1
|
Al Shamsi HSS, Gardener SL, Rainey-Smith SR, Pedrini S, Sohrabi HR, Taddei K, Masters CL, Martins RN, Fernando WMADB. The moderating effect of diet on the relationship between depressive symptoms and Alzheimer's disease-related blood-based biomarkers. Neurobiol Aging 2025; 147:213-222. [PMID: 39837054 DOI: 10.1016/j.neurobiolaging.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Associations between mental health, diet, and risk of Alzheimer's disease highlight the need to investigate whether dietary patterns moderate the relationship between symptoms of depression and anxiety, and neurodegeneration-related blood-based biomarkers. Cognitively unimpaired participants (n = 89) were included from the Australian Imaging, Biomarkers and Lifestyle study (mean age 75.37; 44 % male). Participants provided dietary, depressive and anxiety symptom data, and had measurement of blood-based biomarkers. Dietary pattern scores (Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension diet (DASH), and Western diet) were generated. Moderation and simple slope analyses were employed. In males with mean and below mean MeDi adherence, depressive symptoms were associated with higher neurofilament light (NfL) levels. In Apolipoprotein E ε4 non-carriers with lower than mean and mean MeDi adherence, depressive symptoms were associated with higher NfL and Aβ40 levels. No associations were observed between DASH and Western diets and neurodegeneration-related biomarkers. MeDi adherence is potentially a moderator of the relationship between depressive symptoms and neurodegeneration-related blood-based biomarkers, with sex- and genotype-specific approaches important to consider within this relationship.
Collapse
Affiliation(s)
- Hilal Salim Said Al Shamsi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Steve Pedrini
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - W M A D Binosha Fernando
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.
| |
Collapse
|
2
|
Džidić Krivić A, Begagić E, Hadžić S, Bećirović A, Bećirović E, Hibić H, Tandir Lihić L, Kadić Vukas S, Bečulić H, Kasapović T, Pojskić M. Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis. Brain Sci 2025; 15:253. [PMID: 40149775 PMCID: PMC11939953 DOI: 10.3390/brainsci15030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.
Collapse
Affiliation(s)
- Amina Džidić Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Physiology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Emir Begagić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Doctoral Studies, School of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Semir Hadžić
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
- Department of Physiology, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Amir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Emir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Harisa Hibić
- Department of Maxillofacial Surgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
3
|
Wang T, Yan LM, Ma TC, Gao XR. Association between serum neurofilament light chains and Life's Essential 8: A cross-sectional analysis. PLoS One 2025; 20:e0306315. [PMID: 39992894 PMCID: PMC11849891 DOI: 10.1371/journal.pone.0306315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/14/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND AIM Serum neurofilament light chain (sNfL), a protein released into the bloodstream post-neuronal axonal damage, has been validated as a robust biomarker for a range of neurological and systemic diseases. Concurrently, Life's Essential 8 (LE8) comprises a holistic suite of health behaviors and metabolic markers that are essential for assessing and enhancing cardiovascular health. Nevertheless, the interrelation between LE8 and sNfL is not yet fully elucidated. This investigation seeks to evaluate the association between LE8 and sNfL within the framework of the National Health and Nutrition Examination Survey (NHANES). METHODS According to data from the 2013-2014 NHANES, the study enrolled a total of 5262 participants aged between 20 and 75 years. We excluded 3035 individuals lacking sNfL measurements, included 2071 subjects for analysis, and further excluded cases from LE8 due to missing data. Ultimately, 1691 valid datasets were obtained. Hierarchical and multiple regression analyses were conducted, supplemented by smooth curve fitting and saturation effect analysis to investigate the relationship between LE8 and sNfL. RESULTS An inverse correlation was observed between LE8 scores and sNfL levels. For each SD change increase in LE8, log-transformed sNfL levels decreased by 0.14 (-0.17, -0.11 in the non-adjusted model), 0.08 (-0.10, -0.05 in the minimally adjusted model), and 0.08 (-0.12, -0.05 in the fully adjusted model). The multi-factor adjusted β coefficients and 95% confidence intervals (CIs) for LE8 categories (<50, 50 ~ 80, and ≥80) were as follows: reference, -0.20 (-0.34, -0.06), and -0.26 (-0.42, -0.10). The inflection point was determined to be 58.12, identified using a two-piece linear regression model. CONCLUSION The analysis indicated a non-linear relationship between LE8 scores and sNfL levels. Associations were noted a positive association between LE8 and sNfL. These results suggest that lifestyle modifications and optimization of metabolic markers could potentially correlate with reduced sNfL levels; further investigation is necessary to confirm a causal relationship.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Li-Ming Yan
- Department of Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Teng-Chi Ma
- The First Affiliated Hospital of Xi’an Jiaotong University, Yulin Hospital, Yulin, Shaanxi, China
| | - Xiao-Rong Gao
- Department of Neurology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
4
|
Huang S, Sun J, Shen C, He G. Dietary and nutritional interventions for human diseases: their modulatory effects on ferroptosis. Food Funct 2025; 16:1186-1204. [PMID: 39866046 DOI: 10.1039/d4fo05606j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A balanced diet is essential for maintaining human health. Increasing evidence suggests that dietary and nutritional interventions contribute to disease management and are associated with reduced healthcare costs and economic burden. Ferroptosis, a novel type of regulated cell death (RCD) driven by lipid peroxidation, has been shown to be involved in various pathological conditions, including diabetes, ischemia/reperfusion (I/R) injury, inflammation-related diseases, and cancer. Therefore, specifically targeting the uncontrolled ferroptosis process may offer new therapeutic opportunities. Of note, certain interventions, such as small-molecule compounds, natural products, herbal medicines, and non-pharmacological approaches, have been reported to prevent and treat multiple human diseases by reversing the dysregulation of ferroptosis. In this review, we present the key molecular mechanisms that regulate ferroptosis. Importantly, interventions targeting ferroptosis are summarized from the perspective of dietary patterns, food and nutrients. By understanding these advances, innovative ideas can be provided for individualized dietary interventions and treatment strategies.
