1
|
Haider MA, Khalil MH, Fernandes MB, Westover MB, Zafar SF. Association of Time to Continuous EEG Initiation With Outcomes in Critically Ill Patients. J Clin Neurophysiol 2025:00004691-990000000-00219. [PMID: 40237584 DOI: 10.1097/wnp.0000000000001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
PURPOSE Continuous electroencephalography (cEEG) is used in the critical care setting for seizure detection and treatment, sedation management, and ischemia detection. Further evidence is needed to support whether early cEEG use can improve outcomes. We examined whether time from admission to cEEG initiation affects outcomes. METHODS This is a single-center cohort study of critically ill adults (age > 18 years) who underwent cEEG monitoring within 7 days of admission from January to December 2019. Patients with anoxic brain injury were excluded. Time (hours) from admission to cEEG was recorded. Outcomes were in-hospital mortality and poor discharge modified Rankin Score (4-6). Results are reported as median [quartile range] and odds ratio (OR) [confidence intervals, CI]. RESULTS In total, 464 patients met eligibility. Median time to cEEG was 23 hours [13, 52]. On multivariable analysis, increasing time to cEEG was associated with discharge mortality (OR, 1.006 [CI, 1.0002-1.013], 0.1%/hour [CI, 0.02-0.2]) and poor outcome (OR, 1.013 [CI, 1.005-1.020], 0.2%/hour [CI, 0.07-0.3]). Median time to cEEG initiation in patients with clinical concern for seizures/status at presentation (n = 121) was 12 hours [6, 17] and in patients without clinical concern for seizures at presentation (n = 343) was 31 hours [18, 66]. In patients without clinical concern for seizures/status epilepticus at presentation, time to cEEG continued to be associated with mortality (OR, 1.007 [CI, 1.001-1.014)] and poor outcome (OR, 1.012 [CI, 1.003-1.021]). CONCLUSIONS Increasing time to cEEG initiation was associated with higher mortality and worse outcomes. We hypothesize earlier cEEG results in timely interventions including treatment escalation and de-escalation that may improve outcomes.
Collapse
Affiliation(s)
- Muhammad A Haider
- Department of Medicine, Florida Atlantic University, Boca Raton, Florida, U.S.A
| | - Mohammad H Khalil
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts, U.S.A
| | - Marta B Fernandes
- Center for Value-Based Healthcare and Sciences, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.; and
| | - Michael B Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, U.S.A
| | - Sahar F Zafar
- Center for Value-Based Healthcare and Sciences, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.; and
| |
Collapse
|
2
|
Luster JD, Hoffman WR, Jordan M, Cacic K, Tchopev ZN, Anderson J, Gissendanner W, Miranda E, Yuan T, Willis A. Feasibility Assessment of Rapid Response EEG in the Identification of Nonconvulsive Seizures During Military Medical Air Transport. Mil Med 2025; 190:e479-e483. [PMID: 39388316 DOI: 10.1093/milmed/usae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Traumatic brain injury often requires neurologic care and specialized equipment, not often found downrange. Nonconvulsive seizures (NCSs) and nonconvulsive status epilepticus (NCSE) occur in up to 30% of patients with moderate or severe traumatic brain injury and is associated with a 39% morbidity and an 18% mortality. It remains difficult to identify at bedside because of the heterogeneous clinical manifestations. The primary diagnostic tool is an electroencephalogram (EEG) which is large, requires an external power source, and requires a specialized technician and neurologist to collect and interpret the data. Rapid response EEG (rr-EEG) is an FDA-approved device that is pocket sized and battery powered and uses a disposable 10-electrode headset. Prior studies have demonstrated the noninferiority of rr-EEG in the identification of NCSE and NCS as compared to conventional EEG in hospitals. An unanswered question is whether rr-EEG could be used in the identification of NCSE and NCS by medics. MATERIALS AND METHODS In conjunction with the Critical Care Air Transport (CCAT) team, a simulation was created and implemented on a CCAT training mission. The simulation team included a neurology resident, who oversaw the simulation, a pulmonary critical care fellow, an intensive care unit nurse, and a respiratory therapy. A survey was provided before and after the simulation. The team was expected to review the rr-EEG to make clinical decisions during ground transport, takeoff, and landing. The neurology resident monitored and recorded the team's ability to distinguish between NCS and a normal EEG. In between, the neurology resident monitored the quality of the EEG for potential interference and loss of quality. RESULTS The CCAT team was able to efficiently set up the rr-EEG on a patient manikin, correctly identify visual EEG wave forms of a patient in NCS, and utilize the proprietary audio program of a simulated patient in NCS. The team reported that the device was easily set up in the environment, and the data were interpretable despite vibration, aircraft auditory and electrical noise, and the ergonomics of the aircraft medical section. CONCLUSIONS This pilot study has validated a potentially revolutionary technology in medical transport. The rr-EEG technology is measurably user-friendly and will improve patient outcomes. This device and simulation can reduce time to an EEG by hours to days allowing for immediate treatment and intervention, which can significantly reduce morbidity and mortality.
