1
|
Theuriet J, Masingue M, Behin A, Ferreiro A, Bassez G, Jaubert P, Tarabay O, Fer F, Pegat A, Bouhour F, Svahn J, Petiot P, Jomir L, Chauplannaz G, Cornut-Chauvinc C, Manel V, Salort-Campana E, Attarian S, Fortanier E, Verschueren A, Kouton L, Camdessanché JP, Tard C, Magot A, Péréon Y, Noury JB, Minot-Myhie MC, Perie M, Taithe F, Farhat Y, Millet AL, Cintas P, Solé G, Spinazzi M, Esselin F, Renard D, Sacconi S, Ezaru A, Malfatti E, Mallaret M, Magy L, Diab E, Merle P, Michaud M, Fournier M, Pakleza AN, Chanson JB, Lefeuvre C, Laforet P, Richard P, Sternberg D, Villar-Quiles RN, Stojkovic T, Eymard B. Congenital myasthenic syndromes in adults: clinical features, diagnosis and long-term prognosis. Brain 2024; 147:3849-3862. [PMID: 38696726 PMCID: PMC11531845 DOI: 10.1093/brain/awae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous diseases caused by mutations affecting neuromuscular transmission. Even if the first symptoms mainly occur during childhood, adult neurologists must confront this challenging diagnosis and manage these patients throughout their adulthood. However, long-term follow-up data from large cohorts of CMS patients are lacking, and the long-term prognosis of these patients is largely unknown. We report the clinical features, diagnostic difficulties, and long-term prognosis of a French nationwide cohort of 235 adult patients with genetically confirmed CMS followed in 23 specialized neuromuscular centres. Data were retrospectively analysed. Of the 235 patients, 123 were female (52.3%). The diagnosis was made in adulthood in 139 patients, 110 of whom presented their first symptoms before the age of 18. Mean follow-up time between first symptoms and last visit was 34 years [standard deviation (SD) = 15.1]. Pathogenic variants were found in 19 disease-related genes. CHRNE-low expressor variants were the most common (23.8%), followed by variants in DOK7 (18.7%) and RAPSN (14%). Genotypes were clustered into four groups according to the initial presentation: ocular group (CHRNE-LE, CHRND, FCCMS), distal group (SCCMS), limb-girdle group (RAPSN, COLQ, DOK7, GMPPB, GFPT1), and a variable-phenotype group (MUSK, AGRN). The phenotypical features of CMS did not change throughout life. Only four genotypes had a proportion of patients requiring intensive care unit admission that exceeded 20%: RAPSN (54.8%), MUSK (50%), DOK7 (38.6%) and AGRN (25.0%). In RAPSN and MUSK patients most ICU admissions occurred before age 18 years and in DOK7 and AGRN patients at or after 18 years of age. Different patterns of disease course (stability, improvement and progressive worsening) may succeed one another in the same patient throughout life, particularly in AGRN, DOK7 and COLQ. At the last visit, 55% of SCCMS and 36.3% of DOK7 patients required ventilation; 36.3% of DOK7 patients, 25% of GMPPB patients and 20% of GFPT1 patients were wheelchair-bound; most of the patients who were both wheelchair-bound and ventilated were DOK7 patients. Six patients died in this cohort. The positive impact of therapy was striking, even in severely affected patients. In conclusion, even if motor and/or respiratory deterioration could occur in patients with initially moderate disease, particularly in DOK7, SCCMS and GFPT1 patients, the long-term prognosis for most CMS patients was favourable, with neither ventilation nor wheelchair needed at last visit. CHRNE-LE patients did not worsen during adulthood and RAPSN patients, often severely affected in early childhood, subsequently improved.