Collapse
Affiliation(s)
- Shiqiong Huang
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
| | - Ji Sun
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua 418000, China.
| | - Gefei He
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
| |
Collapse
|
5
|
Perlman J, Wetmore E, Lehner-Gulotta D, Banwell B, Bergqvist AGC, Coleman R, Chen S, Conaway M, Goldman MD, Morse AM, Brenton JN. Impact of a ketogenic diet on sleep quality in people with relapsing multiple sclerosis. Sleep Med 2024; 122:213-220. [PMID: 39208520 PMCID: PMC11393576 DOI: 10.1016/j.sleep.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sleep disturbance in MS is common and can significantly impair overall quality of life. The ketogenic diet (KD) associates with improved sleep quality in people living with epilepsy and may have similar benefits when used within MS; however, the impact of a KD on sleep in this population remains poorly defined. METHODS Forty-five patients with relapsing MS enrolled into a 6-month KD intervention trial and completed self-reported assessments of sleep quality and sleep disorder symptoms prior to diet initiation and while on diet, using the Epworth Sleepiness Scale (ESS) and Sleep Disorders Symptom Checklist-25 (SDS). Participants who did not complete sleep assessments at baseline and 6-months were excluded from analysis. In addition to sleep metrics, data collection included anthropometrics and MS-related fatigue scores. RESULTS Thirty-nine of 45 (87 %) participants completed the required sleep assessments. There was a mean reduction in ESS score of 1.90 (95 % CI [-2.85, -0.94], p < 0.001). Total SDS score decreased at 6-months on KD (-4.4, 95 % CI [-7.1, -1.7], p = 0.002), with improvements noted in insomnia (-1.55, 95 % CI [-2.66, -0.43], p = 0.008), obstructive sleep apnea (-0.91, 95 % CI [-1.57, -0.25], p = 0.008), and restless leg syndrome screening scores (-1.00, 95 % CI [-1.95, -0.051], p = 0.04). Sleep duration was unchanged on KD. CONCLUSION KD associates with improvements in daytime sleepiness, independent of sleep duration, and common comorbid sleep disorders in people living with relapsing MS. The findings herein support the benefits of KD on sleep quality and highlight the potential role of dietary therapeutics for sleep disorders in neurological disease. TRIAL REGISTRATION INFORMATION Registered on Clinicaltrials.gov under registration number NCT03718247, posted on Oct 24, 2018. First patient enrollment date: Nov 1, 2018. Link: https://clinicaltrials.gov/ct2/show/NCT03718247?term=NCT03718247&draw=2&rank=1.
Collapse
Affiliation(s)
- Jacob Perlman
- Dept of Neurology, University of Virginia, Charlottesville VA, USA
| | - Emma Wetmore
- Dept of Neurology, University of Virginia, Charlottesville VA, USA; School of Medicine, Medical University of South Carolina, Charleston SC, USA
| | - Diana Lehner-Gulotta
- Division of Child Neurology, Dept. of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Dept. of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A G Christina Bergqvist
- Division of Child Neurology, Children's Hospital of Philadelphia, Dept. of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachael Coleman
- Dept of Neurology, University of Virginia, Charlottesville VA, USA
| | - Shanshan Chen
- Dept of Public Health Sciences, Virginia Commonwealth University, Richmond VA, USA
| | - Mark Conaway
- Dept of Public Health Sciences, University of Virginia, Charlottesville VA, USA
| | - Myla D Goldman
- Dept of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Anne Marie Morse
- Division of Child Neurology and Pediatric Sleep Medicine, Geisinger Medical Center/Janet Weis Children's Hospital, Danville, PA, USA
| | - J Nicholas Brenton
- Division of Child Neurology, Dept. of Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Ostojic SM, Grasaas E, Baltic S, Cvejic J. Dietary creatine is associated with lower serum neurofilament light chain levels. Appl Physiol Nutr Metab 2024; 49:1121-1123. [PMID: 38780027 DOI: 10.1139/apnm-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Low creatine availability may be linked to an elevated risk of neuronal damage, yet this association remains inadequately explored at the population level. Utilizing 2013-2014 National Health and Nutrition Examination Survey data, the current study found a negative correlation between dietary creatine intake and serum levels of neurofilament light chain (NfL; a biomarker for neuronal damage) in a cohort of 1912 individuals (52.2% females) aged 20-75 years. This inverse association persisted even after adjusting for other nutritional variables known to influence neuronal viability. The observed pattern, where increased dietary creatine intake was associated with reduced circulating NfL levels, suggests potential protective effects of creatine against neuronal injury.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Erik Grasaas
- Teacher Education Unit, University of Agder, Kristiansand, Norway
| | - Sonja Baltic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Cvejic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
7
|