Collapse
Affiliation(s)
- Joshua D Luster
- Department of Neurology, Joint Base Elmendorf-Richardson, Anchorage, AK 99506, USA
| | - William R Hoffman
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Morgan Jordan
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX 78219, USA
| | - Kelsey Cacic
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX 78219, USA
| | - Zahari N Tchopev
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX 78219, USA
| | - Jess Anderson
- Department of Pulmonology/Critical Care, Brooke Army Medical Center, San Antonio, TX 78219, USA
| | - William Gissendanner
- Department of Radiology/Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | | | - Tony Yuan
- Department of Radiology/Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Adam Willis
- Defense Advanced Research Projects Agency, Arlington, VA 22203, USA
| |
Collapse
|
3
|
Parvizi J, Gururangan K. Reduced montage electroencephalography: A choice between pragmatism and conventionalism. Neurophysiol Clin 2025; 55:103063. [PMID: 40015234 DOI: 10.1016/j.neucli.2025.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Affiliation(s)
- Josef Parvizi
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kapil Gururangan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Desai M, Kalkach-Aparicio M, Sheikh IS, Cormier J, Gallagher K, Hussein OM, Cespedes J, Hirsch LJ, Westover B, Struck AF. Evaluating the Impact of Point-of-Care Electroencephalography on Length of Stay in the Intensive Care Unit: Subanalysis of the SAFER-EEG Trial. Neurocrit Care 2025; 42:108-117. [PMID: 38981999 DOI: 10.1007/s12028-024-02039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Electroencephalography (EEG) is needed to diagnose nonconvulsive seizures. Prolonged nonconvulsive seizures are associated with neuronal injuries and deleterious clinical outcomes. However, it is uncertain whether the rapid identification of these seizures using point-of-care EEG (POC-EEG) can have a positive impact on clinical outcomes. METHODS In a retrospective subanalysis of the recently completed multicenter Seizure Assessment and Forecasting with Efficient Rapid-EEG (SAFER-EEG) trial, we compared intensive care unit (ICU) length of stay (LOS), unfavorable functional outcome (modified Rankin Scale score ≥ 4), and time to EEG between adult patients receiving a US Food and Drug Administration-cleared POC-EEG (Ceribell, Inc.) and those receiving conventional EEG (conv-EEG). Patient records from January 2018 to June 2022 at three different academic centers were reviewed, focusing on EEG timing and clinical outcomes. Propensity score matching was applied using key clinical covariates to control for confounders. Medians and interquartile ranges (IQRs) were calculated for descriptive statistics. Nonparametric tests (Mann-Whitney U-test) were used for the continuous variables, and the χ2 test was used for the proportions. RESULTS A total of 283 ICU patients (62 conv-EEG, 221 POC-EEG) were included. The two populations were matched using demographic and clinical characteristics. We found that the ICU LOS was significantly shorter in the POC-EEG cohort compared to the conv-EEG cohort (3.9 [IQR 1.9-8.8] vs. 8.0 [IQR 3.0-16.0] days, p = 0.003). Moreover, modified Rankin Scale functional outcomes were also different between the two EEG cohorts (p = 0.047). CONCLUSIONS This study reveals a significant association between early POC-EEG detection of nonconvulsive seizures and decreased ICU LOS. The POC-EEG differed from conv-EEG, demonstrating better functional outcomes compared with the latter in a matched analysis. These findings corroborate previous research advocating the benefit of early diagnosis of nonconvulsive seizure. The causal relationship between the type of EEG and metrics of interest, such as ICU LOS and functional/clinical outcomes, needs to be confirmed in future prospective randomized studies.
