1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
de Boer A, van den Bosch AMR, Mekkes NJ, Fransen NL, Dagkesamanskaia E, Hoekstra E, Hamann J, Smolders J, Huitinga I, Holtman IR. Disentangling the heterogeneity of multiple sclerosis through identification of independent neuropathological dimensions. Acta Neuropathol 2024; 147:90. [PMID: 38771530 PMCID: PMC11108935 DOI: 10.1007/s00401-024-02742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Multiple sclerosis (MS) is a heterogeneous neurological disorder with regards to clinical presentation and pathophysiology. Here, we investigated the heterogeneity of MS by performing an exploratory factor analysis on quantitative and qualitative neuropathology data collected for 226 MS donors in the Netherlands Brain Bank autopsy cohort. Three promising dimensions were identified and subsequently validated with clinical, neuropathological, and genetic data. Dimension 1 ranged from a predominance of remyelinated and inactive lesions to extensive pathological changes, higher proportions of active and mixed lesions, and foamy microglia morphology. This pattern was positively correlated with more severe disease, the presence of B and T cells, and neuroaxonal damage. Scoring high on dimension 2 was associated with active lesions, reactive sites, and the presence of nodules. These donors had less severe disease, a specific pattern of cortical lesions, and MS risk variants in the human leukocyte antigen region, the latter indicating a connection between disease onset and this neuropathological dimension. Donors scoring high on dimension 3 showed increased lesional pathology with relatively more mixed and inactive lesions and ramified microglia morphology. This pattern was associated with longer disease duration, subpial cortical lesions, less involvement of the adaptive immune system, and less axonal damage. Taken together, the three dimensions may represent (1) demyelination and immune cell activity associated with pathological and clinical progression, (2) microglia (re)activity and possibly lesion initiation, and (3) loss of lesion activity and scar formation. Our findings highlight that a thorough understanding of the interplay between multiple pathological characteristics is crucial to understand the heterogeneity of MS pathology, as well as its association with genetic predictors and disease outcomes. The scores of donors on the dimensions can serve as an important starting point for further disentanglement of MS heterogeneity and translation into observations and interventions in living cohorts with MS.
Collapse
Affiliation(s)
- Alyse de Boer
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nienke J Mekkes
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nina L Fransen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ekaterina Dagkesamanskaia
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eric Hoekstra
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Inge R Holtman
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Ingelfinger F, Kuiper KL, Ulutekin C, Rindlisbacher L, Mundt S, Gerdes LA, Smolders J, van Luijn MM, Becher B. Twin study dissects CXCR3 + memory B cells as non-heritable feature in multiple sclerosis. MED 2024; 5:368-373.e3. [PMID: 38531361 PMCID: PMC11018360 DOI: 10.1016/j.medj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND In multiple sclerosis (MS), B cells are considered main triggers of the disease, likely as the result of complex interaction between genetic and environmental risk factors. Studies on monozygotic twins discordant for MS offer a unique way to reduce this complexity and reveal discrepant subsets. METHODS In this study, we analyzed B cell subsets in blood samples of monozygotic twins with and without MS using publicly available data. We verified functional characteristics by exploring the role of therapy and performed separate analyses in unrelated individuals. FINDINGS The frequencies of CXCR3+ memory B cells were reduced in the blood of genetically identical twins with MS compared to their unaffected twin siblings. Natalizumab (anti-VLA-4 antibody) was the only treatment regimen under which these frequencies were reversed. The CNS-homing features of CXCR3+ memory B cells were supported by elevated CXCL10 levels in MS cerebrospinal fluid and their in vitro propensity to develop into antibody-secreting cells. CONCLUSIONS Circulating CXCR3+ memory B cells are affected by non-heritable cues in people who develop MS. This underlines the requirement of environmental risk factors such as Epstein-Barr virus in triggering these B cells. We propose that after CXCL10-mediated entry into the CNS, CXCR3+ memory B cells mature into antibody-secreting cells to drive MS. FUNDING This work was supported by Nationaal MS Fonds (OZ2021-016), Stichting MS Research (19-1057 MS, 20-490f MS, and 21-1142 MS), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement no. 882424, and the Swiss National Science Foundation (733 310030_170320, 310030_188450, and CRSII5_183478).