Liang N, Li H, Zhang K, Wang Y, Xiang L, Xiao L, Luo G. Association of Dietary Retinol Intake and Serum Neurofilament Light Chain Levels: Results from NHANES 2013-2014. Nutrients 2024; 16:1763. [PMID: 38892696 PMCID: PMC11175068 DOI: 10.3390/nu16111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND There is increasing evidence suggesting that serum neurofilament light chain (sNfL) levels can be used as biomarkers for axonal injury. Retinol is recognized for its significant involvement in nervous system function, but the precise connection between dietary retinol and sNfL levels remains uncertain. OBJECTIVE Our objective was to investigate the relationship between dietary retinol intake and sNfL, and to find an optimal retinol intake level for neurological health. METHODS In the National Health and Nutrition Examination Survey (NHANES), conducted from 2013 to 2014, a cohort of 1684 participants who met the criteria were selected for the study. sNfL levels were measured from stored serum samples using a novel high-throughput immunoassay platform from Siemens Healthineers. Assessment of dietary retinol intake was performed by a uniformly trained interviewer through a 24 h dietary recall method. A generalized linear model was evaluated to assess the correlation between dietary retinol intake and sNfL concentrations. Furthermore, the nonlinear association between the two is further explored using restricted cubic spline (RCS) analysis. RESULTS Upon adjusting for potential confounders, a 10% increase in dietary retinol intake was associated with a 3.47% increase in sNfL levels (95% CI: 0.54%, 6.49%) across all participants. This relationship was more pronounced in specific subgroups, including those under 60 years of age, non-obese, impaired estimated glomerular filtration rate (eGFR), and non-diabetic. In subgroup analysis, among those younger than 60 years of age (percent change: 3.80%; 95% CI: 0.43%, 7.28%), changes were found in non-obese participants (percent change: 6.28%; 95% CI: 2.66%, 10.02%), those with impaired eGFR (percent change: 6.90%; 95% CI: 1.44%, 12.65%), and non-diabetic patients (percentage change: 4.17%; 95% CI: 1.08%, 7.36%). RCS analysis showed a linear relationship between dietary retinol intake and sNfL levels. Furthermore, the positive correlation between the two was more significant after the inflection point, according to piecewise linear analysis. CONCLUSION This current investigation uncovered a J-shaped relationship between dietary retinol and sNfL levels, suggesting that axonal damage can occur when dietary retinol intake increases more than a specific threshold. These findings need to be further confirmed in future prospective studies to determine the precise intake level that may trigger axonal injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (N.L.); (H.L.); (K.Z.); (Y.W.); (L.X.); (L.X.)
| |
Collapse
|
8
|
Tancreda G, Ravera S, Panfoli I. Exploring the Therapeutic Potential: Bioactive Molecules and Dietary Interventions in Multiple Sclerosis Management. Curr Issues Mol Biol 2024; 46:5595-5613. [PMID: 38921006 PMCID: PMC11202103 DOI: 10.3390/cimb46060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system, the etiology of which is still unclear. Its hallmarks are inflammation and axonal damage. As a disease primarily impacting younger individuals, the social cost of MS is high. It has been proposed that environmental factors, smoking, and dietary habits acting on a genetic susceptibility play a role in MS. Recent studies indicate that diet can significantly influence the onset and progression of MS. This review delves into the impact of natural bioactive molecules on MS development and explores the dietary interventions that hold promise in managing the disease. Dietary patterns, including ketogenic and Mediterranean diets, are discussed. Theories about the potential mechanistic associations beneath the noted effects are also proposed. Several dietary components and patterns demonstrated the potential for a significant impact on MS. However, extensive prospective clinical trials are necessary to fully understand the role of natural bioactive molecules as disease modifiers in MS.
Collapse
Affiliation(s)
- Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
9
|
Hansen B, Roomp K, Ebid H, Schneider JG. Perspective: The Impact of Fasting and Caloric Restriction on Neurodegenerative Diseases in Humans. Adv Nutr 2024; 15:100197. [PMID: 38432589 PMCID: PMC10997874 DOI: 10.1016/j.advnut.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive functional and structural denaturation of neurons in the central and peripheral nervous systems. Despite the wide range of genetic predispositions, the increased emergence of these disorders has been associated with a variety of modifiable risk factors, including lifestyle factors. Diet has been shown to influence cognitive alterations in the elderly population with age-related brain pathologies, and specific dietary interventions might, therefore, confer preservatory protection to neural structures. Although Mediterranean and ketogenic diets have been studied, no clear guidelines have been implemented for the prevention or treatment of ND in clinical practice. Murine models have shown that intermittent fasting and caloric restriction (CR) can counteract disease processes in various age-related disorders, including NDs. The objective of this perspective is to provide a comprehensive, comparative overview of the available primary intervention studies on fasting and CR in humans with ND and to elucidate possible links between the mechanisms underlying the effects of fasting, CR, and the neuropathology of ND. We also included all currently available studies in older adults (with and without mild cognitive impairment) in which the primary endpoint was cognitive function to provide further insights into the feasibility and outcomes of such interventions. Overall, we conclude that nutritional intervention trials focusing on fasting and CR in humans with ND have been neglected, and more high-quality studies, including longitudinal clinical intervention trials, are urgently needed to elucidate the underlying immune-metabolic mechanisms in diet and ND.