Collapse
Affiliation(s)
- Masoom Desai
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| | | | - Irfan S Sheikh
- Epilepsy Division, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Justine Cormier
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - Kaileigh Gallagher
- Epilepsy Division, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Omar M Hussein
- Comprehensive Epilepsy Team, Neurology Department, University of New Mexico, Albuquerque, NM, USA
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
5
|
Sheikh ZB, Dhakar MB, Fong MWK, Fang W, Ayub N, Molino J, Haider HA, Foreman B, Gilmore E, Mizrahi M, Karakis I, Schmitt SE, Osman G, Yoo JY, Hirsch LJ. Accuracy of a Rapid-Response EEG's Automated Seizure-Burden Estimator: AccuRASE Study. Neurology 2025; 104:e210234. [PMID: 39724534 DOI: 10.1212/wnl.0000000000210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The use of rapid response EEG (rr-EEG) has recently expanded in limited-resource settings and as a supplement to conventional EEG to rapidly detect and treat nonconvulsive status epilepticus. The study objective was to test the accuracy of an rr-EEG's automated seizure burden estimator (ASBE). METHODS This is a retrospective observational study using multiple blinded reviewers. All consecutive clinical rr-EEG procedures performed between November 2019 and February 2021 at Yale New Haven Hospital, one affiliated community hospital, and one affiliated inner-city regional hospital were included. Three reviewers blindly reviewed each EEG. The reference standard was 2/3 agreement. The co-primary outcome measures were the negative predictive value (NPV) of the ASBE for the detection of electrographic status epilepticus (ESE) or possible ESE (ESE/pESE) (to be used as a screening method to exclude ESE without the need for urgent expert review) and the positive predictive value (PPV, to be used for immediate treatment without requiring urgent expert review). These were assessed using a variety of seizure burden cutoffs determined by the algorithm (>1%, >10%, >20%, >50%, and >90%). RESULTS In the first 2 hours, a >10% burden cutoff detected 86% (95% CI 42%-100%) of studies with ESE alone and 88% (68%-97%) with ESE/pESE; this >10% cutoff had a NPV of 99% (97%-100%) for ESE and 98% (95%-100%) for ESE/pESE. The specificity at this threshold was 79% (73%-84%) for ESE and 84% (79%-89%) for ESE/pESE, but the PPV was low at 11% (4%-23%) for ESE and 39% (26%-53%) for ESE/pESE. A >90% burden cutoff was 97% (94%-99%) specific for detecting ESE (PPV 33% [7%-70%]) and 99% (97%-100%) specific for detecting ESE/pESE [PPV 78% (40%-97%)], although the sensitivity dropped significantly to 29% (13%-51%) for ESE/pESE and 43% (10%-82%) for ESE at the >90% threshold. DISCUSSION The ASBE has high specificity at >90% seizure burden threshold for detecting ESE and ESE/pESE, with good PPV for ESE/pESE, though with only low-to-moderate sensitivity; at this threshold, it can be used to help triage patients for immediate treatment/transfer, urgent expert review, and additional CEEG. A >10% threshold has a high sensitivity, detecting approximately 85% of patients with ESE; at this lower cutoff, it can be used as a screening tool to exclude ESE with >95% NPV. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that ASBE software can reliably exclude ESE (98% negative predictive value using a <10% burden cutoff) without expert review in most patients requiring rapid response EEG.
Collapse
Affiliation(s)
| | | | | | - Wei Fang
- West Virginia Clinical and Translational Science Institute, Morgantown
| | | | | | | | - Brandon Foreman
- Neurology and Rehab Medicine, Neurosurgery, University of Cincinnati, OH
| | | | | | | | | | | | - Ji Yeoun Yoo
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
6
|
Akras Z, Jing J, Westover MB, Zafar SF. Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury. Neurotherapeutics 2025; 22:e00524. [PMID: 39855915 PMCID: PMC11840355 DOI: 10.1016/j.neurot.2025.e00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Electroencephalography (EEG) is invaluable in the management of acute neurological emergencies. Characteristic EEG changes have been identified in diverse neurologic conditions including stroke, trauma, and anoxia, and the increased utilization of continuous EEG (cEEG) has identified potentially harmful activity even in patients without overt clinical signs or neurologic diagnoses. Manual annotation by expert neurophysiologists is a major resource limitation in investigating the prognostic and therapeutic implications of these EEG patterns and in expanding EEG use to a broader set of patients who are likely to benefit. Artificial intelligence (AI) has already demonstrated clinical success in guiding cEEG allocation for patients at risk for seizures, and its potential uses in neurocritical care are expanding alongside improvements in AI itself. We review both current clinical uses of AI for EEG-guided management as well as ongoing research directions in automated seizure and ischemia detection, neurologic prognostication, and guidance of medical and surgical treatment.
