Patients With Clinically Isolated Syndrome and Multiple Sclerosis: A Monocentric Study. Front Immunol 2021; 12:675307. [PMID: 34220821 PMCID: PMC8248497 DOI: 10.3389/fimmu.2021.675307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Reports on typical routine cerebrospinal fluid (CSF) findings are outdated owing to novel reference limits (RL) and revised diagnostic criteria of Multiple Sclerosis (MS). Objective To assess routine CSF parameters in MS patients and the frequency of pathologic findings by applying novel RL. Methods CSF white blood cells (WBC), CSF total protein (CSF-TP), CSF/serum albumin quotient (Qalb), intrathecal synthesis of immunoglobulins (Ig) A, M and G, oligoclonal IgG bands (OCB) were determined in patients with clinically isolated syndrome (CIS) and MS. Results Of 541 patients 54% showed CSF pleocytosis with a WBC count up to 40/μl. CSF cytology revealed lymphocytes, monocytes and neutrophils in 99%, 41% and 9% of patients. CSF-TP and Qalb were increased in 19% and 7% applying age-corrected RL as opposed to 34% and 26% with conventional RL. Quantitative intrathecal IgG, IgA and IgM synthesis were present in 65%, 14% and 21%; OCB in 95% of patients. WBC were higher in relapsing than progressive MS and predicted, together with monocytes, the conversion from CIS to clinically definite MS. Intrathecal IgG fraction was highest in secondary progressive MS. Conclusions CSF profile in MS varies across disease courses. Blood-CSF-barrier dysfunction and intrathecal IgA/IgM synthesis are less frequent when the novel RL are applied.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:642384. [PMID: 33889068 PMCID: PMC8055958 DOI: 10.3389/fnins.2021.642384] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease of the central nervous system characterized by demyelination and axonal damage. Diagnosis and prognosis are mainly assessed through clinical examination and neuroimaging. However, more sensitive biomarkers are needed to measure disease activity and guide treatment decisions in MS. Prompt and individualized management can reduce inflammatory activity and delay disease progression. Neurofilament Light chain (NfL), a neuron-specific cytoskeletal protein that is released into the extracellular fluid following axonal injury, has been identified as a biomarker of disease activity in MS. Measurement of NfL levels can capture the extent of neuroaxonal damage, especially in early stages of the disease. A growing body of evidence has shown that NfL in cerebrospinal fluid (CSF) and serum can be used as reliable indicators of prognosis and treatment response. More recently, NfL has been shown to facilitate individualized treatment decisions for individuals with MS. In this review, we discuss the characteristics that make NfL a highly informative biomarker and depict the available technologies used for its measurement. We further discuss the growing role of serum and CSF NfL in MS research and clinical settings. Finally, we address some of the current topics of debate regarding the use of NfL in clinical practice and examine the possible directions that this biomarker may take in the future.
Collapse
Affiliation(s)
- Carolina Ferreira-Atuesta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Saúl Reyes
- Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovanonni
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Sharmilee Gnanapavan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
21
|
Momtazmanesh S, Shobeiri P, Saghazadeh A, Teunissen CE, Burman J, Szalardy L, Klivenyi P, Bartos A, Fernandes A, Rezaei N. Neuronal and glial CSF biomarkers in multiple sclerosis: a systematic review and meta-analysis. Rev Neurosci 2021; 32:573-595. [PMID: 33594840 DOI: 10.1515/revneuro-2020-0145] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease associated with inflammatory demyelination and astroglial activation, with neuronal and axonal damage as the leading factors of disability. We aimed to perform a meta-analysis to determine changes in CSF levels of neuronal and glial biomarkers, including neurofilament light chain (NFL), total tau (t-tau), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein (GFAP), and S100B in various groups of MS (MS versus controls, clinically isolated syndrome (CIS) versus controls, CIS versus MS, relapsing-remitting MS (RRMS) versus progressive MS (PMS), and MS in relapse versus remission. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we included 64 articles in the meta-analysis, including 4071 subjects. For investigation of sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. Meta-analyses were performed for comparisons including at least three individual datasets. NFL, GFAP, t-tau, CHI3L1, and S100B were higher in MS and NFL, t-tau, and CHI3L1 were also elevated in CIS patients than controls. CHI3L1 was the only marker with higher levels in MS than CIS. GFAP levels were higher in PMS versus RRMS, and NFL, t-tau, and CHI3L1 did not differ between different subtypes. Only levels of NFL were higher in patients in relapse than remission. Meta-regression showed influence of sex and disease severity on NFL and t-tau levels, respectively and disease duration on both. Added to the role of these biomarkers in determining prognosis and treatment response, to conclude, they may serve in diagnosis of MS and distinguishing different subtypes.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Location VUmc, PK 2 BR 141, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joachim Burman
- Department of Neuroscience, Uppsala University Hospital, 75185Uppsala, Sweden
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725Szeged, Hungary
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00Prague 10, Czech Republic
| | - Adelaide Fernandes
- Department of Pharmacological Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003Lisbon, Portugal
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|