Collapse
Affiliation(s)
- Bérénice Hansen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hebah Ebid
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Departments of Internal Medicine II and Psychiatry, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
10
|
Moreno ML, Percival SS, Kelly DL, Dahl WJ. Daily olive oil intake is feasible to reduce trigeminal neuralgia facial pain: A pilot study. Nutr Res 2024; 123:101-110. [PMID: 38306883 DOI: 10.1016/j.nutres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Extra virgin olive oil (EVOO) is thought to contribute to neuroprotection and, thus, may influence pain symptoms experienced by adults with demyelination-related trigeminal neuralgia (TN). This study aimed to determine the feasibility of daily intake of EVOO and its potential to alleviate facial pain of TN. Adults, self-reporting as female and affected by TN, were enrolled in a 16-week nonblinded, parallel study. After a 4-week baseline, participants were randomized to 60 mL/day EVOO or control (usual diet and no supplemental EVOO) for 12 weeks. Participants completed a daily questionnaire on pain intensity and compliance, the Penn Facial Pain Scale weekly, the 36-Item Short Form Survey monthly, and dietary assessment during baseline and intervention. Participants (n = 52; 53.3 ± 12.9 years) were recruited nationally; 42 completed the study. The EVOO group, with 90% intake compliance, showed significant decreases in the Penn Facial Pain Scale items of interference with general function, interference with orofacial function, and severity of pain from baseline, whereas the control group showed no improvements. EVOO benefit, compared with control, trended for the interference with orofacial function (P = .05). The 36-Item Short Form Survey items of role limitations resulting from emotional problems and role limitations from physical health favored EVOO. The EVOO group significantly improved their Healthy Eating Index 2015 component scores of fatty acids (primarily from increased oleic acid), sodium, and refined grains. EVOO intake of 60 mL/day was feasible for participants experiencing TN and may mitigate pain and improve quality of life. This trial was registered at clinicaltrials.gov (NCT05032573).
Collapse
Affiliation(s)
- Melissa L Moreno
- Food Science and Human Nutrition Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL 32611
| | - Susan S Percival
- Food Science and Human Nutrition Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL 32611
| | - Debra Lynch Kelly
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL 32610
| | - Wendy J Dahl
- Food Science and Human Nutrition Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL 32611.
| |
Collapse
|
11
|
Lin X, Wang S, Gao Y. The effects of intermittent fasting for patients with multiple sclerosis (MS): a systematic review. Front Nutr 2024; 10:1328426. [PMID: 38303903 PMCID: PMC10832063 DOI: 10.3389/fnut.2023.1328426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Some studies have investigated the impact of intermittent fasting (IF) for patients with multiple sclerosis (MS). We aimed to conduct a comprehensive systematic review to analyze and summarize all clinical studies concerning the effects of IF on patients with MS. We conducted an exhaustive review of information available in the Embase, Cochrane, and PubMed databases up until 1 September 2023. All clinical research relating to the impacts of IF for patients with MS were included. In total, this systematic review encompassed 5 studies, which included four RCTs and one pilot study. Each study involved was assessed of high quality. The results from these studies demonstrate that IF protocols could potentially serve as an effective dietary strategy for managing symptoms and improving the quality of life in individuals afflicted with MS. In conclusion, IF might be a potential beneficial dietary intervention for MS. However, the number of trials in this field is relatively limited. The large-scale clinical trials to investigate the effects of IF for MS are urgently needed, which may be helpful to manage this intricate neuroimmune disorder. Systematic review registration https://inplasy.com, identifier INPLASY2023100021.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| | - Shuai Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Atabilen B, Akdevelioğlu Y. Effects of different dietary interventions in multiple sclerosis: a systematic review of evidence from 2018 to 2022. Nutr Neurosci 2023; 26:1279-1291. [PMID: 36384390 DOI: 10.1080/1028415x.2022.2146843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nutrition is an important risk factor for both Multiple sclerosis (MS) development and post-diagnosis disease prognosis. However, it is important to evaluate the diet as a whole instead of considering the effects of nutrients individually. AIMS In this systematic review, it was aimed to evaluate the effect of different dietary interventions in MS patients and to determine the most appropriate dietary model for this group. METHODS The search was carried out between February 2022 and March 2022 in three different databases, 'PubMed', 'Web of Science' and 'The Cochrane Library' over the university access network. After the search for the determined keywords, a total of 269 studies conducted between 2018 and 2022 were identified, but only 17 of them were found to be suitable for inclusion criteria. RESULTS AND CONCLUSION Although there are studies reporting positive health outcomes for energy-restricted/intermittent fasting diets, ketogenic diet, and modified paleolithic diet, these diets may not be applicable diets in the long-term as they may cause deficiencies of various nutrients. No current study was found for low-fat diets, gluten-free diet and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet applied to individuals with MS. The Mediterranean diet, on the other hand, is more recommendable than other diet models due to the positive health results reported in long-term studies and the absence of any side effects. However, more studies are needed to reach a definite conclusion.
