1
|
Drake SS, Mohammadnia A, Zaman A, Gianfelice C, Heale K, Groh AMR, Hua EML, Hintermayer MA, Lu YR, Gosselin D, Zandee S, Prat A, Stratton JA, Sinclair DA, Fournier AE. Cellular rejuvenation protects neurons from inflammation-mediated cell death. Cell Rep 2025; 44:115298. [PMID: 39937646 DOI: 10.1016/j.celrep.2025.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal ganglion cells (RGCs) in experimental autoimmune encephalomyelitis (EAE) mice. Pathway analysis identifies a transcriptional signature reminiscent of aged RGCs with some senescent features, with a comparable signature present in neurons from patients with MS. This is supported by immunostaining demonstrating alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4-Sox2-Klf4 adeno-associated virus (AAV) to rejuvenate the transcriptome enhances RGC survival in EAE and improves visual acuity. Collectively, these data reveal an aging-like phenotype in neurons under pathological neuroinflammation and support the possibility that rejuvenation therapies or senotherapeutic agents could offer a direct avenue for neuroprotection in neuroimmune disorders.
Collapse
Affiliation(s)
- Sienna S Drake
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Abdulshakour Mohammadnia
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Aliyah Zaman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Christine Gianfelice
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Kali Heale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Elizabeth M-L Hua
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Matthew A Hintermayer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Yuancheng Ryan Lu
- Department of Genetics, Bavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David Gosselin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V4G2, Canada
| | - Stephanie Zandee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X0A9, Canada
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X0A9, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - David A Sinclair
- Department of Genetics, Bavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| |
Collapse
|
2
|
Bsteh G, Hegen H, Krajnc N, Föttinger F, Altmann P, Auer M, Berek K, Kornek B, Leutmezer F, Macher S, Monschein T, Ponleitner M, Rommer P, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Deisenhammer F, Di Pauli F, Pemp B, Berger T. Retinal thinning differentiates treatment effects in relapsing multiple sclerosis below the clinical threshold. Ann Clin Transl Neurol 2025; 12:345-354. [PMID: 39686570 PMCID: PMC11822785 DOI: 10.1002/acn3.52279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE To investigate retinal layer thinning as a biomarker of disease-modifying treatment (DMT) effects in relapsing multiple sclerosis (RMS). METHODS From an ongoing prospective observational study, we included patients with RMS, who (i) had an optical coherence tomography (OCT) scan within 6 to 12 months after DMT start (rebaseline) and ≥1 follow-up OCT ≥12 months after rebaseline and (ii) adhered to DMT during follow-up. Differences between DMT in thinning of peripapillary-retinal-nerve-fiber-layer (pRNFL) and macular ganglion cell-plus-inner plexiform-layer (GCIPL) were analyzed using mixed-effects linear regression. Eyes suffering optic neuritis during follow-up were excluded. RESULTS We included 291 RMS patients (mean age 30.8 years [SD 7.9], 72.9% female, median disease duration 9 months [range 6-94], median rebaseline-to-last-follow-up-interval 32 months [12-82]). Mean annualized rates of retinal layer thinning (%/year) in reference to DMF (n = 84, GCIPL 0.28, pRNFL 0.53) were similar under TERI (n = 18, GCIPL 0.34, pRNFL 0.59), GLAT (n = 24, GCIPL 0.32, pRNFL 0.56), and IFNb (n = 13, GCIPL 0.33, pRNFL 0.60) were slightly lower under S1PM (n = 27, GCIPL 0.19, pRNFL 0.42) and CLA (n = 23, GCIPL 0.20, pRNFL 0.42), and were significantly lower under NTZ (n = 47, GCIPL 0.09, pRNFL 0.24; both p < 0.001) and antiCD20 (n = 55, GCIPL 0.10, pRNFL 0.23; both p < 0.001). In patients achieving NEDA-2, observed thinning rates were lower overall, but still significantly lower under NTZ and antiCD20. INTERPRETATION Applying a rebaselining concept, retinal layer thinning differentiates DMT effects even in clinically stable patients and, thus, might be a useful biomarker to monitor DMT efficacy on subclinical neuroaxonal degeneration-at least on a group level.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Harald Hegen
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Patrick Altmann
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Michael Auer
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Klaus Berek
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Stefan Macher
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Monschein
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Markus Ponleitner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Christiane Schmied
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Karin Zebenholzer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gudrun Zulehner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | | | | | - Berthold Pemp
