1
|
Claytor B, Polston D, Li Y. Multifocal Motor Neuropathy: A Narrative Review. Muscle Nerve 2025; 71:512-534. [PMID: 39936246 PMCID: PMC11887531 DOI: 10.1002/mus.28349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
Multifocal motor neuropathy (MMN) is an acquired autoimmune polyneuropathy that affects almost exclusively the motor nerve fibers. Typically seen in middle-aged adults, its predominant clinical feature is a chronically progressive asymmetric weakness that affects the distal upper extremities most significantly. Minor sensory symptoms, sensory examination findings or abnormal sensory nerve conduction studies can be seen in the lower extremities in a minority of patients. Electrodiagnostic studies reveal motor conduction blocks at noncompressible sites, and minor findings of other demyelinating features such as conduction slowing or temporal dispersion. Anti-GM1 antibody titers are elevated in less than half of MMN patients, and more recent studies suggest mechanisms including antibody-induced complement attack at the node of Ranvier with resulting ion channel dysfunction. Peripheral nerve magnetic resonance imaging and neuromuscular ultrasound often reveal non-uniform enlargement of the nerve roots, plexuses, or peripheral nerve segments, thus being useful in assisting diagnosis. The differential diagnosis of MMN mainly includes motor neuron disease or demyelinating sensorimotor polyneuropathies. Immunoglobulin therapy is the first-line and mainstay of treatment, being effective in maintaining or restoring muscle strength in the majority of patients. However, motor strength often slowly declines over the long term, even with maintenance immunoglobulin treatment. More effective immunotherapy is needed to halt the slow progression of MMN, and complement inhibition appears to be a promising option in the near future.
Collapse
Affiliation(s)
- Benjamin Claytor
- Neuromuscular Center, Department of NeurologyNeurological Institute, Cleveland ClinicClevelandOhioUSA
| | - David Polston
- Neuromuscular Center, Department of NeurologyNeurological Institute, Cleveland ClinicClevelandOhioUSA
| | - Yuebing Li
- Neuromuscular Center, Department of NeurologyNeurological Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
2
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025:10.1038/s41582-025-01073-y. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Budding K, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, van der Pol WL, Notermans NC, Minnema MC, Leusen JHW, Hack CE, Van de Walle I. Complement activation by IgM autoantibodies linked to immune-mediated neuropathies depends on C2. Eur J Neurol 2025; 32:e16541. [PMID: 39545641 PMCID: PMC11625944 DOI: 10.1111/ene.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND PURPOSE Complement factor C2 is a potential therapeutic target in immune-mediated neuropathies. However, literature suggests that classical complement pathway activation may proceed to C3 in the absence of C2, a so-called "C2 bypass." Here, we evaluated a C2 bypass mechanism during complement activation by pathogenic human IgM from patients with immune-mediated neuropathies. METHODS IgM autoantibodies from 51 patients with multifocal motor neuropathy (MMN) or anti-myelin-associated glycoprotein (MAG) neuropathy (AMN) were used to activate complement in ex vivo disease models. C2 bypass was evaluated using C2-depleted (C2D) serum and a therapeutic anti-C2 antibody. RESULTS In two different disease models of MMN, IgM anti-GM1 and IgM anti-GM2 autoantibodies from MMN patients were bound to induced pluripotent stem cell-derived motor neurons and Schwann cells, respectively, and fixed C3 upon incubation with fresh serum. C3 fixation was inhibited by anti-C2 and did not occur with C2D serum. Similarly, in an AMN model, IgM anti-MAG antibodies were incubated with fresh serum fixed C3, which in all cases was abrogated in the absence of C2 or in the presence of anti-C2. CONCLUSIONS In ex vivo disease models of MMN and AMN, complement activation by IgM autoantibodies from 51 patients was in all cases dependent on C2 and was inhibited by an antihuman C2 antibody. No evidence of a C2 bypass mechanism was found.