Collapse
Affiliation(s)
- Büşra Atabilen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey
| | - Yasemin Akdevelioğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey
| |
Collapse
|
13
|
Niculae AŞ, Niculae LE, Văcăraş C, Văcăraş V. Serum levels of neurofilament light chains in pediatric multiple sclerosis: a systematic review and meta-analysis. J Neurol 2023; 270:4753-4762. [PMID: 37394516 DOI: 10.1007/s00415-023-11841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Multiple sclerosis is a neuro-inflammatory disease that affects adults and children and causes somatic and cognitive symptoms. Diagnosis after the first clinical symptoms is challenging, involves laboratory and magnetic resonance imaging work-up and is often inconclusive unless subsequent clinical attacks occur. Neurofilament light chains are structural proteins within neurons. Levels of this marker in cerebrospinal fluid, plasma and serum are consistently higher in patients with an initial clinical demyelinating attack that later go on to develop multiple sclerosis. Evidence concerning serum levels of this biomarker in children with multiple sclerosis is scarce. Our aim is to review and analyze the evidence available for patients with multiple sclerosis, under the age of 18. METHODS We conducted a systematic search of PubMed/Medline, Embase, Cochrane Database, and ProQuest. Human studies that provided data on serum levels of Neurofilament light chains in pediatric patients with MS, measured at the time of the first demyelinating attack and before treatment were included in meta-analysis. RESULTS Three studies satisfied the inclusion criteria. 157 pediatric patients with multiple sclerosis and 270 hospital-based controls that did not present with this condition were included in the analysis. A fixed effects meta-analysis showed that the standardized mean difference between patients and controls is 1.82, with a 95% confidence interval of [1.56-2.08]. CONCLUSION Pediatric patients with multiple sclerosis show higher levels of serum neurofilament light chains at their first clinical demyelinating attack compared to pediatric hospital-based controls.
Collapse
Affiliation(s)
- Alexandru-Ştefan Niculae
- Second Department of Pediatrics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Lucia-Elena Niculae
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristiana Văcăraş
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vitalie Văcăraş
- Second Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Ortí JEDLR, Cuerda-Ballester M, Sanchis-Sanchis CE, Lajara Romance JM, Navarro-Illana E, García Pardo MP. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr 2023; 10:1227431. [PMID: 37693246 PMCID: PMC10485376 DOI: 10.3389/fnut.2023.1227431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals with MS frequently present symptoms such as functional disability, obesity, and anxiety and depression. Axonal demyelination can be observed and implies alterations in mitochondrial activity and increased inflammation associated with disruptions in glutamate neurotransmitter activity. In this context, the ketogenic diet (KD), which promotes the production of ketone bodies in the blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic alternative that has shown promising results in peripheral obesity reduction and central inflammation reduction. However, the association of this type of diet with emotional symptoms through the modulation of glutamate activity in MS individuals remains unknown. Aim To provide an update on the topic and discuss the potential impact of KD on anxiety and depression through the modulation of glutamate activity in subjects with MS. Discussion The main findings suggest that the KD, as a source of ketone bodies in the blood, improves glutamate activity by reducing obesity, which is associated with insulin resistance and dyslipidemia, promoting central inflammation (particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This improvement would imply a decrease in extrasynaptic glutamate activity, which has been linked to functional disability and the presence of emotional disorders such as anxiety and depression.
Collapse
Affiliation(s)
| | | | | | - Jose María Lajara Romance
- Faculty of Legal, Economic and Social Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
15
|
Wetmore E, Lehner-Gulotta D, Florenzo B, Banwell B, Bergqvist AGC, Coleman R, Conaway M, Goldman MD, Brenton JN. Ketogenic diet in relapsing multiple sclerosis: Patient perceptions, post-trial diet adherence & outcomes. Clin Nutr 2023; 42:1427-1435. [PMID: 37433230 PMCID: PMC10528668 DOI: 10.1016/j.clnu.2023.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Ketogenic diets (KDs) are safe and tolerable in people with multiple sclerosis (MS). While many patient-reported and clinical benefits are noted, the sustainability of these diets outside of a clinical trial is unknown. AIMS Evaluate patient perceptions of the KD following intervention, determine the degree of adherence to KDs post-trial, and examine what factors increase the likelihood of KD continuation following the structured diet intervention trial. METHODS Sixty-five subjects with relapsing MS previously enrolled into a 6-month prospective, intention-to-treat KD intervention. Following the 6-month trial, subjects were asked to return for a 3-month post-study follow-up, at which time patient reported outcomes, dietary recall, clinical outcome measures, and laboratory values were repeated. In addition, subjects completed a survey to evaluate sustained and attenuated benefits following completion of the intervention phase of the trial. RESULTS Fifty-two subjects (81%) returned for the 3-month post-KD intervention visit. Twenty-one percent reported continued adherence to a strict KD and an additional 37% reported adhering to a liberalized, less restrictive form of the KD. Those subjects with greater reductions in body mass index (BMI) and fatigue at 6-months on-diet were more likely to continue on KD following trial completion. Using intention-to-treat analysis, patient-reported and clinical outcomes at 3-months post-trial remained significantly improved from baseline (pre-KD), though the degree of improvement was slightly attenuated relative to outcomes at 6-months on KD. Regardless of diet type following the KD intervention, dietary patterns shifted toward greater protein and polyunsaturated fats and less carbohydrate/added sugar consumption. CONCLUSIONS Following the 6-month KD intervention study, the majority of subjects elected to continue on KD, though many pursued a more liberal limit for carbohydrate restriction. Those who experienced a greater reduction in BMI or fatigue were more likely to continue with strict KD. The 6-month KD intervention induced persistent changes to dietary habits in the months following study completion. TRIAL REGISTRATION INFORMATION Registered on Clinicaltrials.gov under registration number NCT03718247, posted on Oct 24, 2018. First patient enrollment date: Nov 1, 2018. Link: https://clinicaltrials.gov/ct2/show/NCT03718247?term=NCT03718247&draw=2&rank=1.
