1
|
Rees K, Aicheler R, Butcher L, Dodd A, Geen J, Lynch C, Massey I, Morris K, Tennant B, Webb R. Seasonal variation in the associations between self-reported long-COVID symptoms and IL-6 signalling-related factors (particularly the rs2228145 variant of the IL-6R gene): A clinical study. Cytokine 2025; 189:156884. [PMID: 39987891 DOI: 10.1016/j.cyto.2025.156884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
This observational study focused on the impact of Interleukin-6 (IL-6)-related factors (notably the IL-6 receptor (IL-6R) gene's rs2228145 polymorphism) on long-COVID risk in individuals who had previously experienced COVID-19 infection(s). The purpose of the study was to better understand such factors' contribution to long-COVID risk, and thus possibly initiate future strategies for using IL-6-related factors as biomarkers predictive of risk (while also obtaining data that may influence long-COVID management and treatment more generally). DNA and blood samples, plus questionnaire responses regarding long-COVID symptoms (including chronic fatigue and cognitive impairment), were collected from 175 participants who had previously experienced COVID-19 infection(s). Potential associations between self-reported long-COVID symptoms and participants' rs2228145 genotypes (determined using TaqMan-based genotyping assays) and/or their circulating IL-6, sIL-6R and sgp130 levels (determined using ELISA) were evaluated. Univariate-regression analyses demonstrated that odds of exhibiting long-COVID symptoms increased with severity/number of previous COVID-19 infection(s) and with hypertension as a co-morbidity, while vaccination decreased the likelihood of developing long-COVID. While long-COVID sufferers exhibited higher IL-6 signalling activity than healthy control individuals, rs2228145 genotype was not associated with long-COVID odds-ratios in- the entire-study cohort. Following identification of significant seasonal variations within our dataset, the entire-study cohort was stratified depending on when samples/questionnaire responses were obtained. In the resulting 'summer' sub-cohort (but not the 'winter' sub-cohort), the rs2228145 AA genotype was significantly over-represented amongst those exhibiting long-COVID symptoms, and long-COVID odds-ratios were significantly reduced for the CC and AC genotypes. While interpretation is complicated by seasonal variations, these findings may be of medical/biomedical value. Importantly, as IL-6 was higher in long-COVID sufferers than healthy controls, and rs2228145 AA genotype-bearing individuals within our 'summer' sub-cohort were at elevated risk of developing long-COVID, these findings point towards possible future use of IL-6 and/or rs2228145 genotype as biomarkers predictive of long-COVID risk, which may bring advantages regarding management and treatment of long-COVID.
Collapse
Affiliation(s)
- Katie Rees
- Department of Biomedical Sciences, School of Sport/Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Rebecca Aicheler
- Department of Biomedical Sciences, School of Sport/Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Lee Butcher
- Department of Biomedical Sciences, School of Sport/Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Alan Dodd
- Clinical Biochemistry Department, Cwm Taf Morgannwg University Health Board, Merthyr Tydfil CF47 9DT, UK
| | - John Geen
- Clinical Biochemistry Department, Cwm Taf Morgannwg University Health Board, Merthyr Tydfil CF47 9DT, UK
| | - Ceri Lynch
- Intensive Care Unit, Cwm Taf Morgannwg University Health Board, Ynysmaerdy, Pontyclun, CF72 8XR, UK
| | - Isabel Massey
- Department of Biomedical Sciences, School of Sport/Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Keith Morris
- Department of Biomedical Sciences, School of Sport/Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Brian Tennant
- Clinical Biochemistry Department, Cwm Taf Morgannwg University Health Board, Merthyr Tydfil CF47 9DT, UK
| | - Richard Webb
- Department of Biomedical Sciences, School of Sport/Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| |
Collapse
|
2
|
Milligan C, Cowley DO, Stewart W, Curry AM, Forbes E, Rector B, Hastie A, Liu L, Hawkins GA. Enhanced Interleukin 6 Trans-Signaling Modulates Disease Process in Amyotrophic Lateral Sclerosis Mouse Models. Brain Sci 2025; 15:84. [PMID: 39851451 PMCID: PMC11764401 DOI: 10.3390/brainsci15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life. Here, we focus on understanding the role of IL6 trans-signaling in ALS disease processes. Methods: We leveraged unique mouse models of IL6 trans-signaling that we developed that recapitulate the production of active sIL6R in a genotypic and quantitative fashion observed in humans. Given that the SOD1 transgenic mouse is one of the most highly studied and characterized models of ALS, we bred SOD1G93A mice with IL6R trans-signaling mice to determine how enhanced trans-signaling influenced symptom onset and pathological processes, including neuromuscular junction (NMJ) denervation, glial activation and motoneuron (MN) survival. Results: The results indicate that in animals with enhanced trans-signaling, symptom onset and pathological processes were accelerated, suggesting a role in disease modification. Administration of an IL6R functional blocking antibody failed to alter accelerated symptom onset and disease progression. Conclusions: Future work to investigate the site-specific influence of enhanced IL6 trans-signaling and the tissue-specific bioavailability of potential therapeutics will be necessary to identify targets for precise therapeutic interventions that may limit disease progression in the 60% of ALS patients who inherit the common Il6R Asp358Ala variant.