Collapse
Affiliation(s)
- Kevin Budding
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Elisabeth de Zeeuw
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Lauri M. Bloemenkamp
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Nicolette C. Notermans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtthe Netherlands
| | - Monique C. Minnema
- Department of Hematology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - C. Erik Hack
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | | |
Collapse
|
4
|
Bos JW, Groen EJN, Otten HG, Budding K, van Eijk RPA, Curial C, Kardol-Hoefnagel T, Goedee HS, van den Berg LH, van der Pol WL. A 21-bp deletion in the complement regulator CD55 promotor region is associated with multifocal motor neuropathy and its disease course. J Peripher Nerv Syst 2024; 29:193-201. [PMID: 38528725 DOI: 10.1111/jns.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND AND AIMS To further substantiate the role of antibody-mediated complement activation in multifocal motor neuropathy (MMN) immunopathology, we investigated the distribution of promotor polymorphisms of genes encoding the membrane-bound complement regulators CD46, CD55, and CD59 in patients with MMN and controls, and evaluated their association with disease course. METHODS We used Sanger sequencing to genotype five common polymorphisms in the promotor regions of CD46, CD55, and CD59 in 133 patients with MMN and 380 controls. We correlated each polymorphism to clinical parameters. RESULTS The genotype frequencies of rs28371582, a 21-bp deletion in the CD55 promotor region, were altered in patients with MMN as compared to controls (p .009; Del/Del genotype 16.8% vs. 7.7%, p .005, odds ratio: 2.43 [1.27-4.58]), and patients carrying this deletion had a more favorable disease course (mean difference 0.26 Medical Research Council [MRC] points/year; 95% confidence interval [CI]: 0.040-0.490, p .019). The presence of CD59 rs141385724 was associated with less severe pre-diagnostic disease course (mean difference 0.940 MRC point/year; 95% CI: 0.083-1.80, p .032). INTERPRETATION MMN susceptibility is associated with a 21-bp deletion in the CD55 promotor region (rs2871582), which is associated with lower CD55 expression. Patients carrying this deletion may have a more favorable long-term disease outcome. Taken together, these results point out the relevance of the pre-C5 level of the complement cascade in the inflammatory processes underlying MMN.
Collapse
Affiliation(s)
- Jeroen W Bos
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Henny G Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kevin Budding
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ruben P A van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chantall Curial
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Budding K, Bos JW, Dijkxhoorn K, de Zeeuw E, Bloemenkamp LM, Zekveld EM, Groen EJN, Jacobs BC, Huizinga R, Goedee HS, Cats EA, Leusen JHW, van den Berg LH, Hack CE, van der Pol WL. IgM anti-GM2 antibodies in patients with multifocal motor neuropathy target Schwann cells and are associated with early onset. J Neuroinflammation 2024; 21:100. [PMID: 38632654 PMCID: PMC11025174 DOI: 10.1186/s12974-024-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Multifocal motor neuropathy (MMN) is a rare, chronic immune-mediated polyneuropathy characterized by asymmetric distal limb weakness. An important feature of MMN is the presence of IgM antibodies against gangliosides, in particular GM1 and less often GM2. Antibodies against GM1 bind to motor neurons (MNs) and cause damage through complement activation. The involvement of Schwann cells (SCs), expressing GM1 and GM2, in the pathogenesis of MMN is unknown. METHODS Combining the data of our 2007 and 2015 combined cross-sectional and follow-up studies in Dutch patients with MMN, we evaluated the presence of IgM antibodies against GM1 and GM2 in serum from 124 patients with MMN and investigated their binding to SCs and complement-activating properties. We also assessed the relation of IgM binding and complement deposition with clinical characteristics. RESULTS Thirteen out of 124 patients (10%) had a positive ELISA titer for IgM anti-GM2. Age at onset of symptoms was significantly lower in MMN patients with anti-GM2 IgM. IgM binding to SCs correlated with IgM anti-GM2 titers. We found no correlation between IgM anti-GM2 titers and MN binding or with IgM anti-GM1 titers. IgM binding to SCs decreased upon pre-incubation of serum with soluble GM2, but not with soluble GM1. IgM anti-GM2 binding to SCs correlated with complement activation, as reflected by increased C3 fixation on SCs and C5a formation in the supernatant. CONCLUSION Circulating IgM anti-GM2 antibodies define a subgroup of patients with MMN that has an earlier onset of disease. These antibodies probably target SCs specifically and activate complement, similarly as IgM anti-GM1 on MNs. Our data indicate that complement activation by IgM antibodies bound to SCs and MNs underlies MMN pathology.