Collapse
Affiliation(s)
- Emma Wetmore
- Dept of Neurology, University of Virginia, Charlottesville, VA, USA; School of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Diana Lehner-Gulotta
- Dept of Neurology, University of Virginia, Charlottesville, VA, USA; Division of Child Neurology, Dept. of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Brian Florenzo
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Dept. of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A G Christina Bergqvist
- Division of Child Neurology, Children's Hospital of Philadelphia, Dept. of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachael Coleman
- Dept of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Mark Conaway
- Dept of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Myla D Goldman
- Dept of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - J Nicholas Brenton
- Dept of Neurology, University of Virginia, Charlottesville, VA, USA; Division of Child Neurology, Dept. of Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
17
|
Oh U, Woolbright E, Lehner-Gulotta D, Coleman R, Conaway M, Goldman MD, Brenton JN. Serum neurofilament light chain in relapsing multiple sclerosis patients on a ketogenic diet. Mult Scler Relat Disord 2023; 73:104670. [PMID: 36996634 PMCID: PMC10239314 DOI: 10.1016/j.msard.2023.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/28/2023]
Abstract
BACKGROUND Ketogenic diets have anti-inflammatory and neuroprotective properties which make these diets an attractive complimentary treatment approach for patients living with multiple sclerosis (MS). The objective of this study was to assess the impact of ketogenic diets on neurofilament light chain (NfL), a biomarker of neuroaxonal injury. METHODS Thirty-nine subjects with relapsing MS completed a 6-month ketogenic diet intervention. NfL levels were assayed at both baseline (pre-diet) and 6-months on-diet. In addition, ketogenic diet study participants were compared to a cohort (n = 31) of historical, untreated MS controls. RESULTS Baseline (pre-diet) mean NfL was 5.45 pg/ml (95% CI 4.59 - 6.31). After 6 months on ketogenic diet, mean NfL was not significantly changed (5.49 pg/ml; 95% CI 4.82 - 6.19). Compared to untreated MS controls (mean 15.17 pg/ml), NfL levels for the ketogenic diet cohort were relatively low. MS subjects with higher levels of ketosis (as measured by serum beta-hydroxybutyrate) exhibited greater reductions in NfL between baseline and 6-months on ketogenic diet. CONCLUSIONS Ketogenic diets do not worsen biomarkers of neurodegeneration in relapsing MS patients, with stable, low levels of NfL observed throughout the diet intervention. Subjects with greater biomarkers of ketosis experienced a higher degree of improvement in serum NfL. CLINICAL TRIAL IDENTIFIER NCT03718247 - "Utilization of the Ketogenic Diet in Patients with Relapsing-Remitting MS" https://clinicaltrials.gov/ct2/show/NCT03718247.
Collapse
Affiliation(s)
- Unsong Oh
- Dept of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Diana Lehner-Gulotta
- Dept of Neurology, University of Virginia, Charlottesville VA, USA; Division of Child Neurology, Dept. of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Rachael Coleman
- Dept of Neurology, University of Virginia, Charlottesville VA, USA
| | - Mark Conaway
- Dept of Public Health Sciences, University of Virginia, Charlottesville VA, USA
| | - Myla D Goldman
- Dept of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - J Nicholas Brenton
- Medical University of South Carolina, Charleston SC, USA; Dept of Neurology, University of Virginia, Charlottesville VA, USA.
| |
Collapse
|
18
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
19
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
20
|
The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023; 15:nu15061436. [PMID: 36986165 PMCID: PMC10057655 DOI: 10.3390/nu15061436] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Neurological diseases are recognized as major causes of disability and mortality worldwide. Due to the dynamic progress of diseases such as Alzheimer’s disease (AD), Parkinson’s Disease (PD), Schizophrenia, Depression, and Multiple Sclerosis (MD), scientists are mobilized to look for new and more effective methods of interventions. A growing body of evidence suggests that inflammatory processes and an imbalance in the composition and function of the gut microbiome, which play a critical role in the pathogenesis of various neurological diseases and dietary interventions, such as the Mediterranean diet the DASH diet, or the ketogenic diet can have beneficial effects on their course. The aim of this review was to take a closer look at the role of diet and its ingredients in modulating inflammation associated with the development and/or progression of central nervous system diseases. Presented data shows that consuming a diet abundant in fruits, vegetables, nuts, herbs, spices, and legumes that are sources of anti-inflammatory elements such as omega-3 fatty acids, polyphenols, vitamins, essential minerals, and probiotics while avoiding foods that promote inflammation, create a positive brain environment and is associated with a reduced risk of neurological diseases. Personalized nutritional interventions may constitute a non-invasive and effective strategy in combating neurological disorders.