Collapse
Affiliation(s)
| | - Jin Jing
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston MA, USA
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston MA, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston MA, USA.
| |
Collapse
|
7
|
Biyani S, Chang H, Shah VA. Neurologic prognostication in coma and disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:237-264. [PMID: 39986724 DOI: 10.1016/b978-0-443-13408-1.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Coma and disorders of consciousness (DoC) are clinical syndromes primarily resulting from severe acute brain injury, with uncertain recovery trajectories that often necessitate prolonged supportive care. This imposes significant socioeconomic burdens on patients, caregivers, and society. Predicting recovery in comatose patients is a critical aspect of neurocritical care, and while current prognostication heavily relies on clinical assessments, such as pupillary responses and motor movements, which are far from precise, contemporary prognostication has integrated more advanced technologies like neuroimaging and electroencephalogram (EEG). Nonetheless, neurologic prognostication remains fraught with uncertainty and significant inaccuracies and is impacted by several forms of prognostication biases, including self-fulfilling prophecy bias, affective forecasting, and clinician treatment biases, among others. However, neurologic prognostication in patients with disorders of consciousness impacts life-altering decisions including continuation of treatment interventions vs withdrawal of life-sustaining therapies (WLST), which have a direct influence on survival and recovery after severe acute brain injury. In recent years, advancements in neuro-monitoring technologies, artificial intelligence (AI), and machine learning (ML) have transformed the field of prognostication. These technologies have the potential to process vast amounts of clinical data and identify reliable prognostic markers, enhancing prediction accuracy in conditions such as cardiac arrest, intracerebral hemorrhage, and traumatic brain injury (TBI). For example, AI/ML modeling has led to the identification of new states of consciousness such as covert consciousness and cognitive motor dissociation, which may have important prognostic significance after severe brain injury. This chapter reviews the evolving landscape of neurologic prognostication in coma and DoC, highlights current pitfalls and biases, and summarizes the integration of clinical examination, neuroimaging, biomarkers, and neurophysiologic tools for prognostication in specific disease states. We will further discuss the future of neurologic prognostication, focusing on the integration of AI and ML techniques to deliver more individualized and accurate prognostication, ultimately improving patient outcomes and decision-making process in neurocritical care.
Collapse
Affiliation(s)
- Shubham Biyani
- Departments of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Henry Chang
- Department of Neurology, TriHealth Hospital, Cincinnati, OH, United States
| | - Vishank A Shah
- Departments of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
8
|
Misirocchi F, Quintard H, Kleinschmidt A, Schaller K, Pugin J, Seeck M, De Stefano P. ICU-Electroencephalogram Unit Improves Outcome in Status Epilepticus Patients: A Retrospective Before-After Study. Crit Care Med 2024; 52:e545-e556. [PMID: 39120451 PMCID: PMC11469622 DOI: 10.1097/ccm.0000000000006393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Continuous electroencephalogram (cEEG) monitoring is recommended for status epilepticus (SE) management in ICU but is still underused due to resource limitations and inconclusive evidence regarding its impact on outcome. Furthermore, the term "continuous monitoring" often implies continuous recording with variable intermittent review. The establishment of a dedicated ICU-electroencephalogram unit may fill this gap, allowing cEEG with nearly real-time review and multidisciplinary management collaboration. This study aimed to evaluate the effect of ICU-electroencephalogram unit establishing on SE outcome and management. DESIGN Single-center retrospective before-after study. SETTING Neuro-ICU of a Swiss academic tertiary medical care center. PATIENTS Adult patients treated for nonhypoxic SE between November 1, 2015, and December 31, 2023. INTERVENTIONS None. MEASUREMENT AND MAIN RESULTS Data from all SE patients were assessed, comparing those treated before and after ICU-electroencephalogram unit introduction. Primary outcomes were return to premorbid neurologic function, ICU mortality, SE duration, and ICU SE management. Secondary outcomes were SE type and etiology. Two hundred seven SE patients were included, 149 (72%) before and 58 (38%) after ICU-electroencephalogram unit establishment. ICU-electroencephalogram unit introduction was associated with increased detection of nonconvulsive SE ( p = 0.003) and SE due to acute symptomatic etiology ( p = 0.019). Regression analysis considering age, comorbidities, SE etiology, and SE semeiology revealed a higher chance of returning to premorbid neurologic function ( p = 0.002), reduced SE duration ( p = 0.024), and a shift in SE management with increased use of antiseizure medications ( p = 0.007) after ICU-electroencephalogram unit introduction. CONCLUSIONS Integrating neurology expertise in the ICU setting through the establishment of an ICU-electroencephalogram unit with nearly real-time cEEG review, shortened SE duration, and increased likelihood of returning to premorbid neurologic function, with an increased number of antiseizure medications used. Further studies are warranted to validate these findings and assess long-term prognosis.
