1
|
Bansal AS, Seton KA, Brooks JCW, Carding SR. Cognitive Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Aetiology and Potential Treatments. Int J Mol Sci 2025; 26:1896. [PMID: 40076522 PMCID: PMC11899462 DOI: 10.3390/ijms26051896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Systemic infection and inflammation impair mental function through a combination of altered attention and cognition. Here, we comprehensively review the relevant literature and report personal clinical observations to discuss the relationship between infection, peripheral inflammation, and cerebral and cognitive dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Cognitive dysfunction in ME/CFS could result from low-grade persistent inflammation associated with raised pro-inflammatory cytokines. This may be caused by both infectious and non-infectious stimuli and lead to altered regional cerebral blood flow accompanied by disturbed neuronal function. Immune dysregulation that manifests as a subtle immunodeficiency or the autoimmunity targeting of one or more neuronal receptors may also be a contributing factor. Efforts to reduce low-grade systemic inflammation and viral reactivation and to improve mitochondrial energy generation in ME/CFS have the potential to improve cognitive dysfunction in this highly disabling condition.
Collapse
Affiliation(s)
| | - Katharine A. Seton
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK;
| | | | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK;
- Norwich Medical School, University East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
2
|
van der Schaaf ME, Geerligs L, Toni I, Knoop H, Oosterman JM. Disentangling pain and fatigue in chronic fatigue syndrome: a resting state connectivity study before and after cognitive behavioral therapy. Psychol Med 2024; 54:1735-1748. [PMID: 38193344 DOI: 10.1017/s0033291723003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It remains unclear whether these symptoms are related to similar or dissociable brain networks. This study used resting-state fMRI to disentangle networks associated with fatigue and pain symptoms in ME/CFS patients, and to link changes in those networks to clinical improvements following cognitive behavioral therapy (CBT). METHODS Relationships between pain and fatigue symptoms and cortico-cortical connectivity were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network (FPN), premotor network (PMN), somatomotor network (SMN), and default mode network (DMN). RESULTS At baseline, variation in pain and fatigue symptoms related to partially dissociable brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were observed for PMN-DMN or SMN-PMN connectivity. CONCLUSIONS These results provide insight into the dissociable neural mechanisms underlying fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully treated patients. Further investigation of how and in whom behavioral and biomedical treatments affect these networks is warranted to improve and individualize existing or new treatments for ME/CFS.
Collapse
Affiliation(s)
- Marieke E van der Schaaf
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of cognitive neuropsychology Tilburg University, Tilburg, The Netherlands
| | - Linda Geerligs
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Ivan Toni
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Hans Knoop
- Department of Medical Psychology and Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joukje M Oosterman
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Lee JS, Sato W, Son CG. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun Rev 2024; 23:103484. [PMID: 38016575 DOI: 10.1016/j.autrev.2023.103484] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by an elusive etiology and pathophysiology. This study aims to evaluate the pathological role of neuroinflammation in ME/CFS by conducting an exhaustive analysis of 65 observational studies. Four neuroimaging techniques, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), and positron emission tomography (PET), were employed to comparatively assess brain regional structure, metabolite profiles, electrical activity, and glial activity in 1529 ME/CFS patients (277 males, 1252 females) and 1715 controls (469 males, 1246 females). Clinical characteristics, including sex, age, and fatigue severity, were consistent with established epidemiological patterns. Regional alterations were most frequently identified in the cerebral cortex, with a notable focus on the frontal cortex. However, our meta-analysis data revealed a significant hypoactivity in the insular and thalamic regions, contrary to observed frequencies. These abnormalities, occurring in pivotal network hubs bridging reason and emotion, disrupt connections with the limbic system, contributing to the hallmark symptoms of ME/CFS. Furthermore, we discuss the regions where neuroinflammatory features are frequently observed and address critical neuroimaging limitations, including issues related to inter-rater reliability. This systematic review serves as a valuable guide for defining regions of interest (ROI) in future neuroimaging investigations of ME/CFS.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Wakiro Sato
- Department of Immunology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Chang-Gue Son
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea; Institute of Bioscience & Integrative Medicine, Daejeon University, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
5
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Tate W, Walker M, Sweetman E, Helliwell A, Peppercorn K, Edgar C, Blair A, Chatterjee A. Molecular Mechanisms of Neuroinflammation in ME/CFS and Long COVID to Sustain Disease and Promote Relapses. Front Neurol 2022; 13:877772. [PMID: 35693009 PMCID: PMC9174654 DOI: 10.3389/fneur.2022.877772] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disease now well-documented as having arisen commonly from a viral infection, but also from other external stressors, like exposure to agricultural chemicals, other types of infection, surgery, or other severe stress events. Research has shown these events produce a systemic molecular inflammatory response and chronic immune activation and dysregulation. What has been more difficult to establish is the hierarchy of the physiological responses that give rise to the myriad of symptoms that ME/CFS patients experience, and why they do not resolve and are generally life-long. The severity of the symptoms frequently fluctuates through relapse recovery periods, with brain-centered symptoms of neuroinflammation, loss of homeostatic control, "brain fog" affecting cognitive ability, lack of refreshing sleep, and poor response to even small stresses. How these brain effects develop with ME/CFS from the initiating external effector, whether virus or other cause, is poorly understood and that is what our paper aims to address. We propose the hypothesis that following the initial stressor event, the subsequent systemic pathology moves to the brain via neurovascular pathways or through a dysfunctional blood-brain barrier (BBB), resulting in chronic neuroinflammation and leading to a sustained illness with chronic relapse recovery cycles. Signaling through recognized pathways from the brain back to body physiology is likely part of the process by which the illness cycle in the peripheral system is sustained and why healing does not occur. By contrast, Long COVID (Post-COVID-19 condition) is a very recent ME/CFS-like illness arising from the single pandemic virus, SARS-CoV-2. We believe the ME/CFS-like ongoing effects of Long COVID are arising by very similar mechanisms involving neuroinflammation, but likely with some unique signaling, resulting from the pathology of the initial SARS-CoV-2 infection. The fact that there are very similar symptoms in both ongoing diseases, despite the diversity in the nature of the initial stressors, supports the concept of a similar dysfunctional CNS component common to both.
Collapse
Affiliation(s)
- Warren Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Max Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Eiren Sweetman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Amber Helliwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Christina Edgar
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anna Blair
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | | |
Collapse
|