- Department of OphthalmologyMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Adibi A, Adibi I, Javidan M. Effect of Different Treatments on Retinal Thickness Changes in Patients With Multiple Sclerosis: A Review. CNS Neurosci Ther 2025; 31:e70225. [PMID: 39853938 PMCID: PMC11759887 DOI: 10.1111/cns.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder affecting the central nervous system, with varying clinical manifestations such as optic neuritis, sensory disturbances, and brainstem syndromes. Disease progression is monitored through methods like MRI scans, disability scales, and optical coherence tomography (OCT), which can detect retinal thinning, even in the absence of optic neuritis. MS progression involves neurodegeneration, particularly trans-synaptic degeneration, which extends beyond the initial injury site. This review focuses on the impact of different MS treatments on retinal thickness as assessed by OCT. RESULTS Injectable drugs, such as interferon beta and glatiramer acetate (GA), have a relatively modest impact on retinal atrophy. Oral medications like Fingolimod, Teriflunomide, and Dimethyl fumarate also have different impacts on retinal thickness. Fingolimod has been shown to protect against retinal thinning but may lead to macular edema. DMF-treated patients had less ganglion cell-inner plexiform layer thinning than GA-treated patients but more thinning compared to natalizumab-treated patients and healthy controls. Teriflunomide's impact on retinal layers remains unexplored in human studies. Monoclonal antibodies, including Alemtuzumab, Rituximab, Ocrelizumab, and Natalizumab, had protective effects on retinal layer atrophy. Alemtuzumab-treated patients showed significantly less atrophy compared to interferon- and GA-treated patients. Rituximab initially increased atrophy rates in the first months but subsequently demonstrated potential neuroprotective effects. Ocrelizumab slowed the rate of inner nuclear layer thinning in progressive forms of the disease. Natalizumab is considered the most effective in reducing retinal layer atrophy, particularly the peripapillary retinal nerve fiber layer. CONCLUSIONS It's important to note that the effectiveness of these treatments may vary depending on MS subtype and individual factors. Future research should explore the long-term effects of these treatments on retinal layers and their correlations with overall disease progression and disability in MS patients.
Collapse
Affiliation(s)
- Armin Adibi
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
- Neuroscience Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Iman Adibi
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
- Neuroscience Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Milad Javidan
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
- Neuroscience Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
4
|
Sandgren S, Novakova L, Nordin A, Sabir H, Axelsson M, Malmeström C, Zetterberg H, Lycke J. The effect of alemtuzumab on neurodegeneration in relapsing-remitting multiple sclerosis: A five-year prospective mono-center study. Mult Scler Relat Disord 2024; 91:105894. [PMID: 39293124 DOI: 10.1016/j.msard.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is an inflammatory and neurodegenerative disease. After two or more short courses of alemtuzumab (ALZ), an immune reconstitution is achieved, which long-term results in reduced disease activity. We aimed to investigate the effect of ALZ on measures of neurodegeneration (i.e., brain atrophy, and retinal layer thinning). METHODS We designed an observational prospective mono-center study in RRMS patients initiating ALZ treatment. Patients were assessed at baseline (month 0) and thereafter annually for five years with clinical measures, synthetic magnetic resonance imaging (SyMRI) and optical coherence tomography (OCT), with a re-baseline SyMRI scan and an OCT exam 24 months after initiating ALZ. Persons with neurological symptoms but without evidence of neurological disease served as symptomatic controls (SCs, n = 27). RESULTS Forty-nine RRMS patients were included. Baseline median expanded disability status scale [2.0 (IQR 1.5)] was unchanged during follow-up, 71 % were progression-free, 33 % achieved no evidence of disease activity-3 (NEDA-3). Between baseline and month 60, SyMRI showed a reduction of brain parenchymal fraction (BPF) and grey matter (GM) volume in patients. The BPF reduction was greater in RRMS patients than in SCs (p < 0.05), and more pronounced in patients with high pre-baseline disease activity than in those without (p < 0.01). OCT showed significant thinning of macular ganglion cell and inner plexiform layers (mGCIPL) and in peripapillary retinal nerve fiber layer (pRNFL) in patients. In contrast, absolute values of white matter (WM) volume and myelin content (MyC) quantified by SyMRI, were stable or increased after re-baseline (month 24) and up to month 60, and this increase appeared limited to patients without high pre-baseline disease activity and to patients with NEDA-3 or disability worsening during follow-up. A strong positive correlation between WM volume and GM volume at baseline was lost after ALZ intervention for their delta values, i.e., change from re-baseline (month 24) to month 60. While the positive baseline correlation between WM volume and MyC increased for their delta values, the positive baseline correlation between GM volume and MyC changed to negative for their delta values. CONCLUSION We showed that neurodegeneration continued in RRMS patients under ALZ treatment, but it appeared to be limited to BPF and GM, and more pronounced in patients with disease activity. Our data suggest that patients who respond to ALZ treatment show signs of remyelination. OCT and SyMRI have potential to quantify measures of neurodegeneration that is affected by treatment intervention in RRMS.