Collapse
Affiliation(s)
- Francesco Misirocchi
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Intensive Care, Department or Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hervé Quintard
- Division of Intensive Care, Department or Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Medical Faculty of the University of Geneva, Geneva, Switzerland
| | - Andreas Kleinschmidt
- Medical Faculty of the University of Geneva, Geneva, Switzerland
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Medical Faculty of the University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Pugin
- Division of Intensive Care, Department or Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Medical Faculty of the University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- Medical Faculty of the University of Geneva, Geneva, Switzerland
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
| | - Pia De Stefano
- Division of Intensive Care, Department or Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Yoshimura H. [Utility of EEG in neurological emergencies and critical care]. Rinsho Shinkeigaku 2024; 64:699-707. [PMID: 39322559 DOI: 10.5692/clinicalneurol.cn-001928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
EEG is useful for evaluation of pathophysiology and prognostication of neurocritically ill patients, as it provides non-invasive, real-time monitoring of cerebral function. There have been recently a lot of advances in research on critical care EEG according to the American Clinical Neurophysiology Society's Standardized Critical Care EEG Terminology. Based on the latest knowledge, this review discusses clinical utilization of EEG in neurocritically ill patients, including critical care continuous EEG monitoring, and key points of interpretation of critical care EEG, classifying main purposes into three points: detection of electrographic and electroclinical seizures, consideration of special encephalopathies, and evaluation and prognostication of cerebral function. Neurologists should have fundamental ability to read and interpret critical care EEG and support treating physicians in terms of therapeutic strategy.
Collapse
Affiliation(s)
- Hajime Yoshimura
- Department of Neurology, Kobe City Medical Center General Hospital
| |
Collapse
|
10
|
LaBuzetta JN, Bongbong DN, Mlodzinski E, Sheth R, Trando A, Ibrahim N, Yip B, Malhotra A, Dinglas VD, Needham DM, Kamdar BB. Survivorship After Neurocritical Care: A Scoping Review of Outcomes Beyond Physical Status. Neurocrit Care 2024; 41:651-664. [PMID: 38622487 PMCID: PMC11377172 DOI: 10.1007/s12028-024-01965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Following intensive care unit hospitalization, survivors of acute neurological injury often experience debilitating short-term and long-term impairments. Although the physical/motor impairments experienced by survivors of acute neurological injury have been described extensively, fewer studies have examined cognitive, mental health, health-related quality of life (HRQoL), and employment outcomes. This scoping review describes the publication landscape beyond physical and/or motor sequelae in neurocritical care survivors. Databases were searched for terms related to critical illness, intensive care, and outcomes from January 1970 to March 2022. English-language studies of critically ill adults with a primary neurological diagnosis were included if they reported on at least one outcome of interest: cognition, mental health, HRQoL or employment. Data extraction was performed in duplicate for prespecified variables related to study outcomes. Of 16,036 abstracts screened, 74 citations were identified for inclusion. The studies encompassed seven worldwide regions and eight neurocritical diagnosis categories. Publications reporting outcomes of interest increased from 3 before the year 2000 to 71 after. Follow-up time points included ≤ 1 (n = 15 [20%] citations), 3 (n = 28 [38%]), 6 (n = 28 [38%]), and 12 (n = 21 [28%]) months and 1 to 5 (n = 19 [26%]) and > 5 years (n = 8 [11%]), with 28 (38%) citations evaluating outcomes at multiple time points. Sixty-six assessment tools were used to evaluate the four outcomes of interest: 22 evaluating HRQoL (56 [76%] citations), 21 evaluating cognition (20 [27%] citations), 21 evaluating mental health (18 [24%] citations), and 2 evaluating employment (9 [12%] citations). This scoping review aimed to better understand the literature landscape regarding nonphysical outcomes in survivors of neurocritical care. Although a rising number of publications highlight growing awareness, future efforts are needed to improve study consistency and comparability and characterize outcomes in a disease-specific manner, including outlining of a minimum core outcomes set and associated assessment tools.
Collapse
Affiliation(s)
- Jamie Nicole LaBuzetta
- Division of Neurocritical Care, Department of Neurosciences, University of California, San Diego Health, 9444 Medical Center Dr., East Campus Office Building 3-028, La Jolla, CA, 92037-7740, USA.