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Kirsten L Kuiper
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
van den Bosch AMR, van der Poel M, Fransen NL, Vincenten MCJ, Bobeldijk AM, Jongejan A, Engelenburg HJ, Moerland PD, Smolders J, Huitinga I, Hamann J. Profiling of microglia nodules in multiple sclerosis reveals propensity for lesion formation. Nat Commun 2024; 15:1667. [PMID: 38396116 PMCID: PMC10891081 DOI: 10.1038/s41467-024-46068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.
Collapse
Affiliation(s)
- Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nina L Fransen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maria C J Vincenten
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Anneleen M Bobeldijk
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Perry D Moerland
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- MS Center ErasMS, Department of Neurology and Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Pukoli D, Vécsei L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int J Mol Sci 2023; 24:12631. [PMID: 37628811 PMCID: PMC10454160 DOI: 10.3390/ijms241612631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Immune cell infiltration can lead to permanent activation of macrophages and microglia in the parenchyma, resulting in demyelination and neurodegeneration. Thus, neurodegeneration that begins with acute lymphocytic inflammation may progress to chronic inflammation. This chronic inflammation is thought to underlie the development of so-called smouldering lesions. These lesions evolve from acute inflammatory lesions and are associated with continuous low-grade demyelination and neurodegeneration over many years. Their presence is associated with poor disease prognosis and promotes the transition to progressive MS, which may later manifest clinically as progressive MS when neurodegeneration exceeds the upper limit of functional compensation. In smouldering lesions, in the presence of only moderate inflammatory activity, a toxic environment is clearly identifiable and contributes to the progressive degeneration of neurons, axons, and oligodendrocytes and, thus, to clinical disease progression. In addition to the cells of the immune system, the development of oxidative stress in MS lesions, mitochondrial damage, and hypoxia caused by the resulting energy deficit and iron accumulation are thought to play a role in this process. In addition to classical immune mediators, this chronic toxic environment contains high concentrations of oxidants and iron ions, as well as the excitatory neurotransmitter glutamate. In this review, we will discuss how these pathobiochemical markers and mechanisms, alone or in combination, lead to neuronal, axonal, and glial cell death and ultimately to the process of neuroinflammation and neurodegeneration, and then discuss the concepts and conclusions that emerge from these findings. Understanding the role of these pathobiochemical markers would be important to gain a better insight into the relationship between the clinical classification and the pathomechanism of MS.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Esztergomi Vaszary Kolos Hospital, 2500 Esztergom, Hungary;
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Bogers L, Engelenburg HJ, Janssen M, Unger PPA, Melief MJ, Wierenga-Wolf AF, Hsiao CC, Mason MRJ, Hamann J, van Langelaar J, Smolders J, van Luijn MM. Selective emergence of antibody-secreting cells in the multiple sclerosis brain. EBioMedicine 2023; 89:104465. [PMID: 36796230 PMCID: PMC9958261 DOI: 10.1016/j.ebiom.2023.104465] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation. METHODS Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs). MS brain tissue sections were analysed with immunostainings and microarrays. IgG index and CSF oligoclonal bands were measured with nephelometry, isoelectric focusing, and immunoblotting. Blood-derived B cells were cocultured under T follicular helper-like conditions to evaluate their ASC-differentiating capacity in vitro. FINDINGS ASC versus B-cell ratios were increased in post-mortem CNS compartments of MS but not control donors. Local presence of ASCs associated with a mature CD45low phenotype, focal MS lesional activity, lesional Ig gene expression, and CSF IgG levels as well as clonality. In vitro B-cell maturation into ASCs did not differ between MS and control donors. Notably, lesional CD4+ memory T cells positively correlated with ASC presence, reflected by local interplay with T cells. INTERPRETATION These findings provide evidence that local B cells at least in late-stage MS preferentially mature into ASCs, which are largely responsible for intrathecal and local Ig production. This is especially seen in active MS white matter lesions and likely depends on the interaction with CD4+ memory T cells. FUNDING Stichting MS Research (19-1057 MS; 20-490f MS), National MS Fonds (OZ2018-003).