Collapse
Affiliation(s)
- Julian Theuriet
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Marion Masingue
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Anthony Behin
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Ana Ferreiro
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
- Basic and Translational Myology laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | - Guillaume Bassez
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Pauline Jaubert
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Oriana Tarabay
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Frédéric Fer
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Antoine Pegat
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Françoise Bouhour
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Juliette Svahn
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon 1, Faculté de Médecine Lyon Est, 69008 Lyon, France
- Service de Neurologie, troubles du mouvement et pathologies neuromusculaires, Hôpital Neurologique Pierre-Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Philippe Petiot
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Laurentiu Jomir
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Guy Chauplannaz
- Service d’ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône-Alpes, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Catherine Cornut-Chauvinc
- Service de Neurologie clinique et fonctionnelle, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Véronique Manel
- Service de Médecine Physique et Réadaptation Pédiatrique, L’Escale, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Groupement Est, 69500 Bron, France
| | - Emmanuelle Salort-Campana
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Shahram Attarian
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Etienne Fortanier
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Annie Verschueren
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Ludivine Kouton
- Service de pathologies neuromusculaires, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 13005 Marseille, France
| | - Jean-Philippe Camdessanché
- Service de neurologie, centre référent pour les maladies neuromusculaires, Hôpital Nord, CHU de Saint Etienne, 42270 Saint-Etienne, France
| | - Céline Tard
- Service de Neurologie, U1172, Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, CHU de Lille, 59000 Lille, France
| | - Armelle Magot
- Centre de référence des Maladies Neuromusculaires AOC, Euro-NMD, Filnemus, Hôtel-Dieu, CHU de Nantes, 44000 Nantes, France
| | - Yann Péréon
- Centre de référence des Maladies Neuromusculaires AOC, Euro-NMD, Filnemus, Hôtel-Dieu, CHU de Nantes, 44000 Nantes, France
| | - Jean-Baptiste Noury
- Inserm, LBAI, UMR1227, Centre de référence des Maladies Neuromusculaires AOC, CHRU de Brest, 29200 Brest, France
| | | | - Maud Perie
- Service de Neurologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Frederic Taithe
- Service de Neurologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Yacine Farhat
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Anne-Laure Millet
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, CHU Charles Nicolle, 76000 Rouen, France
| | - Pascal Cintas
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires, CHU de Toulouse Purpan, 31300 Toulouse, France
| | - Guilhem Solé
- Service de Neurologie et des Maladies Neuromusculaires, Centre de référence des Maladies Neuromusculaires AOC, FILNEMUS, EURO-NMD, Hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - Marco Spinazzi
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires, CHU d’Angers, 49100 Angers, France
| | - Florence Esselin
- Service de Neurologie, CHU Gui de Chauliac, 34295 Montpellier, France
| | - Dimitri Renard
- Service de Neurologie, Hôpital Caremeau, CHU de Nîmes, 30900 Nîmes, France
| | - Sabrina Sacconi
- Service de Neurologie: Système nerveux périphérique, Muscle et SLA, Hôpital Pasteur 2, CHU de Nice, 06000 Nice, France
| | - Andra Ezaru
- Service de Neurologie: Système nerveux périphérique, Muscle et SLA, Hôpital Pasteur 2, CHU de Nice, 06000 Nice, France
| | - Edoardo Malfatti
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Hôpital Henry Mondor, Assistance Publique des Hôpitaux de Paris, Université Paris Est Créteil, INSERM, U955, IMRB, 94000 Créteil, France
| | - Martial Mallaret
- Service de Neurologie, CHU de Grenoble, 38700 La Tronche, France
| | - Laurent Magy
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires, Hôpital Dupuytren, CHU de Limoges, 87000 Limoges, France
| | - Eva Diab
- Service de Neurophysiologie Clinique, CHU Amiens Picardie, 80000, Amiens, France
- Unité de Recherche Chimère UR 7516, Université Picardie Jules Verne, 80000 Amiens, France
| | - Philippe Merle
- Service de Neurophysiologie Clinique, CHU Amiens Picardie, 80000, Amiens, France
| | - Maud Michaud
- Service de Neurologie, Centre de référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, CHU de Nancy, 54000 Nancy, France
| | | | - Aleksandra Nadaj Pakleza
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, CHU de Strasbourg, 67000 Strasbourg, France
- European Reference Network—Neuromuscular Diseases (ERN EURO-NMD), 75013 Paris, France
| | - Jean-Baptiste Chanson
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, CHU de Strasbourg, 67000 Strasbourg, France
- European Reference Network—Neuromuscular Diseases (ERN EURO-NMD), 75013 Paris, France
| | - Claire Lefeuvre
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, Hôpital Raymond-Poincaré, Assistance Publique des Hôpitaux de Paris, 92380 Garches, France
| | - Pascal Laforet
- Service de Neurologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, Hôpital Raymond-Poincaré, Assistance Publique des Hôpitaux de Paris, 92380 Garches, France
- FHU PHENIX, Université Versailles, Université Paris-Saclay, 78000 Saint-Quentin-en-Yvelines, France
| | - Pascale Richard
- Service de Biochimie Métabolique et Centre de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et cellulaire, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Damien Sternberg
- Service de Biochimie Métabolique et Centre de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Rocio-Nur Villar-Quiles
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Tanya Stojkovic
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| | - Bruno Eymard
- Centre de référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
- Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, 75013 Paris, France
| |
Collapse
|
2
|
Dalton HM, Young NJ, Berman AR, Evans HD, Peterson SJ, Patterson KA, Chow CY. A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG. PLoS Genet 2024; 20:e1011458. [PMID: 39466823 PMCID: PMC11542785 DOI: 10.1371/journal.pgen.1011458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Naomi J. Young
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Heather D. Evans
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sydney J. Peterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kaylee A. Patterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Cheli M, Brugnoni R, Gibertini S, Mantegazza R, Maggi L. Novel DPAGT1 Gene Mutation in Two Twins with Congenital Myasthenic Syndrome and a Review of the Literature. J Neuromuscul Dis 2023; 10:449-458. [PMID: 37005892 DOI: 10.3233/jnd-221675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Congenital myasthenic syndromes (CMS) are rare diseases caused by mutation in genes coding for proteins involved in neuromuscular junction structure and function. DPAGT1 gene mutations are a rare cause of CMS whose clinical evolution and pathophysiological mechanisms have not been clarified completely. We present the case of two twins displaying an infancy-onset predominant limb-girdle phenotype and carrying a novel DPAGT1 mutation associated with unusual histological and clinical findings. CMS can mimic paediatric and adult limb-girdle phenotype, hence neurophysiology plays a fundamental role in the differential diagnosis.