| | - Dale N Bongbong
- Division of Neurocritical Care, Department of Neurosciences, University of California, San Diego Health, 9444 Medical Center Dr., East Campus Office Building 3-028, La Jolla, CA, 92037-7740, USA
| | - Eric Mlodzinski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego Health, La Jolla, CA, USA
| | - Richa Sheth
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego Health, La Jolla, CA, USA
| | - Aaron Trando
- Division of Neurocritical Care, Department of Neurosciences, University of California, San Diego Health, 9444 Medical Center Dr., East Campus Office Building 3-028, La Jolla, CA, 92037-7740, USA
| | - Nicholas Ibrahim
- Division of Neurocritical Care, Department of Neurosciences, University of California, San Diego Health, 9444 Medical Center Dr., East Campus Office Building 3-028, La Jolla, CA, 92037-7740, USA
| | - Brandon Yip
- Division of Neurocritical Care, Department of Neurosciences, University of California, San Diego Health, 9444 Medical Center Dr., East Campus Office Building 3-028, La Jolla, CA, 92037-7740, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego Health, La Jolla, CA, USA
| | - Victor D Dinglas
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Outcomes After Critical Illness and Surgery (OACIS) Research Group, Johns Hopkins University, Baltimore, MD, USA
| | - Dale M Needham
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Outcomes After Critical Illness and Surgery (OACIS) Research Group, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Biren B Kamdar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego Health, La Jolla, CA, USA
| |
Collapse
|
11
|
Zafar SF, Sivaraju A, Rubinos C, Ayub N, Awodutire PO, McKee Z, Chandan P, Byrnes M, Bhansali SA, Rice H, Smith-Ayala A, Haider MA, Tveter E, Erlich-Malona N, Ibanhes F, DeMarco A, Lewis S, Dhakar MB, Punia V. Antiseizure Medication Use and Outcomes After Suspected or Confirmed Acute Symptomatic Seizures. JAMA Neurol 2024; 81:2824063. [PMID: 39312247 PMCID: PMC11420826 DOI: 10.1001/jamaneurol.2024.3189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/13/2024] [Indexed: 09/26/2024]
Abstract
Importance Antiseizure medications (ASMs) are frequently prescribed for acute symptomatic seizures and epileptiform abnormalities (EAs; eg, periodic or rhythmic patterns). There are limited data on factors associated with ASM use and their association with outcomes. Objectives To determine factors associated with ASM use in patients with confirmed or suspected acute symptomatic seizures undergoing continuous electroencephalography, and to explore the association of ASMs with outcomes. Design, Setting, and Participants This multicenter cohort study was performed between July 1 and September 30, 2021, at 5 US centers of the Post Acute Symptomatic Seizure Investigation and Outcomes Network. After screening 1717 patients, the study included 1172 hospitalized adults without epilepsy who underwent continuous electroencephalography after witnessed or suspected acute symptomatic seizures. Data analysis was performed from November 14, 2023, to February 2, 2024. Exposure ASM treatment (inpatient ASM continuation ≥48 hours). Main Outcomes and Measures Factors associated with (1) ASM treatment, (2) discharge ASM prescription, and (3) discharge and 3-month Glasgow Outcome Scale score of 4 or 5 were ascertained. Results A total of 1172 patients (median [IQR] age, 64 [52-75] years; 528 [45%] female) were included. Among them, 285 (24%) had clinical acute symptomatic seizures, 107 (9%) had electrographic seizures, and 364 (31%) had EAs; 532 (45%) received ASM treatment. Among 922 patients alive at discharge, 288 (31%) were prescribed ASMs. The respective frequencies of inpatient ASM treatment and discharge prescription were 82% (233 of 285) and 69% (169 of 246) for patients with clinical acute symptomatic seizures, 96% (103 of 107) and 95% (61 of 64) for electrographic seizures, and 64% (233 of 364) and 48% (128 of 267) for EAs. On multivariable analysis, acute and progressive brain injuries were independently associated with increased odds of inpatient ASM treatment (odds ratio [OR], 3.86 [95% CI, 2.06-7.32] and 8.37 [95% CI, 3.48-20.80], respectively) and discharge prescription (OR, 2.26 [95% CI, 1.04-4.98] and 10.10 [95% CI, 3.94-27.00], respectively). Admission to the neurology or neurosurgery service (OR, 2.56 [95% CI, 1.08-6.18]) or to the neurological intensive care unit (OR, 7.98 [95% CI, 3.49-19.00]) was associated with increased odds of treatment. Acute symptomatic seizures and EAs were significantly associated with increased odds of ASM treatment (OR, 14.30 [95% CI, 8.52-24.90] and 2.30 [95% CI, 1.47-3.61], respectively) and discharge prescription (OR, 12.60 [95% CI, 7.37-22.00] and 1.72 [95% CI, 1.00-2.97], respectively). ASM treatment was not associated with outcomes at discharge (OR, 0.96 [95% CI, 0.61-1.52]) or at 3 months after initial presentation (OR, 1.26 [95% CI, 0.78-2.04]). Among 623 patients alive and with complete data at 3 months after discharge, 30 (5%) had postdischarge seizures, 187 (30%) were receiving ASMs, and 202 (32%) had all-cause readmissions. Conclusions and Relevance This study suggests that etiology and electrographic findings are associated with ASM treatment for acute symptomatic seizures and EAs; ASM treatment was not associated with functional outcomes. Comparative effectiveness studies are indicated to identify which patients may benefit from ASMs and to determine the optimal treatment duration.