Collapse
Affiliation(s)
- Sofia Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Hemin Sabir
- Department of Neurology and Ophthalmology outpatient clinics, Hallands Hospital Kungsbacka, SE-434 80 Kungsbacka, Sweden.
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden; Laboratory for Clinical Immunology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden; Department of Neurodegenerative Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom; United Kingdom (UK) Dementia Research Institute at University College London (UCL), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska, Department of Neurology, Region Västra Götaland, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
5
|
Bsteh G, Hegen H, Krajnc N, Föttinger F, Altmann P, Auer M, Berek K, Kornek B, Leutmezer F, Macher S, Monschein T, Ponleitner M, Rommer P, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Deisenhammer F, Di Pauli F, Pemp B, Berger T. Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis-Evidence for applying a rebaselining concept. Mult Scler 2024; 30:1128-1138. [PMID: 39109593 DOI: 10.1177/13524585241267257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Employing a rebaselining concept may reduce noise in retinal layer thinning measured by optical coherence tomography (OCT). METHODS From an ongoing prospective observational study, we included patients with relapsing multiple sclerosis (RMS), who had OCT scans at disease-modifying treatment (DMT) start (baseline), 6-12 months after baseline (rebaseline), and ⩾12 months after rebaseline. Mean annualized percent loss (aL) rates (%/year) were calculated both from baseline and rebaseline for peripapillary-retinal-nerve-fiber-layer (aLpRNFLbaseline/aLpRNFLrebaseline) and macular-ganglion-cell-plus-inner-plexiform-layer (aLGCIPLbaseline/aLGCIPLrebaseline) by mixed-effects linear regression models. RESULTS We included 173 RMS patients (mean age 31.7 years (SD 8.8), 72.8% female, median disease duration 15 months (12-94) median baseline-to-last-follow-up-interval 37 months (18-71); 56.6% moderately effective DMT (M-DMT), 43.4% highly effective DMT (HE-DMT)). Both mean aLpRNFLbaseline and aLGCIPLbaseline significantly increased in association with relapse (0.51% and 0.26% per relapse, p < 0.001, respectively) and disability worsening (1.10% and 0.48%, p < 0.001, respectively) before baseline, but not with DMT class. Contrarily, neither aLpRNFLrebaseline nor aLGCIPLrebaseline was dependent on relapse or disability worsening before baseline, while HE-DMT significantly lowered aLpRNFLrebaseline (by 0.31%, p < 0.001) and aLGCIPLrebaseline (0.25%, p < 0.001) compared with M-DMT. CONCLUSIONS Applying a rebaselining concept significantly improves differentiation of DMT effects on retinal layer thinning by avoiding carry-over confounding from previous disease activity.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fabian Föttinger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Monschein
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Berthold Pemp
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Torbus M, Niewiadomska E, Dobrakowski P, Papuć E, Rybus-Kalinowska B, Szlacheta P, Korzonek-Szlacheta I, Kubicka-Bączyk K, Łabuz-Roszak B. The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. J Clin Med 2022; 12:jcm12010093. [PMID: 36614893 PMCID: PMC9821099 DOI: 10.3390/jcm12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of the study was to assess the usefulness of optical coherence tomography (OCT) in the detection of the neurodegenerative process in younger patients with multiple sclerosis (MS). The study group consisted of 61 patients with a relapsing remitting course of MS (mean age 36.4 ± 6.7 years) divided into two groups: short (≤5 years) and long (>10 years) disease duration. OCT, P300 evoked potential, Montreal Cognitive Assessment, and performance subtests (Picture Completion and Digit Symbol) of the Wechsler Adult Intelligence Scale were performed in all patients. Mean values of most parameters assessed in OCT (pRNFL Total, pRNFL Inferior, pRNFL Superior, pRNFL Temporalis, mRNFL, GCIPL, mRNFL+GCIPL) were significantly lower in MS patients in comparison to controls. And in patients with longer disease duration in comparison to those with shorter. Most OCT parameters negatively correlated with the EDSS score (p < 0.05). No significant correlation was found between OCT results and both P300 latency and the results of psychometric tests. OCT, as a simple, non-invasive, quick, and inexpensive method, could be useful for monitoring the progression of disease in MS patients.