Collapse
Affiliation(s)
- Marta Cheli
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Raffaella Brugnoni
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sara Gibertini
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
4
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
5
|
Hyde LF, Kong Y, Zhao L, Rao SR, Wang J, Stone L, Njaa A, Collin GB, Krebs MP, Chang B, Fliesler SJ, Nishina PM, Naggert JK. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci 2022; 23:12005. [PMID: 36233305 PMCID: PMC9570038 DOI: 10.3390/ijms231912005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.
Collapse
Affiliation(s)
| | - Yang Kong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Lihong Zhao
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Andrew Njaa
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | | | | |
Collapse
|
6
|
Dalton HM, Viswanatha R, Brathwaite R, Zuno JS, Berman AR, Rushforth R, Mohr SE, Perrimon N, Chow CY. A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress. PLoS Genet 2022; 18:e1010430. [PMID: 36166480 PMCID: PMC9543880 DOI: 10.1371/journal.pgen.1010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderick Brathwaite
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jae Sophia Zuno
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Rebekah Rushforth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sarkar A, Panati K, Narala VR. Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108444. [PMID: 36307006 DOI: 10.1016/j.mrrev.2022.108444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.
Collapse
Affiliation(s)
- Avik Sarkar
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa 516004, India
| | | |
Collapse
|
8
|
Dang K, Jiang S, Gao Y, Qian A. The role of protein glycosylation in muscle diseases. Mol Biol Rep 2022; 49:8037-8049. [DOI: 10.1007/s11033-022-07334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
9
|
Silva-Rojas R, Laporte J, Böhm J. STIM1/ ORAI1 Loss-of-Function and Gain-of-Function Mutations Inversely Impact on SOCE and Calcium Homeostasis and Cause Multi-Systemic Mirror Diseases. Front Physiol 2020; 11:604941. [PMID: 33250786 PMCID: PMC7672041 DOI: 10.3389/fphys.2020.604941] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous and essential mechanism regulating Ca2+ homeostasis in all tissues, and controls a wide range of cellular functions including keratinocyte differentiation, osteoblastogenesis and osteoclastogenesis, T cell proliferation, platelet activation, and muscle contraction. The main SOCE actors are STIM1 and ORAI1. Depletion of the reticular Ca2+ stores induces oligomerization of the luminal Ca2+ sensor STIM1, and the oligomers activate the plasma membrane Ca2+ channel ORAI1 to trigger extracellular Ca2+ entry. Mutations in STIM1 and ORAI1 result in abnormal SOCE and lead to multi-systemic disorders. Recessive loss-of-function mutations are associated with CRAC (Ca2+ release-activated Ca2+) channelopathy, involving immunodeficiency and autoimmunity, muscular hypotonia, ectodermal dysplasia, and mydriasis. In contrast, dominant STIM1 and ORAI1 gain-of-function mutations give rise to tubular aggregate myopathy and Stormorken syndrome (TAM/STRMK), forming a clinical spectrum encompassing muscle weakness, thrombocytopenia, ichthyosis, hyposplenism, short stature, and miosis. Functional studies on patient-derived cells revealed that CRAC channelopathy mutations impair SOCE and extracellular Ca2+ influx, while TAM/STRMK mutations induce excessive Ca2+ entry through SOCE over-activation. In accordance with the opposite pathomechanisms underlying both disorders, CRAC channelopathy and TAM/STRMK patients show mirror phenotypes at the clinical and molecular levels, and the respective animal models recapitulate the skin, bones, immune system, platelet, and muscle anomalies. Here we review and compare the clinical presentations of CRAC channelopathy and TAM/STRMK patients and the histological and molecular findings obtained on human samples and murine models to highlight the mirror phenotypes in different tissues, and to point out potentially undiagnosed anomalies in patients, which may be relevant for disease management and prospective therapeutic approaches.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
10
|
Balaraju S, Töpf A, McMacken G, Kumar VP, Pechmann A, Roper H, Vengalil S, Polavarapu K, Nashi S, Mahajan NP, Barbosa IA, Deshpande C, Taylor RW, Cossins J, Beeson D, Laurie S, Kirschner J, Horvath R, McFarland R, Nalini A, Lochmüller H. Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. Eur J Hum Genet 2020; 28:373-377. [PMID: 31527857 PMCID: PMC7029005 DOI: 10.1038/s41431-019-0506-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of disorders caused by mutations which lead to impaired neuromuscular transmission. SLC25A1 encodes a mitochondrial citrate carrier, associated mainly with the severe neurometabolic disease combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA). We previously reported a single family with a homozygous missense variant in SLC25A1 with a phenotype restricted to relatively mild CMS with intellectual disability, but to date no additional cases of this CMS subtype had been reported. Here, we performed whole exome sequencing (WES) in three additional and unrelated families presenting with CMS and mild intellectual disability to identify the underlying causative gene. The WES analysis revealed the presence of a homozygous c.740G>A; p.(Arg247Gln) missense SLC25A1 variant, the same SLC25A1 variant as identified in the original family with this phenotype. Electron microscopy of muscle from two cases revealed enlarged and accumulated mitochondria. Haplotype analysis performed in two unrelated families suggested that this variant is a result of recurrent mutation and not a founder effect. This suggests that p.(Arg247Gln) is associated with a relatively mild CMS phenotype with subtle mitochondrial abnormalities, while other variants in this gene cause more severe neurometabolic disease. In conclusion, the p.(Arg247Gln) SLC25A1 variant should be considered in patients presenting with a presynaptic CMS phenotype, particularly with accompanying intellectual disability.