Collapse
Affiliation(s)
- Sahar F. Zafar
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Adithya Sivaraju
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill
| | - Neishay Ayub
- Department of Neurology, Brown University, Providence, Rhode Island
| | | | | | - Pradeep Chandan
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio
- Epilepsy Division, Department of Neurology, University of California, San Diego
| | | | | | - Hunter Rice
- Department of Neurology, Massachusetts General Hospital, Boston
| | | | | | | | | | - Fernando Ibanhes
- Department of Neurology, Brown University, Providence, Rhode Island
| | - Alexis DeMarco
- Department of Neurology, Brown University, Providence, Rhode Island
| | - Skylar Lewis
- Department of Neurology, Brown University, Providence, Rhode Island
| | | | - Vineet Punia
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
12
|
Veciana de Las Heras M, Sala-Padro J, Pedro-Perez J, García-Parra B, Hernández-Pérez G, Falip M. Utility of Quantitative EEG in Neurological Emergencies and ICU Clinical Practice. Brain Sci 2024; 14:939. [PMID: 39335433 PMCID: PMC11430096 DOI: 10.3390/brainsci14090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The electroencephalogram (EEG) is a cornerstone tool for the diagnosis, management, and prognosis of selected patient populations. EEGs offer significant advantages such as high temporal resolution, real-time cortical function assessment, and bedside usability. The quantitative EEG (qEEG) added the possibility of long recordings being processed in a compressive manner, making EEG revision more efficient for experienced users, and more friendly for new ones. Recent advancements in commercially available software, such as Persyst, have significantly expanded and facilitated the use of qEEGs, marking the beginning of a new era in its application. As a result, there has been a notable increase in the practical, real-world utilization of qEEGs in recent years. This paper aims to provide an overview of the current applications of qEEGs in daily neurological emergencies and ICU practice, and some elementary principles of qEEGs using Persyst software in clinical settings. This article illustrates basic qEEG patterns encountered in critical care and adopts the new terminology proposed for spectrogram reporting.
Collapse
Affiliation(s)
- Misericordia Veciana de Las Heras
- Neurology Service, Neurophysiology Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jacint Sala-Padro
- Neurology Service, Epilepsy Unit, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Pedro-Perez
- Neurology Service, Neurophysiology Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Beliu García-Parra
- Neurology Service, Neurophysiology Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Guillermo Hernández-Pérez
- Neurology Service, Epilepsy Unit, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Merce Falip
- Neurology Service, Epilepsy Unit, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
13
|
Parikh H, Sun H, Amerineni R, Rosenthal ES, Volfovsky A, Rudin C, Westover MB, Zafar SF. How many patients do you need? Investigating trial designs for anti-seizure treatment in acute brain injury patients. Ann Clin Transl Neurol 2024; 11:1681-1690. [PMID: 38867375 PMCID: PMC11251465 DOI: 10.1002/acn3.52059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND/OBJECTIVES Epileptiform activity (EA), including seizures and periodic patterns, worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized control trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, and complex physiology of acute brain injury, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine the feasibility of RCTs evaluating EA treatment. METHODS In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework, we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. RESULTS Sample sizes ranged from 500 for levetiracetam 7 mg/kg versus placebo, to >4000 for levetiracetam 15 versus 7 mg/kg to achieve 80% power (5% type I error). For propofol 1 mg/kg/h versus placebo, 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. CONCLUSIONS Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and propose use of this simulation-based RCT paradigm to assess the feasibility of future trials of anti-seizure treatment in acute brain injury.