Collapse
|
21
|
Zielińska M, Michońska I. Effectiveness of various diet patterns among patients with multiple sclerosis. POSTEPY PSYCHIATRII NEUROLOGII 2023; 32:49-58. [PMID: 37287739 PMCID: PMC10243296 DOI: 10.5114/ppn.2023.127246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 06/09/2023]
Abstract
Purpose The main aim of the study was to compare the effectiveness of the dietary patterns studied in the context of multiple sclerosis (MS), including anti-inflammatory, Mediterranean diet (MD), Mediterranean-DASH intervention for neurodegenerative delay (MIND), intermittent fasting (IF), gluten-free and ketogenic diets. In addition, another aim was to verify or otherwise the efficacy of other alternative dietary models, which include the Paleo diet, the Wahls diet, the McDougall diet and the Swank diet. Whether and to what extent the use of different dietary regimens can affect the course and reduction of individual MS symptoms was also examined. The advantages and disadvantages of selected diets and dietary patterns in the context of MS are discussed. Views Autoimmune diseases are estimated to affect more than 3% of the world's people, the majority of whom are of working age. Therefore, delaying the first manifestation of the disease, reducing the number of relapses and alleviating symptoms are particularly welcome developments. In addition to finding effective pharmacotherapy, high hopes for patients lie in nutritional prevention and diet therapy. For years the medical literature has discussed supporting the treatment of diseases caused by an impairment of the body's immune system with the help of nutrition. Conclusions An appropriate and balanced diet can be extremely helpful in improving the condition and well-being of patients with MS, and effectively support drug therapy.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, Poland
| | - Izabela Michońska
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, Poland
| |
Collapse
|
22
|
Yalachkov Y, Schäfer JH, Jakob J, Friedauer L, Steffen F, Bittner S, Foerch C, Schaller-Paule MA. Effect of Estimated Blood Volume and Body Mass Index on GFAP and NfL Levels in the Serum and CSF of Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200045. [PMID: 36316116 PMCID: PMC9673750 DOI: 10.1212/nxi.0000000000200045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/30/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND AND OBJECTIVES To increase the validity of biomarker measures in multiple sclerosis (MS), factors affecting their concentration need to be identified. Here, we test whether the volume of distribution approximated by the patients' estimated blood volume (BV) and body mass index (BMI) affect the serum concentrations of glial fibrillary acidic protein (GFAP). As a control, we also determine the relationship between BV/BMI and GFAP concentrations in CSF. To confirm earlier findings, we test the same hypotheses for neurofilament light chain (NfL). METHODS NfL and GFAP concentrations were measured in serum and CSF (sNFL/sGFAP and cNFL/cGFAP) in 157 patients (n = 106 with MS phenotype and n = 51 with other neurologic/somatoform diseases). Using multivariate linear regressions, BV was tested in the MS cohort as a predictor for each of the biomarkers while controlling for age, sex, MS phenotype, Expanded Disability Status Scale score, gadolinium-enhancing lesions, and acute relapse. In addition, overweight/obese patients (BMI ≥25 kg/m2) were compared with patients with BMI <25 kg/m2 using the general linear model. The analyses were repeated including the neurologic/somatoform controls. RESULTS In the MS cohort, BV predicted sGFAP (ß = -0.301, p = 0.014). Overweight/obese patients with MS had lower sGFAP concentrations compared with patients with MS and BMI <25 kg/m2 (F = 4.732, p = 0.032). Repeating the analysis after adding patients with other neurologic/somatoform diseases did not change these findings (ß = -0.276, p = 0.009; F = 7.631, p = 0.006). Although sNfL was inversely correlated with BV (r = -0.275, p = 0.006) and body weight (r = -0.258, p = 0.010), those results did not remain significant after adjusting for covariates. BV and BMI were not associated with cGFAP or cNfL concentrations. DISCUSSION These findings support the notion that the volume of distribution of sGFAP approximated by BV and BMI is a relevant variable and should therefore be controlled for when measuring sGFAP in MS, while this might not be necessary when measuring cGFAP concentrations.
Collapse
Affiliation(s)
- Yavor Yalachkov
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany.
| | - Jan Hendrik Schäfer
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Jasmin Jakob
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Lucie Friedauer
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Falk Steffen
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Stefan Bittner
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Christian Foerch
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| | - Martin Alexander Schaller-Paule
- From the Department of Neurology (Y.Y., J.H.S., L.F., C.F., M.A.S.-P.), University Hospital Frankfurt; and Department of Neurology (J.J., F.S., S.B.), Universitätsmedizin Mainz, Germany
| |
Collapse
|
23
|
Rahmani F, Ghezzi L, Tosti V, Liu J, Song SK, Wu AT, Rajamanickam J, Obert KA, Benzinger TL, Mittendorfer B, Piccio L, Raji CA. Twelve Weeks of Intermittent Caloric Restriction Diet Mitigates Neuroinflammation in Midlife Individuals with Multiple Sclerosis: A Pilot Study with Implications for Prevention of Alzheimer's Disease. J Alzheimers Dis 2023; 93:263-273. [PMID: 37005885 PMCID: PMC10460547 DOI: 10.3233/jad-221007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a prototype neuroinflammatory disorder with increasingly recognized role for neurodegeneration. Most first-line treatments cannot prevent the progression of neurodegeneration and the resultant disability. Interventions can improve symptoms of MS and might provide insights into the underlying pathology. OBJECTIVE To investigate the effect of intermittent caloric restriction on neuroimaging markers of MS. METHODS We randomized ten participants with relapsing remitting MS to either a 12-week intermittent calorie restriction (iCR) diet (n = 5) or control (n = 5). Cortical thickness and volumes were measured through FreeSurfer, cortical perfusion was measured by arterial spin labeling and neuroinflammation through diffusion basis spectrum imaging. RESULTS After 12 weeks of iCR, brain volume increased in the left superior and inferior parietal gyri (p: 0.050 and 0.049, respectively) and the banks of the superior temporal sulcus (p: 0.01). Similarly in the iCR group, cortical thickness improved in the bilateral medial orbitofrontal gyri (p: 0.04 and 0.05 in right and left, respectively), the left superior temporal gyrus (p: 0.03), and the frontal pole (p: 0.008) among others. Cerebral perfusion decreased in the bilateral fusiform gyri (p: 0.047 and 0.02 in right and left, respectively) and increased in the bilateral deep anterior white matter (p: 0.03 and 0.013 in right and left, respectively). Neuroinflammation, demonstrated through hindered and restricted water fractions (HF and RF), decreased in the left optic tract (HF p: 0.02), and the right extreme capsule (RF p: 0.007 and HF p: 0.003). CONCLUSION These pilot data suggest therapeutic effects of iCR in improving cortical volume and thickness and mitigating neuroinflammation in midlife adults with MS.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Ghezzi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Valeria Tosti