Collapse
Affiliation(s)
- Sunitha Balaraju
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Grace McMacken
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Veeramani Preethish Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Astrid Pechmann
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helen Roper
- Department of Paediatrics, Heartlands Hospital, Birmingham, UK
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Niranjan Prakash Mahajan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ines A Barbosa
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences King's College London, London, UK
| | - Charu Deshpande
- Clinical Genetics Unit, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Nicolau S, Kao JC, Liewluck T. Trouble at the junction: When myopathy and myasthenia overlap. Muscle Nerve 2019; 60:648-657. [PMID: 31449669 DOI: 10.1002/mus.26676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although myopathies and neuromuscular junction disorders are typically distinct, their coexistence has been reported in several inherited and acquired conditions. Affected individuals have variable clinical phenotypes but typically display both a decrement on repetitive nerve stimulation and myopathic findings on muscle biopsy. Inherited causes include myopathies related to mutations in BIN1, DES, DNM2, GMPPB, MTM1, or PLEC and congenital myasthenic syndromes due to mutations in ALG2, ALG14, COL13A1, DOK7, DPAGT1, or GFPT1. Additionally, a decrement due to muscle fiber inexcitability is observed in certain myotonic disorders. The identification of a defect of neuromuscular transmission in an inherited myopathy may assist in establishing a molecular diagnosis and in selecting patients who would benefit from pharmacological correction of this defect. Acquired cases meanwhile stem from the co-occurrence of myasthenia gravis or Lambert-Eaton myasthenic syndrome with an immune-mediated myopathy, which may be due to paraneoplastic disorders or exposure to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Justin C Kao
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|
12
|
Lornage X, Schartner V, Balbueno I, Biancalana V, Willis T, Echaniz-Laguna A, Scheidecker S, Quinlivan R, Fardeau M, Malfatti E, Lannes B, Sewry C, Romero NB, Laporte J, Böhm J. Clinical, histological, and genetic characterization of PYROXD1-related myopathy. Acta Neuropathol Commun 2019; 7:138. [PMID: 31455395 PMCID: PMC6710884 DOI: 10.1186/s40478-019-0781-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
Recessive mutations in PYROXD1, encoding an oxidoreductase, were recently reported in families with congenital myopathy or limb-girdle muscular dystrophy. Here we describe three novel PYROXD1 families at the clinical, histological, and genetic level. Histological analyses on muscle biopsies from all families revealed fiber size variability, endomysial fibrosis, and muscle fibers with multiple internal nuclei and cores. Further characterization of the structural muscle defects uncovered aggregations of myofibrillar proteins, and provided evidence for enhanced oxidative stress. Sequencing identified homozygous or compound heterozygous PYROXD1 mutations including the first deep intronic mutation reinforcing a cryptic donor splice site and resulting in mRNA instability through exonisation of an intronic segment. Overall, this work expands the PYROXD1 mutation spectrum, defines and specifies the histopathological hallmarks of the disorder, and indicates that oxidative stress contributes to the pathomechanism. Comparison of all new and published cases uncovered a genotype/phenotype correlation with a more severe and early-onset phenotypic presentation of patients harboring splice mutations resulting in reduced PYROXD1 protein levels compared with patients carrying missense mutations.
Collapse
|
13
|
Dong YY, Wang H, Pike ACW, Cochrane SA, Hamedzadeh S, Wyszyński FJ, Bushell SR, Royer SF, Widdick DA, Sajid A, Boshoff HI, Park Y, Lucas R, Liu WM, Lee SS, Machida T, Minall L, Mehmood S, Belaya K, Liu WW, Chu A, Shrestha L, Mukhopadhyay SMM, Strain-Damerell C, Chalk R, Burgess-Brown NA, Bibb MJ, Barry Iii CE, Robinson CV, Beeson D, Davis BG, Carpenter EP. Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design. Cell 2019; 175:1045-1058.e16. [PMID: 30388443 PMCID: PMC6218659 DOI: 10.1016/j.cell.2018.10.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/01/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic “lipid-altered” tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug. Structures of DPAGT1 with UDP-GlcNAc and tunicamycin reveal mechanisms of catalysis DPAGT1 mutations in patients with glycosylation disorders modulate DPAGT1 activity Structures, kinetics and biosynthesis reveal role of lipid in tunicamycin Lipid-altered, tunicamycin analogues give non-toxic antibiotics against TB
Collapse
Affiliation(s)
- Yin Yao Dong
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Wang
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stephen A Cochrane
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK; School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK
| | - Sadra Hamedzadeh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Filip J Wyszyński
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Simon R Bushell
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sylvain F Royer
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - David A Widdick
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Andaleeb Sajid
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yumi Park
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ricardo Lucas
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wei-Min Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Seung Seo Lee
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Takuya Machida
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Leanne Minall