Collapse
Affiliation(s)
- Magdalena Torbus
- Institute of Psychology, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland
| | - Ewa Niewiadomska
- Department of Biostatistics, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Dobrakowski
- Institute of Psychology, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland
| | - Ewa Papuć
- Department of Neurology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Barbara Rybus-Kalinowska
- Department of Basic Medical Sciences, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Patryk Szlacheta
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ilona Korzonek-Szlacheta
- Department of Prevention of Metabolic Diseases, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kubicka-Bączyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Beata Łabuz-Roszak
- Department of Neurology, Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland
- Correspondence:
| |
Collapse
|
9
|
Treatment with MDL 72527 Ameliorated Clinical Symptoms, Retinal Ganglion Cell Loss, Optic Nerve Inflammation, and Improved Visual Acuity in an Experimental Model of Multiple Sclerosis. Cells 2022; 11:cells11244100. [PMID: 36552864 PMCID: PMC9776605 DOI: 10.3390/cells11244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple Sclerosis (MS) is a highly disabling neurological disease characterized by inflammation, neuronal damage, and demyelination. Vision impairment is one of the major clinical features of MS. Previous studies from our lab have shown that MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX), is protective against neurodegeneration and inflammation in the models of diabetic retinopathy and excitotoxicity. In the present study, utilizing the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined the impact of SMOX blockade on retinal neurodegeneration and optic nerve inflammation. The increased expression of SMOX observed in EAE retinas was associated with a significant loss of retinal ganglion cells, degeneration of synaptic contacts, and reduced visual acuity. MDL 72527-treated mice exhibited markedly reduced motor deficits, improved neuronal survival, the preservation of synapses, and improved visual acuity compared to the vehicle-treated group. The EAE-induced increase in macrophage/microglia was markedly reduced by SMOX inhibition. Upregulated acrolein conjugates in the EAE retina were decreased through MDL 72527 treatment. Mechanistically, the EAE-induced ERK-STAT3 signaling was blunted by SMOX inhibition. In conclusion, our studies demonstrate the potential benefits of targeting SMOX to treat MS-mediated neuroinflammation and vision loss.
Collapse
|
10
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
11
|
3-Dimensional Immunostaining and Automated Deep-Learning Based Analysis of Nerve Degeneration. Int J Mol Sci 2022; 23:ijms232314811. [PMID: 36499143 PMCID: PMC9739543 DOI: 10.3390/ijms232314811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease driven by inflammation and demyelination in the brain, spinal cord, and optic nerve. Optic neuritis, characterized by inflammation and demyelination of the optic nerve, is a symptom in many patients with MS. The optic nerve is the highway for visual information transmitted from the retina to the brain. It contains axons from the retinal ganglion cells (RGCs) that reside in the retina, myelin forming oligodendrocytes and resident microglia and astrocytes. Inflammation, demyelination, and axonal degeneration are also present in the optic nerve of mice subjected to experimental autoimmune encephalomyelitis (EAE), a preclinical mouse model of MS. Monitoring the optic nerve in EAE is a useful strategy to study the presentation and progression of pathology in the visual system; however, current approaches have relied on sectioning, staining and manual quantification. Further, information regarding the spatial load of lesions and inflammation is dependent on the area of sectioning. To better characterize cellular pathology in the EAE model, we employed a tissue clearing and 3D immunolabelling and imaging protocol to observe patterns of immune cell infiltration and activation throughout the optic nerve. Increased density of TOPRO staining for nuclei captured immune cell infiltration and Iba1 immunostaining was employed to monitor microglia and macrophages. Axonal degeneration was monitored by neurofilament immunolabelling to reveal axonal swellings throughout the optic nerve. In parallel, we developed a convolutional neural network with a UNet architecture (CNN-UNet) called BlebNet for automated identification and quantification of axonal swellings in whole mount optic nerves. Together this constitutes a toolkit for 3-dimensional immunostaining to monitor general optic nerve pathology and fast automated quantification of axonal defects that could also be adapted to monitor axonal degeneration and inflammation in other neurodegenerative disease models.