Collapse
Affiliation(s)
- Kevin Budding
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen W Bos
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth de Zeeuw
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lauri M Bloemenkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Eva M Zekveld
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Bart C Jacobs
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Elisabeth A Cats
- Department of Neurology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Kuwahara M. [Prospect of novel therapies in immune-mediated neuropathies]. Rinsho Shinkeigaku 2024; 64:1-7. [PMID: 38072443 DOI: 10.5692/clinicalneurol.cn-001888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The efficacy of immunotherapies such as steroids, plasmapheresis, and intravenous immunoglobulin have been proven in various immune-mediated neuropathies. However, these treatments sometimes lack the efficacy in a part of patients with the immune-mediated neuropathies. In addition, anti-myelin associated glycoprotein (MAG) neuropathy is usually refractory to the treatments. Recently, novel therapies targeting a molecule which are associated with pathogenesis of immune-mediated diseases, have been developed. These molecularly targeted therapies are notable in immune-mediated neuropathies as novel drug candidates. In the present article, current treatments and future prospect of novel therapies in immune-mediated neuropathies will be reviewed.
Collapse
Affiliation(s)
- Motoi Kuwahara
- Department of Neurology, Kindai University Faculty of Medicine
| |
Collapse
|
7
|
Dziadkowiak E, Nowakowska-Kotas M, Rałowska-Gmoch W, Budrewicz S, Koszewicz M. Molecular, Electrophysiological, and Ultrasonographic Differences in Selected Immune-Mediated Neuropathies with Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24119180. [PMID: 37298132 DOI: 10.3390/ijms24119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The spectrum of immune-mediated neuropathies is broad and the different subtypes are still being researched. With the numerous subtypes of immune-mediated neuropathies, establishing the appropriate diagnosis in normal clinical practice is challenging. The treatment of these disorders is also troublesome. The authors have undertaken a literature review of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), Guillain-Barre syndrome (GBS) and multifocal motor neuropathy (MMN). The molecular, electrophysiological and ultrasound features of these autoimmune polyneuropathies are analyzed, highlighting the differences in diagnosis and ultimately treatment. The immune dysfunction can lead to damage to the peripheral nervous system. In practice, it is suspected that these disorders are caused by autoimmunity to proteins located in the node of Ranvier or myelin components of peripheral nerves, although disease-associated autoantibodies have not been identified for all disorders. The electrophysiological presence of conduction blocks is another important factor characterizing separate subgroups of treatment-naive motor neuropathies, including multifocal CIDP (synonyms: multifocal demyelinating neuropathy with persistent conduction block), which differs from multifocal motor neuropathy with conduction block (MMN) in both responses to treatment modalities and electrophysiological features. Ultrasound is a reliable method for diagnosing immune-mediated neuropathies, particularly when alternative diagnostic examinations yield inconclusive results. In overall terms, the management of these disorders includes immunotherapy such as corticosteroids, intravenous immunoglobulin or plasma exchange. Improvements in clinical criteria and the development of more disease-specific immunotherapies should expand the therapeutic possibilities for these debilitating diseases.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Nowakowska-Kotas
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Wiktoria Rałowska-Gmoch
- Department of Neurology, The St. Jadwiga's Regional Specialist Neuropsychiatric Centre, Wodociągowa 4, 45-221 Opole, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Shastri A, Al Aiyan A, Kishore U, Farrugia ME. Immune-Mediated Neuropathies: Pathophysiology and Management. Int J Mol Sci 2023; 24:7288. [PMID: 37108447 PMCID: PMC10139406 DOI: 10.3390/ijms24087288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the immune system can result in damage of the peripheral nervous system. The immunological mechanisms, which include macrophage infiltration, inflammation and proliferation of Schwann cells, result in variable degrees of demyelination and axonal degeneration. Aetiology is diverse and, in some cases, may be precipitated