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Katsiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Amy Chu
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leela Shrestha
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Benjamin G Davis
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
14
|
Issop Y, Hathazi D, Khan MM, Rudolf R, Weis J, Spendiff S, Slater CR, Roos A, Lochmüller H. GFPT1 deficiency in muscle leads to myasthenia and myopathy in mice. Hum Mol Genet 2019; 27:3218-3232. [PMID: 29905857 PMCID: PMC6121184 DOI: 10.1093/hmg/ddy225] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022] Open
Abstract
Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme in the hexosamine biosynthetic pathway which yields precursors required for protein and lipid glycosylation. Mutations in GFPT1 and other genes downstream of this pathway cause congenital myasthenic syndrome (CMS) characterized by fatigable muscle weakness owing to impaired neurotransmission. The precise pathomechanisms at the neuromuscular junction (NMJ) owing to a deficiency in GFPT1 is yet to be discovered. One of the challenges we face is the viability of Gfpt1−/− knockout mice. In this study, we use Cre/LoxP technology to generate a muscle-specific GFPT1 knockout mouse model, Gfpt1tm1d/tm1d, characteristic of the human CMS phenotype. Our data suggest a critical role for muscle derived GFPT1 in the development of the NMJ, neurotransmission, skeletal muscle integrity and highlight that a deficiency in skeletal muscle alone is sufficient to cause morphological postsynaptic NMJ changes that are accompanied by presynaptic alterations despite the conservation of neuronal GFPT1 expression. In addition to the conventional morphological NMJ changes and fatigable muscle weakness, Gfpt1tm1d/tm1d mice display a progressive myopathic phenotype with the presence of tubular aggregates in muscle, characteristic of the GFPT1-CMS phenotype. We further identify an upregulation of skeletal muscle proteins glypican-1, farnesyltransferase/geranylgeranyltransferase type-1 subunit α and muscle-specific kinase, which are known to be involved in the differentiation and maintenance of the NMJ. The Gfpt1tm1d/tm1d model allows for further investigation of pathophysiological consequences on genes and pathways downstream of GFPT1 likely to involve misglycosylation or hypoglycosylation of NMJs and muscle targets.
Collapse
Affiliation(s)
- Yasmin Issop
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| | - Muzamil Majid Khan
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany.,Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sally Spendiff
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Clarke R Slater
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK.,Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle, UK.,Department of Neuropediatrics and Muscle Disorders,Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Congenital myasthenia and congenital disorders of glycosylation caused by mutations in the DPAGT1 gene. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Abstract
OBJECTIVES Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. METHODS Systematic literature review. RESULTS Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. CONCLUSIONS CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
17
|
Farmakidis C, Pasnoor M, Barohn RJ, Dimachkie MM. Congenital Myasthenic Syndromes: a Clinical and Treatment Approach. Curr Treat Options Neurol 2018; 20:36. [DOI: 10.1007/s11940-018-0520-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Abstract
PURPOSE OF REVIEW Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years. RECENT FINDINGS Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter. Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
20
|
|
21
|
Beeson D, Cossins J, Rodriguez-Cruz P, Maxwell S, Liu WW, Palace J. Myasthenic syndromes due to defects in COL13A1 and in the N-linked glycosylation pathway. Ann N Y Acad Sci 2018; 1413:163-169. [DOI: 10.1111/nyas.13576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Pedro Rodriguez-Cruz
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Susan Maxwell
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neuroscience; Weatherall Institute of Molecular Medicine; The John Radcliffe Oxford UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neuroscience; Level 3 The West Wing; The John Radcliffe Oxford UK
| |
Collapse
|
22
|
O'Connor E, Töpf A, Zahedi RP, Spendiff S, Cox D, Roos A, Lochmüller H. Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Ann N Y Acad Sci 2018; 1412:102-112. [PMID: 29315608 DOI: 10.1111/nyas.13520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare disorders that cause fatigable muscle weakness due to defective signal transmission at the neuromuscular junction, a specialized synapse between peripheral motor neurons and their target muscle fibers. There are now over 30 causative genes that have been reported for CMS. Of these, there are 10 that are associated with a limb-girdle pattern of muscle weakness and are thus classed as LG-CMS. Next-generation sequencing and advanced methods of data sharing are likely to uncover further genes that are associated with similar clinical phenotypes, contributing to better diagnosis and effective treatment of LG-CMS patients. This review highlights clinical and pathological hallmarks of LG-CMS in relation to the underlying genetic defects and pathways. Tailored animal and cell models are essential to elucidate the exact function and pathomechanisms at the neuromuscular synapse that underlie LG-CMS. The integration of genomics and proteomics data derived from these models and patients reveals new and often unexpected insights that are relevant beyond the rare genetic disorder of LG-CMS and may extend to the functioning of mammalian synapses in health and disease more generally.