Collapse
Affiliation(s)
- Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dale O. Cowley
- Department of Genetics and Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - William Stewart
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alyson M. Curry
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth Forbes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Rector
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Annette Hastie
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory A. Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
3
|
Myserlis EP, Ray A, Anderson CD, Georgakis MK. Genetically proxied IL-6 signaling and risk of Alzheimer's disease and lobar intracerebral hemorrhage: A drug target Mendelian randomization study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70000. [PMID: 39206334 PMCID: PMC11349601 DOI: 10.1002/trc2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Evidence suggests that higher C-reactive protein (CRP) is associated with lower risk of Alzheimer's disease (AD) and lobar intracerebral hemorrhage (ICH). Whether interleukin (IL)-6 signaling, an active pharmacological target upstream of CRP, is associated with these amyloid-related pathologies remains unknown. METHODS We used 26 CRP-lowering variants near the IL-6 receptor gene to perform Mendelian randomization analyses for AD (111,326 cases, 677,663 controls) and ICH (1545 cases, 1481 controls). We explored the effect of genetically proxied IL-6 signaling on serum, cerebrospinal fluid (CSF), and brain proteome (971 individuals). RESULTS Genetically upregulated IL-6 receptor-mediated signaling was associated with lower risk of AD (OR per increment in serum logCRP levels: 0.87, 95% CI: 0.79-0.95) and lobar ICH (OR: 0.27, 95% CI: 0.09-0.89). We also found associations with 312, 77, and 79 brain, CSF, and plasma proteins, respectively, some of which were previously implicated in amyloid-clearing mechanisms. DISCUSSION Genetic data support that CRP-lowering through variation in the gene encoding IL-6 receptor may be associated with amyloid-related outcomes. Highlights Genetic variants proxying IL-6 inhibition are associated with AD and lobar ICH risk.The variants are also associated with amyloid clearing-related proteomic changes.Whether pharmacologic IL-6 inhibition is linked to AD or lobar ICH merits further study.
Collapse
Affiliation(s)
| | - Anushree Ray
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) HospitalLMU MunichMunichGermany
| | - Christopher D. Anderson
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Henry and Alisson McCance Center for Brain HealthMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) HospitalLMU MunichMunichGermany
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| |
Collapse
|
4
|
Kerkis I, da Silva ÁP, Araldi RP. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front Immunol 2024; 15:1400533. [PMID: 39015561 PMCID: PMC11249726 DOI: 10.3389/fimmu.2024.1400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Interleukin-6 (IL-6) is a versatile cytokine crucial for immune response modulation, inflammation regulation, and various physiological processes in the body. Its wide-ranging functions underscore its importance in maintaining health. Dysregulated IL-6 is closely associated with many diseases, making it a key research and therapeutic target. Elevated IL-6 levels in the central nervous system worsen neuroinflammation in neurodegenerative diseases by activating microglia and astrocytes and releasing pro-inflammatory cytokines and neurotoxic molecules. Moreover, dysregulated IL-6 weakens the blood-brain barrier, exacerbating neuroinflammation and neuronal damage by allowing peripheral immune cells and inflammatory mediators to enter the brain. Mesenchymal stem cells (MSCs) show promise in modulating neuroinflammation by regulating IL-6 levels. They effectively suppress pro-inflammatory cytokines, including IL-6, while promoting anti-inflammatory factors. This therapeutic approach highlights the importance of targeting IL-6 and other inflammatory mediators to alleviate neuroinflammation and its adverse effects on neurological disorders. This review provides a comprehensive overview of IL-6's involvement in neurological disorders, examining endogenous IL-6 and IL-6 derived from MSCs. We explore IL-6's mechanisms affecting neuronal function, survival, and immune modulation in the central nervous system. Additionally, we discuss the potential of MSC-derived IL-6 in neuroregeneration and neuroprotection. By elucidating IL-6's interplay with neurological pathologies, this review offers insights into novel therapeutic strategies targeting IL-6 signaling pathways for neurological disorders.