Collapse
Affiliation(s)
- Laurens Bogers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1007 MB, Amsterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Belimezi M, Kalliaropoulos A, Mentis AFA, Chrousos GP. Diagnostic significance of IgG and albumin indices versus oligoclonal band types in demyelinating disorders. J Clin Pathol 2023; 76:166-171. [PMID: 34526372 DOI: 10.1136/jclinpath-2021-207766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 11/04/2022]
Abstract
AIMS The laboratory diagnosis of demyelinating inflammatory disorders (DIDs) relies on both intrathecal oligoclonal band (OCB) positivity and IgG index. Although OCB typing remains the gold-standard test for DIDs, it can be laborious and ambiguous, complicating diagnostics, and unduly increasing diagnostic time. We examined whether serum or cerebrospinal fluid (CSF) parameters can classify OCB types and, thus, be used as a replacement test to standard OCB typing. METHODS We retrospectively analysed >1000 prospectively collected samples of patients with DIDs and quantified albumin and IgG levels in the CSF and serum. We determined OCB types by isoelectric focusing combined with immunofixation and evaluated the diagnostic accuracies of IgG and albumin indices in discriminating OCB types by receiver operating characteristic curves and multinomial regression. RESULTS An IgG index cut-off of 0.589 differentiated types 2/3 from types 1/4 (area under the curve 0.780, 95% CI 0.761 to 0.812, p<0.001; specificity: 71.10%, sensitivity: 73.45%). Albumin quotient cut-off values of 6.625 and of 6.707 discriminated type 1 from type 4 and type 2 from type 3, respectively (specificity: <55%, sensitivity: <75%). Female sex, age, IgG index, CSF IgG and serum albumin were associated with different OCB types. CONCLUSIONS Our study reveals that IgG and albumin index can differentiate OCB types with adequate accuracy, especially if refined by age and gender.
Collapse
Affiliation(s)
- Maria Belimezi
- Diagnostic Services Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Alexios-Fotios A Mentis
- Diagnostic Services Laboratory, Hellenic Pasteur Institute, Athens, Greece .,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
de Mol CL, van Luijn MM, Kreft KL, Looman KIM, van Zelm MC, White T, Moll HA, Smolders J, Neuteboom RF. Multiple sclerosis risk variants influence the peripheral B-cell compartment early in life in the general population. Eur J Neurol 2023; 30:434-442. [PMID: 36169606 PMCID: PMC10092523 DOI: 10.1111/ene.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/09/2022] [Accepted: 09/23/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is associated with abnormal B-cell function, and MS genetic risk alleles affect multiple genes that are expressed in B cells. However, how these genetic variants impact the B-cell compartment in early childhood is unclear. In the current study, we aim to assess whether polygenic risk scores (PRSs) for MS are associated with changes in the blood B-cell compartment in children from the general population. METHODS Six-year-old children from the population-based Generation R Study were included. Genotype data were used to calculate MS-PRSs and B-cell subset-enriched MS-PRSs, established by designating risk loci based on expression and function. Analyses of variance were performed to examine the effect of MS-PRSs on total B-cell numbers (n = 1261) as well as naive and memory subsets (n = 675). RESULTS After correction for multiple testing, no significant associations were observed between MS-PRSs and total B-cell numbers and frequencies of subsets therein. A naive B-cell-MS-PRS (n = 26 variants) was significantly associated with lower relative, but not absolute, naive B-cell numbers (p = 1.03 × 10-4 and p = 0.82, respectively), and higher frequencies and absolute numbers of CD27+ memory B cells (p = 8.83 × 10-4 and p = 4.89 × 10-3 , respectively). These associations remained significant after adjustment for Epstein-Barr virus seropositivity and the HLA-DRB1*15:01 genotype. CONCLUSIONS The composition of the blood B-cell compartment is associated with specific naive B-cell-associated MS risk variants during childhood, possibly contributing to MS pathophysiology later in life. Cell subset-specific PRSs may offer a more sensitive tool to define the impact of genetic risk on the immune system in diseases such as MS.
Collapse
Affiliation(s)
- Casper L de Mol
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Karim L Kreft
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kirsten I M Looman
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Henriette A Moll
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rinze F Neuteboom
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Kuhlmann T, Antel J. Multiple sclerosis: 2023 update. FREE NEUROPATHOLOGY 2023; 4:3. [PMID: 37283934 PMCID: PMC10209995 DOI: 10.17879/freeneuropathology-2023-4675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/01/2023] [Indexed: 06/08/2023]
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the Central Nervous System (CNS). Significant progress has been made during recent years in preventing relapses by using systemic immunomodulatory or immunosuppressive therapies. However, the limited effectiveness of such therapies for controlling the progressive disease course indicates there is a continuous disease progression independent of relapse activity which may start very early during the disease course. Dissecting the underlying mechanisms and developing therapies for preventing or stopping this disease progression represent, currently, the biggest challenges in the field of MS. Here, we summarize publications of 2022 which provide insight into susceptibility to MS, the basis of disease progression and features of relatively recently recognized distinct forms of inflammatory/demyelinating disorders of the CNS, such as myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD).