Collapse
|
12
|
Frahm N, Fneish F, Ellenberger D, Flachenecker P, Paul F, Warnke C, Kleinschnitz C, Parciak T, Krefting D, Hellwig K, Haas J, Rommer PS, Stahmann A, Zettl UK. Therapy Switches in Fingolimod-Treated Patients with Multiple Sclerosis: Long-Term Experience from the German MS Registry. Neurol Ther 2022; 11:319-336. [PMID: 35020157 PMCID: PMC8857375 DOI: 10.1007/s40120-021-00320-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTIONS Therapy switches in patients with multiple sclerosis (MS) receiving treatment with fingolimod occur frequently in clinical practice but are not well represented in real-world data. The aim of this study was to identify and characterize treatment switches and reveal sociodemographic/clinical changes over time in fingolimod-treated people with MS (PwMS). METHODS Data on 2536 fingolimod-treated PwMS extracted from the German MS Registry during different time periods were analyzed (2010-2019). RESULTS Overall, 28.3% of PwMS were treatment-naïve before fingolimod initiation. Interferon beta (30.7%) was the most common pre-fingolimod treatment. Ocrelizumab (19.8%) was the most frequent subsequent treatment in the 944 patients on fingolimod who switched. Between 2010 and 2019, median disease duration at fingolimod initiation decreased from 8.5 to 7.1 years (p < 0.001), and patients taking fingolimod for ≥ 1 year after treatment initiation decreased from 89.6 to 80.5% (p < 0.001). Females (p < 0.001) and young patients (p = 0.003) showed a shorter time on fingolimod. The most frequent reason for switching was disease activity (relapse/MRI) despite treatment. The annualized relapse rate increased from 0.37 in patients on fingolimod to 0.47 after treatment cessation, decreasing to 0.19 after treatment with a subsequent disease-modifying drug (DMD) was initiated. CONCLUSION Treatment switches from fingolimod to subsequent DMDs currently occur after shorter treatment durations than 10 years ago, possibly due to the growing treatment spectrum. Planning adequate washout periods is essential and should be done on an individualized basis.
Collapse
Affiliation(s)
- Niklas Frahm
- MS Forschungs- Und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), Krausenstr. 50, 30171 Hannover, Germany
- Neuroimmunological Section, Department of Neurology, University Medical Center of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Firas Fneish
- MS Forschungs- Und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), Krausenstr. 50, 30171 Hannover, Germany
| | - David Ellenberger
- MS Forschungs- Und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), Krausenstr. 50, 30171 Hannover, Germany
| | - Peter Flachenecker
- Neurological Rehabilitation Center Quellenhof, Kuranlagenallee 2, 75323 Bad Wildbad, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité–Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center of Translational and Behavioral Neurosciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tina Parciak
- Department of Medical Informatics, University Medical Center Göttingen, Von-Siebold-Str. 3, 37075 Göttingen, Germany
| | - Dagmar Krefting
- Department of Medical Informatics, University Medical Center Göttingen, Von-Siebold-Str. 3, 37075 Göttingen, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Joseph and St. Elisabeth Hospital–Ruhr University, Gudrunstr. 56, 44791 Bochum, Germany
| | - Judith Haas
- Deutsche Multiple Sklerose Gesellschaft, Bundesverband e.V. (German Multiple Sclerosis Society [DMSG], Federal Association), Krausenstr. 50, 30171 Hannover, Germany
| | - Paulus S. Rommer
- Neuroimmunological Section, Department of Neurology, University Medical Center of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Alexander Stahmann
- MS Forschungs- Und Projektentwicklungs-gGmbH (MS Research and Project Development gGmbH [MSFP]), Krausenstr. 50, 30171 Hannover, Germany
| | - Uwe K. Zettl
- Neuroimmunological Section, Department of Neurology, University Medical Center of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
13
|