Collapse
Affiliation(s)
- Irina Kerkis
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Álvaro Prieto da Silva
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Rodrigo Pinheiro Araldi
- BioDecision Analytics Ltda., São Paulo, Brazil
- Post-graduation Program in Structural and Functional Biology, Paulista School of Medicine Escola Paulista de Medicina (EPM), Federal University of São Paulo Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Rudolph MD, Sutphen CL, Register TC, Whitlow CT, Solingapuram Sai KK, Hughes TM, Bateman JR, Dage JL, Russ KA, Mielke MM, Craft S, Lockhart SN. Associations among plasma, MRI, and amyloid PET biomarkers of Alzheimer's disease and related dementias and the impact of health-related comorbidities in a community-dwelling cohort. Alzheimers Dement 2024; 20:4159-4173. [PMID: 38747525 PMCID: PMC11180870 DOI: 10.1002/alz.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION We evaluated associations between plasma and neuroimaging-derived biomarkers of Alzheimer's disease and related dementias and the impact of health-related comorbidities. METHODS We examined plasma biomarkers (neurofilament light chain, glial fibrillary acidic protein, amyloid beta [Aβ] 42/40, phosphorylated tau 181) and neuroimaging measures of amyloid deposition (Aβ-positron emission tomography [PET]), total brain volume, white matter hyperintensity volume, diffusion-weighted fractional anisotropy, and neurite orientation dispersion and density imaging free water. Participants were adjudicated as cognitively unimpaired (CU; N = 299), mild cognitive impairment (MCI; N = 192), or dementia (DEM; N = 65). Biomarkers were compared across groups stratified by diagnosis, sex, race, and APOE ε4 carrier status. General linear models examined plasma-imaging associations before and after adjusting for demographics (age, sex, race, education), APOE ε4 status, medications, diagnosis, and other factors (estimated glomerular filtration rate [eGFR], body mass index [BMI]). RESULTS Plasma biomarkers differed across diagnostic groups (DEM > MCI > CU), were altered in Aβ-PET-positive individuals, and were associated with poorer brain health and kidney function. DISCUSSION eGFR and BMI did not substantially impact associations between plasma and neuroimaging biomarkers. HIGHLIGHTS Plasma biomarkers differ across diagnostic groups (DEM > MCI > CU) and are altered in Aβ-PET-positive individuals. Altered plasma biomarker levels are associated with poorer brain health and kidney function. Plasma and neuroimaging biomarker associations are largely independent of comorbidities.
Collapse
Affiliation(s)
- Marc D. Rudolph
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Courtney L. Sutphen
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kiran K. Solingapuram Sai
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Timothy M. Hughes
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - James R. Bateman
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey L. Dage
- Department Of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kristen A. Russ
- Department Of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Michelle M. Mielke
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
6
|
Abbatecola AM, Giuliani A, Biscetti L, Scisciola L, Battista P, Barbieri M, Sabbatinelli J, Olivieri F. Circulating biomarkers of inflammaging and Alzheimer's disease to track age-related trajectories of dementia: Can we develop a clinically relevant composite combination? Ageing Res Rev 2024; 96:102257. [PMID: 38437884 DOI: 10.1016/j.arr.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Alzheimer's disease (AD) is a rapidly growing global concern due to a consistent rise of the prevalence of dementia which is mainly caused by the aging population worldwide. An early diagnosis of AD remains important as interventions are plausibly more effective when started at the earliest stages. Recent developments in clinical research have focused on the use of blood-based biomarkers for improve diagnosis/prognosis of neurodegenerative diseases, particularly AD. Unlike invasive cerebrospinal fluid tests, circulating biomarkers are less invasive and will become increasingly cheaper and simple to use in larger number of patients with mild symptoms or at risk of dementia. In addition to AD-specific markers, there is growing interest in biomarkers of inflammaging/neuro-inflammaging, an age-related chronic low-grade inflammatory condition increasingly recognized as one of the main risk factor for almost all age-related diseases, including AD. Several inflammatory markers have been associated with cognitive performance and AD development and progression. The presence of senescent cells, a key driver of inflammaging, has also been linked to AD pathogenesis, and senolytic therapy is emerging as a potential treatment strategy. Here, we describe blood-based biomarkers clinically relevant for AD diagnosis/prognosis and biomarkers of inflammaging associated with AD. Through a systematic review approach, we propose that a combination of circulating neurodegeneration and inflammatory biomarkers may contribute to improving early diagnosis and prognosis, as well as providing valuable insights into the trajectory of cognitive decline and dementia in the aging population.