Collapse
Affiliation(s)
- Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, 3801 Québec, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, 3801 Québec, Canada
| |
Collapse
|
12
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | | | - Katelijn M. Blok
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Ursula Boschert
- Ares Trading SA, Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Joost Smolders
- Department of Immunology and
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
13
|
Lassmann H. The Contribution of Neuropathology to Multiple Sclerosis Research. Eur J Neurol 2022; 29:2869-2877. [PMID: 35427431 PMCID: PMC9544263 DOI: 10.1111/ene.15360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hans Lassmann
- Center for Brain Research Medical University of Vienna Austria
| |
Collapse
|
14
|
Ahmed SM, Fransen NL, Touil H, Michailidou I, Huitinga I, Gommerman JL, Bar-Or A, Ramaglia V. Accumulation of meningeal lymphocytes correlates with white matter lesion activity in progressive multiple sclerosis. JCI Insight 2022; 7:151683. [PMID: 35104246 PMCID: PMC8983127 DOI: 10.1172/jci.insight.151683] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Subpial cortical demyelination is an important component of multiple sclerosis (MS) pathology contributing to disease progression, yet mechanism(s) underlying its development remain unclear. Compartmentalized inflammation involving the meninges may drive this type of injury. Given recent findings identifying substantial white matter (WM) lesion activity in patients with progressive MS, elucidating whether and how WM lesional activity relates to meningeal inflammation and subpial cortical injury is of interest. Using postmortem FFPE tissue blocks (range, 5-72 blocks; median, 30 blocks) for each of 27 patients with progressive MS, we assessed the relationship between meningeal inflammation, the extent of subpial cortical demyelination, and the state of subcortical WM lesional activity. Meningeal accumulations of T cells and B cells, but not myeloid cells, were spatially adjacent to subpial cortical lesions, and greater immune cell accumulation was associated with larger subpial lesion areas. Patients with a higher extent of meningeal inflammation harbored a greater proportion of active and mixed active/inactive WM lesions and an overall lower proportion of inactive and remyelinated WM lesions. Our findings support the involvement of meningeal lymphocytes in subpial cortical injury and point to a potential link between inflammatory subpial cortical demyelination and pathological mechanisms occurring in the subcortical WM.
Collapse
Affiliation(s)
- Shanzeh M. Ahmed
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nina L. Fransen
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Meibergdreef, Amsterdam, Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hanane Touil
- Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Einthovenweg, Leiden, Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Meibergdreef, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
B cells in central nervous system disease: diversity, locations and pathophysiology. Nat Rev Immunol 2022; 22:513-524. [PMID: 34903877 PMCID: PMC8667979 DOI: 10.1038/s41577-021-00652-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
B cells represent a relatively minor cell population within both the healthy and diseased central nervous system (CNS), yet they can have profound effects. This is emphasized in multiple sclerosis, in which B cell-depleting therapies are arguably the most efficacious treatment for the condition. In this Review, we discuss how B cells enter and persist in the CNS and how, in many neurological conditions, B cells concentrate within CNS barriers but are rarely found in the parenchyma. We highlight how B cells can contribute to CNS pathology through antibody secretion, antigen presentation and secretion of neurotoxic molecules, using examples from CNS tumours, CNS infections and autoimmune conditions such as neuromyelitis optica and, in particular, multiple sclerosis. Overall, understanding common and divergent principles of B cell accumulation and their effects within the CNS could offer new insights into treating these devastating neurological conditions.