by infection. Various animal models have contributed and helped to elucidate the pathophysiological mechanisms in acute and chronic inflammatory polyradiculoneuropathies (Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, respectively). The presence of specific anti-glycoconjugate antibodies indicates an underlying process of molecular mimicry and sometimes assists in the classification of these disorders, which often merely supports the clinical diagnosis. Now, the electrophysiological presence of conduction blocks is another important factor in characterizing another subgroup of treatable motor neuropathies (multifocal motor neuropathy with conduction block), which is distinct from Lewis-Sumner syndrome (multifocal acquired demyelinating sensory and motor neuropathy) in its response to treatment modalities as well as electrophysiological features. Furthermore, paraneoplastic neuropathies are also immune-mediated and are the result of an immune reaction to tumour cells that express onconeural antigens and mimic molecules expressed on the surface of neurons. The detection of specific paraneoplastic antibodies often assists the clinician in the investigation of an underlying, sometimes specific, malignancy. This review aims to discuss the immunological and pathophysiological mechanisms that are thought to be crucial in the aetiology of dysimmune neuropathies as well as their individual electrophysiological characteristics, their laboratory features and existing treatment options. Here, we aim to present a balance of discussion from these diverse angles that may be helpful in categorizing disease and establishing prognosis.
Collapse
Affiliation(s)
- Abhishek Shastri
- Central and North West London NHS Foundation Trust, London NW1 3AX, UK
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
9
|
Briani C, Visentin A. Therapeutic Monoclonal Antibody Therapies in Chronic Autoimmune Demyelinating Neuropathies. Neurotherapeutics 2022; 19:874-884. [PMID: 35349079 PMCID: PMC9294114 DOI: 10.1007/s13311-022-01222-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases of the peripheral nervous system have so far been treated mainly with exogenous high-dose intravenous immunoglobulins (IVIg), that act through several mechanisms, including neutralization of pathogenic autoantibodies, modulation of lymphocyte activity, interference with antigen presentation, and interaction with Fc receptors, cytokines, and the complement system. Other therapeutic strategies have recently been developed, in part to address the increasing shortage of IVIg, prime among which is the use of B cell depleting monoclonal antibodies, or small molecule inhibitors targeting the B-cell specific kinases. Rituximab, a chimeric monoclonal antibody against CD20 + B lymphocytes, is currently the most used, especially in anti-MAG antibody neuropathy and autoimmune neuropathies with antibodies to nodal/paranodal antigens that are unresponsive to IVIg. After several reports of its efficacy in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), rituximab is currently under investigation in three Phase 2 trials in CIDP. In addition, the possible role of complement activation in the pathogenesis of chronic autoimmune neuropathies has brought into consideration drugs that can block the complement cascade, such as eculizumab, a monoclonal antibody already assessed in acute polyradiculoneuropathies, and approved for myasthenia gravis. Preliminary data on eculizumab in multifocal motor neuropathy have been published, but randomized controlled studies are pending. Moreover, the neonatal Fc receptor, that recycles IgGs by preventing their lysosome degradation, is an important and attractive pharmacological target. Antibodies against FcRn, which reduce circulating IgG (both pathogenic and non-pathogenic) have been developed. The FcRn blocker efgartigimod, a humanized IgG1-derived Fc fragment, which competitively inhibits the FcRn, has recently been approved for the treatment of myasthenia gravis and is currently under investigation in CIDP. In addition, the anti-human FcRn monoclonal antibody rozanolixizumab is currently being assessed in phase 2 trials in CIDP. However, none of the abovementioned monoclonal antibodies is currently approved for treatment of any immune-mediated neuropathies. While more specific and individualized therapies are being developed, the possibility of combined treatments targeting different pathogenic mechanisms deserves consideration as well.
Collapse
Affiliation(s)
- Chiara Briani
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy.
| | - Andrea Visentin
- Department of Medicine, Hematology Unit, University of Padova, Padova, Italy
| |
Collapse
|