Collapse
Affiliation(s)
- Angela Marie Abbatecola
- Alzheimer's Disease Day Clinic, Azienda Sanitaria Locale, Frosinone, Italy; Univesità degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Scienze Umane, Sociali e della Salute, Cassino, Italy
| | - Angelica Giuliani
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Bari Institute, Italy.
| | | | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Bari Institute, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
7
|
Moodie JE, Harris SE, Harris MA, Buchanan CR, Davies G, Taylor A, Redmond P, Liewald DCM, Valdés Hernández MDC, Shenkin S, Russ TC, Muñoz Maniega S, Luciano M, Corley J, Stolicyn A, Shen X, Steele D, Waiter G, Sandu A, Bastin ME, Wardlaw JM, McIntosh A, Whalley H, Tucker‐Drob EM, Deary IJ, Cox SR. General and specific patterns of cortical gene expression as spatial correlates of complex cognitive functioning. Hum Brain Mapp 2024; 45:e26641. [PMID: 38488470 PMCID: PMC10941541 DOI: 10.1002/hbm.26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components: gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 29 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|β| range = 0.18 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.
Collapse
Affiliation(s)
- Joanna E. Moodie
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Mathew A. Harris
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Colin R. Buchanan
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Gail Davies
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - David C. M. Liewald
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Maria del C. Valdés Hernández
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Susan Shenkin
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
- Ageing and Health Research Group, Usher InstituteUniversity of EdinburghUK
| | - Tom C. Russ
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghUK
| | - Susana Muñoz Maniega
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Michelle Luciano
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Janie Corley
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Aleks Stolicyn
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Xueyi Shen
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Douglas Steele
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Gordon Waiter
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Anca‐Larisa Sandu
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| | - Mark E. Bastin
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Joanna M. Wardlaw
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | | | | | | | - Ian J. Deary
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of PsychologyThe University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
| |
Collapse
|
8
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
9
|
Madetko-Alster N, Otto-Ślusarczyk D, Wiercińska-Drapało A, Koziorowski D, Szlufik S, Samborska-Ćwik J, Struga M, Friedman A, Alster P. Clinical Phenotypes of Progressive Supranuclear Palsy-The Differences in Interleukin Patterns. Int J Mol Sci 2023; 24:15135. [PMID: 37894815 PMCID: PMC10606588 DOI: 10.3390/ijms242015135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is an atypical parkinsonian syndrome based on tau pathology; its clinical phenotype differs, but PSP with Richardson's syndrome (PSP-RS) and the PSP parkinsonism predominant (PSP-P) variant remain the two most common manifestations. Neuroinflammation is involved in the course of the disease and may cause neurodegeneration. However, an up-to-date cytokine profile has not been assessed in different PSP phenotypes. This study aimed to evaluate possible differences in neuroinflammatory patterns between the two most common PSP phenotypes. Serum and cerebrospinal fluid (CSF) concentrations of interleukin-1 beta (IL-1β) and IL-6 were analyzed using enzyme-linked immunosorbent assay (ELISA) kits in 36 study participants-12 healthy controls and 24 patients with a clinical diagnosis of PSP-12 PSP-RS and 12 PSP-P. Disease duration among PSP patients ranged from three to six years. All participants underwent basic biochemical testing, and neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) values were calculated. Due to a lack of neuropathological examinations, as all patients remain alive, total tau levels were assessed in the CSF. Tau levels were significantly higher in the PSP-P and PSP-RS groups compared to the healthy controls. The lowest concentrations of serum and CSF interleukins were observed in PSP-RS patients, whereas PSP-P patients and healthy controls had significantly higher interleukin concentrations. Furthermore, there was a significant correlation between serum IL-6 levels and PLR in PSP-RS patients. The results indicate the existence of distinct neuroinflammatory patterns or a neuroprotective role of increased inflammatory activity, which could cause the differences between PSPS phenotypes and clinical course. The causality of the correlations described requires further studies to be confirmed.
Collapse
Affiliation(s)
- Natalia Madetko-Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (D.K.); (S.S.); (J.S.-Ć.); (A.F.); (P.A.)
| | - Dagmara Otto-Ślusarczyk
- Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.O.-Ś.); (M.S.)
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Wolska 37, 01-201 Warsaw, Poland;
| | - Dariusz Koziorowski
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (D.K.); (S.S.); (J.S.-Ć.); (A.F.); (P.A.)
| | - Stanisław Szlufik
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (D.K.); (S.S.); (J.S.-Ć.); (A.F.); (P.A.)
| | - Joanna Samborska-Ćwik
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (D.K.); (S.S.); (J.S.-Ć.); (A.F.); (P.A.)
| | - Marta Struga
- Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.O.-Ś.); (M.S.)
| | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (D.K.); (S.S.); (J.S.-Ć.); (A.F.); (P.A.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (D.K.); (S.S.); (J.S.-Ć.); (A.F.); (P.A.)
| |
Collapse
|