Collapse
|
16
|
Vanderdonckt P, Aloisi F, Comi G, de Bruyn A, Hartung HP, Huitinga I, Kuhlmann T, Lucchinetti CF, Metz I, Reynolds R, Lassmann H. OUP accepted manuscript. Brain Commun 2022; 4:fcac094. [PMID: 35480225 PMCID: PMC9039502 DOI: 10.1093/braincomms/fcac094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/04/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although major progress in multiple sclerosis research has been made during the last decades, key questions related to the cause and the mechanisms of brain and spinal cord pathology remain unresolved. These cover a broad range of topics, including disease aetiology, antigenic triggers of the immune response inside and/or outside the CNS and mechanisms of inflammation, demyelination neurodegeneration and tissue repair. Most of these questions can be addressed with novel molecular technologies in the injured CNS. Access to brain and spinal cord tissue from multiple sclerosis patients is, therefore, of critical importance. High-quality tissue is provided in part by the existing brain banks. However, material from early and highly active disease stages is limited. An initiative, realized under the patronage of the European Charcot Foundation, gathered together experts from different disciplines to analyse the current state of multiple sclerosis tissues collected post-mortem or as biopsies. Here, we present an account of what material is currently available and where it can be accessed. We also provide recommendations on how tissue donation from patients in early disease stages could be potentially increased and for procedures of tissue sampling and preservation. We also suggest to create a registry of the available tissues that, depending on the source (autopsy versus biopsy), could be made accessible to clinicians and researchers.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Comi
- Centro Sclerosi Multipla Ospedale Gallarate and European Charcot Foundation, San Rafaele Scientific Institute, Milano, Italy
| | | | - Hans-Peter Hartung
- Department of Neurology UKD, Germany Medical Faculty, Heinrich Heine Universität, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Camperdown, Australia
- Department of Neurology, University of Vienna, Wien, Austria
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Tanja Kuhlmann
- Institut für Neuropathologie, Universitätsklinikum Münster/UKM, Münster, Germany
| | | | - Imke Metz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria
- Correspondence to: Hans Lassmann Center for Brain Research Medical University of Vienna Spitalgasse 4, A-1090 Wien, Austria E-mail:
| |
Collapse
|
17
|
Janssen M, Rijvers L, Koetzier SC, Wierenga-Wolf AF, Melief MJ, van Langelaar J, Runia TF, de Groot CJM, Neuteboom R, Smolders J, van Luijn MM. Pregnancy-induced effects on memory B-cell development in multiple sclerosis. Sci Rep 2021; 11:12126. [PMID: 34108575 PMCID: PMC8190290 DOI: 10.1038/s41598-021-91655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/01/2022] Open
Abstract
In MS, pathogenic memory B cells infiltrate the brain and develop into antibody-secreting cells. Chemokine receptors not only define their brain-infiltrating capacity, but also assist in their maturation in germinal centers. How this corresponds to pregnancy, as a naturally occurring modifier of MS, is underexplored. Here, we aimed to study the impact of pregnancy on both ex vivo and in vitro B-cell differentiation in MS. The composition and outgrowth of peripheral B cells were compared between 19 MS pregnant patients and 12 healthy controls during the third trimester of pregnancy (low relapse risk) and postpartum (high relapse risk). Transitional, and not naive mature, B-cell frequencies were found to drop in the third trimester, which was most prominent in patients who experienced a pre-pregnancy relapse. Early after delivery, these frequencies raised again, while memory B -cell frequencies modestly declined. CXCR4 was downregulated and CXCR5, CXCR3 and CCR6 were upregulated on postpartum memory B cells, implying enhanced recruitment into germinal center light zones for interaction with T follicular helper (TFH) cells. Postpartum memory B cells of MS patients expressed higher levels of CCR6 and preferentially developed into plasma cells under TFH-like in vitro conditions. These findings imply that memory B- cell differentiation contributes to postpartum relapse risk in MS.
Collapse
Affiliation(s)
- Malou Janssen
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Liza Rijvers
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Steven C Koetzier
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Tessel F Runia
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Christianne J M de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Rinze Neuteboom
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands. .,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Holloman JP, Axtell RC, Monson NL, Wu GF. The Role of B Cells in Primary Progressive Multiple Sclerosis. Front Neurol 2021; 12:680581. [PMID: 34163430 PMCID: PMC8215437 DOI: 10.3389/fneur.2021.680581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The success of ocrelizumab in reducing confirmed disability accumulation in primary progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells as causal agents in the pathogenesis of PPMS. This review explores the possible mechanisms by which B cells contribute to disease progression in PPMS, specifically exploring cytokine production, antigen presentation, and antibody synthesis. B cells may contribute to disease progression in PPMS through cytokine production, specifically GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS. In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production of IL-10 may contribute to disease worsening. B cells are also capable of potent antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate interactions. B cells may also contribute to disease activity via antibody synthesis, although it's unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement. Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS.
Collapse
Affiliation(s)
- Jameson P Holloman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert C Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, United States.,Department of Immunology, University of Texas Southwestern, Dallas, TX, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|