Collapse
Affiliation(s)
- Emily O'Connor
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Sally Spendiff
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Cox
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund, Germany
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:565-589. [PMID: 29478601 DOI: 10.1016/b978-0-444-64076-5.00037-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. The disease proteins reside in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region, or at multiple sites at the neuromuscular junction as well as in other tissues. Targeted mutation analysis by Sanger or exome sequencing has been facilitated by characteristic phenotypic features of some CMS. No fewer than 20 disease genes have been recognized to date. In one-half of the currently identified probands, the disease stems from mutations in genes encoding subunits of the muscle form of the acetylcholine receptor (CHRNA1, CHRNB, CHRNAD1, and CHRNE). In 10-14% of the probands the disease is caused by mutations in RAPSN, DOK 7, or COLQ, and in 5% by mutations in CHAT. Other less frequently identified disease genes include LAMB2, AGRN, LRP4, MUSK, GFPT1, DPAGT1, ALG2, and ALG 14 as well as SCN4A, PREPL, PLEC1, DNM2, and MTM1. Identification of the genetic basis of each CMS is important not only for genetic counseling and disease prevention but also for therapy, because therapeutic agents that benefit one type of CMS can be harmful in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States.
| |
Collapse
|
24
|
Congenital myasthenia and congenital disorders of glycosylation caused by mutations in the DPAGT1 gene. Neurologia 2017; 34:139-141. [PMID: 28712839 DOI: 10.1016/j.nrl.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
|
25
|
DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress. PLoS One 2017; 12:e0179456. [PMID: 28662078 PMCID: PMC5491010 DOI: 10.1371/journal.pone.0179456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met), c.791T>G (p.Val264Gly), c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His), c.1154T>G (p.Leu385Arg), and of the novel mutation c.329T>C (p.Phe110Ser), were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress) was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.
Collapse
|
26
|
Pitt MC. Use of stimulated electromyography in the analysis of the neuromuscular junction in children. Muscle Nerve 2017; 56:841-847. [DOI: 10.1002/mus.25685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew C. Pitt
- Department of Clinical NeurophysiologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond Street, LondonWC1N 3JH United Kingdom
| |
Collapse
|
27
|
Aran A, Segel R, Kaneshige K, Gulsuner S, Renbaum P, Oliphant S, Meirson T, Weinberg-Shukron A, Hershkovitz Y, Zeligson S, Lee MK, Samson AO, Parsons SM, King MC, Levy-Lahad E, Walsh T. Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology 2017; 88:1021-1028. [PMID: 28188302 DOI: 10.1212/wnl.0000000000003720] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/21/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the genetic basis of a recessive congenital neurologic syndrome characterized by severe hypotonia, arthrogryposis, and respiratory failure. METHODS Identification of the responsible gene by exome sequencing and assessment of the effect of the mutation on protein stability in transfected rat neuronal-like PC12A123.7 cells. RESULTS Two brothers from a nonconsanguineous Yemeni Jewish family manifested at birth with severe hypotonia and arthrogryposis. The older brother died of respiratory failure at 5 days of age. The proband, now 4.5 years old, has been mechanically ventilated since birth with virtually no milestones achievement. Whole exome sequencing revealed homozygosity of SLC18A3 c.1078G>C, p.Gly360Arg in the affected brothers but not in other family members. SLC18A3 p.Gly360Arg is not reported in world populations but is present at a carrier frequency of 1:30 in healthy Yemeni Jews. SLC18A3 encodes the vesicular acetylcholine transporter (VAChT), which loads newly synthesized acetylcholine from the neuronal cytoplasm into synaptic vesicles. Mice that are VAChT-null have been shown to die at birth of respiratory failure. In human VAChT, residue 360 is located in a conserved region and substitution of arginine for glycine is predicted to disrupt proper protein folding and membrane embedding. Stable transfection of wild-type and mutant human VAChT into neuronal-like PC12A123.7 cells revealed similar mRNA levels, but undetectable levels of the mutant protein, suggesting post-translational degradation of mutant VAChT. CONCLUSION Loss of function of VAChT underlies severe arthrogryposis and respiratory failure. While most congenital myasthenic syndromes are caused by defects in postsynaptic proteins, VAChT deficiency is a presynaptic myasthenic syndrome.
Collapse
Affiliation(s)
- Adi Aran
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Reeval Segel
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Kota Kaneshige
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Suleyman Gulsuner
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Paul Renbaum
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Scott Oliphant
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Tomer Meirson
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Ariella Weinberg-Shukron
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Yair Hershkovitz
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Sharon Zeligson
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Ming K Lee
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Abraham O Samson
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Stanley M Parsons
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Mary-Claire King
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| | - Ephrat Levy-Lahad
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle.