El Ayoubi NK, Bou Reslan SW, Baalbaki MM, Darwish H, Khoury SJ. Effect of fingolimod vs interferon treatment on OCT measurements and cognitive function in RRMS. Mult Scler Relat Disord 2021; 53:103041. [PMID: 34051694 DOI: 10.1016/j.msard.2021.103041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To explore prospectively through OCT the rate of retinal layer changes in relapsing-remitting multiple sclerosis patients followed up on fingolimod or interferon, as well as the treatments' differential effects on cognitive tests scores. METHODS This prospective observational study enrolled 128 stable RRMS patients treated either with fingolimod (n = 71) or interferon (n = 56). Symbol-Digit Modality Test and retinal OCT scans were obtained at baseline and every 6 to 12 months. A subgroup of patients underwent expanded cognitive tests annually (Brief visual-spatial memory-total recall, BVMT-delayed recall, and Montreal Cognitive Assessment). Retinal-OCT scans were also obtained from 22 age- and sex-matched healthy controls. Mixed effects regression was used to study annualized changes in retinal layers and cognitive function, including differences between treatment groups. Correlations between annualized changes in retinal measurements and cognitive scores were also explored. RESULTS Fingolimod treated patients showed no significant difference in the rate of thinning of all retinal layers when compared to healthy controls and had significantly less GCIPL thinning when compared to interferons. SDMT scores improved similarly among both RRMS treatment groups. However, interferon but not fingolimod treated patients had significant decline in MOCA and total recall scores. We also found correlations between the annualized change in GCIPL thickness and annualized change in MOCA scores, and similar correlations with annualized change in total recall scores. CONCLUSION Fingolimod has a potential role in reducing retinal neurodegeneration in RRMS. Longitudinal OCT measures appear to be sensitive to changes in cognitive function and may be useful for monitoring neuroprotective therapies.
Collapse
Affiliation(s)
- Nabil K El Ayoubi
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sarah W Bou Reslan
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marwa M Baalbaki
- Department of Neurology, George Washington University, Washington DC, United States
| | - Hala Darwish
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon; Hariri School of Nursing, American University of Beirut, Lebanon
| | - Samia J Khoury
- Department of Neurology, Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
14
|
Bsteh G, Hegen H, Altmann P, Auer M, Berek K, Di Pauli F, Leutmezer F, Rommer P, Wurth S, Zinganell A, Zrzavy T, Deisenhammer F, Berger T. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur J Neurol 2021; 28:2037-2045. [PMID: 33735479 PMCID: PMC8251588 DOI: 10.1111/ene.14829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Background and purpose Peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell plus inner plexiform layer (GCIPL) thinning are markers of neuroaxonal degeneration in multiple sclerosis (MS), which is reduced by disease‐modifying treatment (DMT). We aimed to investigate the potential of pRNFL and GCIPL thinning for prediction of DMT failure in relapsing MS (RMS). Methods In this 4‐year prospective observational study on 113 RMS patients, pRNFL and GCIPL were measured at DMT initiation and after 12 months (M12) and 24 months (M24). Treatment failure was defined as 6‐month confirmed Expanded Disability Status Scale (EDSS) progression and/or Symbol Digit Modalities Test (SDMT) worsening. Optimal cutoff values for predicting treatment failure were determined by receiver operating characteristic analyses and hazard ratios (HRs) by multivariable Cox regression adjusting for age, sex, disease duration, EDSS/SDMT, and DMT class. Results Thinning of GCIPL >0.5 μm/year at M24 showed superior value for treatment failure prediction (HR: 4.5, 95% confidence interval [CI]: 1.8–7.6, p < 0.001; specificity 91%, sensitivity 81%), followed by GCIPL >0.5 μm at M12 (odds ratio [OR]: 3.9, 95% CI: 1.4–6.9, p < 0.001; specificity 85%, sensitivity 78%), and pRNFL ≥2 μm/year at M24 (OR: 3.7, 95% CI: 1.1–6.5, p = 0.023; specificity 84%, sensitivity 69%), whereas pRNFL at M12 was not predictive. Conclusions GCIPL, and to a lesser degree pRNFL, thinning predicts disability progression after DMT initiation and may be a useful and accessible biomarker of treatment failure in RMS.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|