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jingxia Liu
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Surgery, Division of Public Health Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony T. Wu
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Jayashree Rajamanickam
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kathleen A. Obert
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St Louis, St. Louis, MO, USA
| | - Bettina Mittendorfer
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Piccio
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, NSW, Australia
- Charles Perkin Centre, The University of Sydney NSW, Australia
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022; 14:5003. [PMID: 36501033 PMCID: PMC9739023 DOI: 10.3390/nu14235003] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Over a hundred years of study on the favourable effect of ketogenic diets in the treatment of epilepsy have contributed to a long-lasting discussion on its potential influence on other neurological diseases. A significant increase in the number of scientific studies in that field has been currently observed. The aim of this paper is a widespread, thorough analysis of the available scientific evidence in respect of the role of the ketogenic diet in the therapy of neurological diseases such as: epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A wide range of the mechanisms of action of the ketogenic diet has been demonstrated in neurological diseases, including, among other effects, its influence on the reduction in inflammatory conditions and the amount of reactive oxygen species (ROS), the restoration of the myelin sheath of the neurons, the formation and regeneration of mitochondria, neuronal metabolism, the provision of an alternative source of energy for neurons (ketone bodies), the reduction in glucose and insulin concentrations, the reduction in amyloid plaques, the induction of autophagy, the alleviation of microglia activation, the reduction in excessive neuronal activation, the modulation of intestinal microbiota, the expression of genes, dopamine production and the increase in glutamine conversion into GABA. The studies discussed (including randomised controlled studies), conducted in neurological patients, have stressed the effectiveness of the ketogenic diet in the treatment of epilepsy and have demonstrated its promising therapeutic potential in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A frequent advantage of the diet was demonstrated over non-ketogenic diets (in the control groups) in the therapy of neurological diseases, with simultaneous safety and feasibility when conducting the nutritional model.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
25
|
Saris CGJ, Timmers S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front Nutr 2022; 9:947567. [PMID: 36458166 PMCID: PMC9705794 DOI: 10.3389/fnut.2022.947567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/13/2022] [Indexed: 07/24/2023] Open
Abstract
Ketogenic diets and orally administered exogenous ketone supplements are strategies to increase serum ketone bodies serving as an alternative energy fuel for high energy demanding tissues, such as the brain, muscles, and the heart. The ketogenic diet is a low-carbohydrate and fat-rich diet, whereas ketone supplements are usually supplied as esters or salts. Nutritional ketosis, defined as serum ketone concentrations of ≥ 0.5 mmol/L, has a fasting-like effect and results in all sorts of metabolic shifts and thereby enhancing the health status. In this review, we thus discuss the different interventions to reach nutritional ketosis, and summarize the effects on heart diseases, epilepsy, mitochondrial diseases, and neurodegenerative disorders. Interest in the proposed therapeutic benefits of nutritional ketosis has been growing the past recent years. The implication of this nutritional intervention is becoming more evident and has shown interesting potential. Mechanistic insights explaining the overall health effects of the ketogenic state, will lead to precision nutrition for the latter diseases.
Collapse
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Nijmegen, Netherlands
| | - Silvie Timmers
- Department of Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
26
|
Lin WS, Lin SJ, Liao PY, Suresh D, Hsu TR, Wang PY. Role of Ketogenic Diets in Multiple Sclerosis and Related Animal Models: An Updated Review. Adv Nutr 2022; 13:2002-2014. [PMID: 35679067 PMCID: PMC9526852 DOI: 10.1093/advances/nmac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
Prescribing a ketogenic diet (KD) is a century-old dietary intervention mainly used in the context of intractable epilepsy. The classic KD and its variants regained popularity in recent decades, and they are considered potentially beneficial in a variety of neurological conditions other than epilepsy. Many patients with multiple sclerosis (MS) have attempted diet modification for better control of their disease, although evidence thus far remains insufficient to recommend a specific diet for these patients. The results of 3 pilot clinical trials of KD therapy for MS, as well as several related studies, have been reported in recent years. The preliminary findings suggest that KD is safe, feasible, and potentially neuroprotective and disease-modifying for patients with MS. Research on corresponding rodent models has also lent support to the efficacy of KD in the prevention and treatment of experimental autoimmune encephalomyelitis and toxin-induced inflammatory demyelinating conditions in the brain. Furthermore, the animal studies have yielded mechanistic insights into the molecular mechanisms of KD action in relevant situations, paving the way for precision nutrition. Herein we review and synthesize recent advances and also identify unresolved issues, such as the roles of adipokines and gut microbiota, in this field. Hopefully this panoramic view of current understanding can inform future research directions and clinical practice with regard to KD in MS and related conditions.
Collapse
Affiliation(s)
| | - Shan-Ju Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Pei-Yin Liao
- Department of Dietetics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Divya Suresh
- Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan,Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|