| | - Tom Walsh
- From the Neuropediatric Unit (A.A.) and Medical Genetics (R.S., P.R., A.W.-S., S.Z., E.L.-L.), Shaare Zedek Medical Center; Hebrew University-Hadassah School of Medicine (A.A., R.S., A.W.-S., E.L.-L.), Jerusalem, Israel; Department of Chemistry and Biochemistry (K.K., S.O., S.M.P.), University of California, Santa Barbara; Faculty of Medicine (T.M., Y.H., A.O.S.), Bar Ilan University, Safed, Israel; and Departments of Medicine and Genome Sciences (S.G., M.K.L., M.-C.K., T.W.), University of Washington, Seattle
| |
Collapse
|
28
|
Brady S, Healy EG, Gang Q, Parton M, Quinlivan R, Jacob S, Curtis E, Al-Sarraj S, Sewry CA, Hanna MG, Houlden H, Beeson D, Holton JL. Tubular Aggregates and Cylindrical Spirals Have Distinct Immunohistochemical Signatures. J Neuropathol Exp Neurol 2016; 75:1171-1178. [DOI: 10.1093/jnen/nlw096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
30
|
Finlayson S, Morrow JM, Rodriguez Cruz PM, Sinclair CDJ, Fischmann A, Thornton JS, Knight S, Norbury R, White M, Al-Hajjar M, Carboni N, Jayawant S, Robb SA, Yousry TA, Beeson D, Palace J. Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle Nerve 2016; 54:211-9. [PMID: 26789134 PMCID: PMC4982021 DOI: 10.1002/mus.25035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/27/2015] [Accepted: 01/06/2016] [Indexed: 11/26/2022]
Abstract
Introduction In this study we investigated muscle magnetic resonance imaging in congenital myasthenic syndromes (CMS). Methods Twenty‐six patients with 9 CMS subtypes and 10 controls were imaged. T1‐weighted (T1w) and short‐tau inversion recovery (STIR) 3‐Tesla MRI images obtained at thigh and calf levels were scored for severity. Results Overall mean the T1w score was increased in GFPT1 and DPAGT1 CMS. T1w scans of the AChR‐deficiency, COLQ, and CHAT subjects were indistinguishable from controls. STIR images from CMS patients did not differ significantly from those of controls. Mean T1w score correlated with age in the CMS cohort. Conclusions MRI appearances ranged from normal to marked abnormality. T1w images seem to be especially abnormal in some CMS caused by mutations of proteins involved in the glycosylation pathway. A non‐selective pattern of fat infiltration or a normal‐appearing scan in the setting of significant clinical weakness should suggest CMS as a potential diagnosis. Muscle MRI could play a role in differentiating CMS subtypes. Muscle Nerve54: 211–219, 2016
Collapse
Affiliation(s)
- Sarah Finlayson
- Nuffield Department of Clinical Neurosciences, University of Oxford and Oxford Radcliffe Hospitals NHS Trust, Oxford, UK
| | - Jasper M Morrow
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Pedro M Rodriguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford and Oxford Radcliffe Hospitals NHS Trust, Oxford, UK
| | | | - Arne Fischmann
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - John S Thornton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Steve Knight
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
| | - Ray Norbury
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
| | - Mel White
- Department of Paediatrics, University of Oxford and Children's Hospital, Oxford, UK
| | - Michal Al-Hajjar
- Nuffield Department of Clinical Neurosciences, University of Oxford and Oxford Radcliffe Hospitals NHS Trust, Oxford, UK
| | - Nicola Carboni
- Neurology Department, Hospital San Francesco of Nuoro, Sardinia, Italy
| | - Sandeep Jayawant
- Department of Paediatrics, University of Oxford and Children's Hospital, Oxford, UK
| | - Stephanie A Robb
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Tarek A Yousry
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford and Oxford Radcliffe Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
31
|
Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, Petty R, Walls TJ, Sedghi M, Basiri K, Yue WW, Sarkozy A, Bertoli M, Pitt M, Kennett R, Schaefer A, Bushby K, Parton M, Lochmüller H, Palace J, Muntoni F, Beeson D. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 2015; 138:2493-504. [PMID: 26133662 PMCID: PMC4547052 DOI: 10.1093/brain/awv185] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 05/04/2015] [Indexed: 01/10/2023] Open
Abstract
Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected individuals can respond to appropriate treatments.
Collapse
Affiliation(s)
- Katsiaryna Belaya
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Pedro M Rodríguez Cruz
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK 2 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Wei Wei Liu
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Susan Maxwell
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon McGowan
- 3 Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Maria E Farrugia
- 4 Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Richard Petty
- 4 Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Timothy J Walls
- 5 Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Maryam Sedghi
- 6 Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keivan Basiri
- 7 Neurology Department, Neuroscience Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Wyatt W Yue
- 8 Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna Sarkozy
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK 10 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Marta Bertoli
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Matthew Pitt
- 11 Department of Clinical Neurophysiology, Great Ormond Street Hospital for children NHS foundation trust, London WC1N 3JH
| | - Robin Kennett
- 2 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Andrew Schaefer
- 5 Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Kate Bushby
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Matt Parton
- 10 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hanns Lochmüller
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jacqueline Palace
- 2 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Francesco Muntoni
- 12 Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - David Beeson
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
32
|
Jaeken J, Lefeber D, Matthijs G. Clinical utility gene card for: DPAGT1 defective congenital disorder of glycosylation. Eur J Hum Genet 2015; 23:ejhg2015177. [PMID: 26242989 DOI: 10.1038/ejhg.2015.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Disease, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Dirk Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Gert Matthijs
- Department of Human Genetics, Centre for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Evangelista T, Hanna M, Lochmüller H. Congenital Myasthenic Syndromes with Predominant Limb Girdle Weakness. J Neuromuscul Dis 2015; 2:S21-S29. [PMID: 26870666 PMCID: PMC4746746 DOI: 10.3233/jnd-150098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Congenital myasthenic syndromes are a heterogeneous group of genetically determined disorders characterized by impaired neuromuscular transmission. They usually present from birth to childhood and are characterised by exercise induced weakness and fatigability. Genotype-phenotype correlations are difficult. However, in some patients particular phenotypic aspects may point towards a specific genetic defect. The absence of ptosis and ophthalmoparesis in patients with limb-girdle weakness makes the diagnosis of a neuromuscular transmission defect particularly challenging (LG-CMS). This is illustrated by a well-documented case published by Walton in 1956. The diagnosis of LG-CMS is secured by demonstrating a neuromuscular transmission defect with single fibre EMG or repetitive nerve stimulation, in the absence of auto-antibodies. Ultimately, a genetic test is required to identify the underlying cause and assure counselling and optimization of treatment. LG-CMS are inherited in autosomal recessive traits, and are often associated with mutations in DOK7 and GFPT1, and less frequently with mutations in COLQ, ALG2, ALG14 and DPAGT. Genetic characterization of CMS is of the upmost importance when choosing the adequate treatment. Some of the currently used drugs can either ameliorate or aggravate the symptoms depending on the underlying genetic defect. The drug most frequently used for the treatment of CMS is pyridostigmine an acetylcholinesterase inhibitor. However, pyridostigmine is not effective or is even detrimental in DOK7- and COLQ-related LG-CMS, while beta-adrenergic agonists (ephedrine, salbutamol) show some sustained benefit. Standard clinical trials may be difficult, but standardized follow-up of patients and international collaboration may help to improve the standards of care of these conditions.
Collapse
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, UK
| | - Mike Hanna
- UCL MRC Centre for Neuromuscular Disease, Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015; 14:420-34. [PMID: 25792100 PMCID: PMC4520251 DOI: 10.1016/s1474-4422(14)70201-7] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The congenital myasthenic syndromes (CMS) are a diverse group of genetic disorders caused by abnormal signal transmission at the motor endplate, a special synaptic contact between motor axons and each skeletal muscle fibre. Most CMS stem from molecular defects in the muscle nicotinic acetylcholine receptor, but they can also be caused by mutations in presynaptic proteins, mutations in proteins associated with the synaptic basal lamina, defects in endplate development and maintenance, or defects in protein glycosylation. The specific diagnosis of some CMS can sometimes be reached by phenotypic clues pointing to the mutated gene. In the absence of such clues, exome sequencing is a useful technique for finding the disease gene. Greater understanding of the mechanisms of CMS have been obtained from structural and electrophysiological studies of the endplate, and from biochemical studies. Present therapies for the CMS include cholinergic agonists, long-lived open-channel blockers of the acetylcholine receptor ion channel, and adrenergic agonists. Although most CMS are treatable, caution should be exercised as some drugs that are beneficial in one syndrome can be detrimental in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
36
|
Klein A, Robb S, Rushing E, Liu WW, Belaya K, Beeson D. Congenital myasthenic syndrome caused by mutations in DPAGT. Neuromuscul Disord 2014; 25:253-6. [PMID: 25500013 DOI: 10.1016/j.nmd.2014.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Congenital myasthenic syndromes with prominent limb girdle involvement are an important differential diagnosis for congenital myopathies because of the therapeutic considerations. We present a case where accurate diagnosis was delayed for many years. Fluctuations of weakness were misinterpreted as effects of alternative treatments. Weakness was generalised, most prominently in the arms. Fatigability was more prominent in less affected muscles revealed by a positive Simpson test. Stimulation single fibre electromyography confirmed the suspected neuromuscular transmission defect. The marked response to pyridostigmine and cognitive impairment pointed to a myasthenic syndrome due to impaired glycosylation. Two mutations in trans were found in DPAGT1, the gene coding for dolichyl-phosphate N-acetylglucosaminephosphotransferase, one novel, the other previously reported in a rare form of congenital disorder of glycosylation. Gene expression studies revealed that both mutations reduce DPAGT1 expression. Phenotypic features not previously described for DPAGT1 CMS included restricted ocular abduction and long finger flexor contractures.
Collapse
Affiliation(s)
- Andrea Klein
- Department of Paediatric Neurology, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | - Elisabeth Rushing
- Department of Neuropathology, University Hospital Zürich, Zürich, Switzerland
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Kasiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
37
|
Inherited disorders of the neuromuscular junction: an update. J Neurol 2014; 261:2234-43. [PMID: 25305004 DOI: 10.1007/s00415-014-7520-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Congenital myasthenic syndromes (CMSs) are a group of heterogeneous inherited disorders caused by mutations in genes affecting the function and structure of the neuromuscular junction. This review updates the reader on established and novel subtypes of congenital myasthenia, and the treatment strategies for these increasingly heterogeneous disorders. The discovery of mutations associated with the N-glycosylation pathway and in the family of serine peptidases has shown that causative genes encoding ubiquitously expressed molecules can produce defects at the human neuromuscular junction. By contrast, mutations in lipoprotein-like receptor 4 (LRP4), a long-time candidate gene for congenital myasthenia, and a novel phenotype of myasthenia with distal weakness and atrophy due to mutations in AGRN have now been described. In addition, a pathogenic splicing mutation in a nonfunctional exon of CHRNA1 has been reported emphasizing the importance of analysing nonfunctional exons in genetic analysis. The benefit of salbutamol and ephedrine alone or combined with pyridostigmine or 3,4-DAP is increasingly being reported for particular subtypes of CMS.
Collapse
|