Collapse
Affiliation(s)
- Harsh Parikh
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Haoqi Sun
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Rajesh Amerineni
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Eric S. Rosenthal
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Cynthia Rudin
- Department of Computer ScienceDuke UniversityDukeNorth CarolinaUSA
| | - M. Brandon Westover
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Sahar F. Zafar
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
14
|
Barnett AJ, Guo Z, Jing J, Ge W, Kaplan PW, Kong WY, Karakis I, Herlopian A, Jayagopal LA, Taraschenko O, Selioutski O, Osman G, Goldenholz D, Rudin C, Westover MB. Improving Clinician Performance in Classifying EEG Patterns on the Ictal-Interictal Injury Continuum Using Interpretable Machine Learning. NEJM AI 2024; 1:10.1056/aioa2300331. [PMID: 38872809 PMCID: PMC11175595 DOI: 10.1056/aioa2300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
BACKGROUND In intensive care units (ICUs), critically ill patients are monitored with electroencephalography (EEG) to prevent serious brain injury. EEG monitoring is constrained by clinician availability, and EEG interpretation can be subjective and prone to interobserver variability. Automated deep-learning systems for EEG could reduce human bias and accelerate the diagnostic process. However, existing uninterpretable (black-box) deep-learning models are untrustworthy, difficult to troubleshoot, and lack accountability in real-world applications, leading to a lack of both trust and adoption by clinicians. METHODS We developed an interpretable deep-learning system that accurately classifies six patterns of potentially harmful EEG activity - seizure, lateralized periodic discharges (LPDs), generalized periodic discharges (GPDs), lateralized rhythmic delta activity (LRDA), generalized rhythmic delta activity (GRDA), and other patterns - while providing faithful case-based explanations of its predictions. The model was trained on 50,697 total 50-second continuous EEG samples collected from 2711 patients in the ICU between July 2006 and March 2020 at Massachusetts General Hospital. EEG samples were labeled as one of the six EEG patterns by 124 domain experts and trained annotators. To evaluate the model, we asked eight medical professionals with relevant backgrounds to classify 100 EEG samples into the six pattern categories - once with and once without artificial intelligence (AI) assistance - and we assessed the assistive power of this interpretable system by comparing the diagnostic accuracy of the two methods. The model's discriminatory performance was evaluated with area under the receiver-operating characteristic curve (AUROC) and area under the precision-recall curve. The model's interpretability was measured with task-specific neighborhood agreement statistics that interrogated the similarities of samples and features. In a separate analysis, the latent space of the neural network was visualized by using dimension reduction techniques to examine whether the ictal-interictal injury continuum hypothesis, which asserts that seizures and seizure-like patterns of brain activity lie along a spectrum, is supported by data. RESULTS The performance of all users significantly improved when provided with AI assistance. Mean user diagnostic accuracy improved from 47 to 71% (P<0.04). The model achieved AUROCs of 0.87, 0.93, 0.96, 0.92, 0.93, and 0.80 for the classes seizure, LPD, GPD, LRDA, GRDA, and other patterns, respectively. This performance was significantly higher than that of a corresponding uninterpretable black-box model (with P<0.0001). Videos traversing the ictal-interictal injury manifold from dimension reduction (a two-dimensional representation of the original high-dimensional feature space) give insight into the layout of EEG patterns within the network's latent space and illuminate relationships between EEG patterns that were previously hypothesized but had not yet been shown explicitly. These results indicate that the ictal-interictal injury continuum hypothesis is supported by data. CONCLUSIONS Users showed significant pattern classification accuracy improvement with the assistance of this interpretable deep-learning model. The interpretable design facilitates effective human-AI collaboration; this system may improve diagnosis and patient care in clinical settings. The model may also provide a better understanding of how EEG patterns relate to each other along the ictal-interictal injury continuum. (Funded by the National Science Foundation, National Institutes of Health, and others.).
Collapse
Affiliation(s)
| | - Zhicheng Guo
- Pratt School of Engineering, Duke University, Durham, NC
| | - Jin Jing
- Beth Israel Deaconess Medical Center, Harvard University, Cambridge, MA
| | - Wendong Ge
- Beth Israel Deaconess Medical Center, Harvard University, Cambridge, MA
| | | | - Wan Yee Kong
- Beth Israel Deaconess Medical Center, Harvard University, Cambridge, MA
| | | | | | | | | | | | | | - Daniel Goldenholz
- Beth Israel Deaconess Medical Center, Harvard University, Cambridge, MA
| | | | | |
Collapse
|
15
|
Dangayach NS, Kreitzer N, Foreman B, Tosto-Mancuso J. Post-Intensive Care Syndrome in Neurocritical Care Patients. Semin Neurol 2024; 44:398-411. [PMID: 38897212 DOI: 10.1055/s-0044-1787011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Post-intensive care syndrome (PICS) refers to unintended consequences of critical care that manifest as new or worsening impairments in physical functioning, cognitive ability, or mental health. As intensive care unit (ICU) survival continues to improve, PICS is becoming increasingly recognized as a public health problem. Studies that focus on PICS have typically excluded patients with acute brain injuries and chronic neurodegenerative problems. However, patients who require neurocritical care undoubtedly suffer from impairments that overlap substantially with those encompassed by PICS. A major challenge is to distinguish between impairments related to brain injury and those that occur as a consequence of critical care. The general principles for the prevention and management of PICS and multidomain impairments in patients with moderate and severe neurological injuries are similar including the ICU liberation bundle, multidisciplinary team-based care throughout the continuum of care, and increasing awareness regarding the challenges of critical care survivorship among patients, families, and multidisciplinary team members. An extension of this concept, PICS-Family (PICS-F) refers to the mental health consequences of the intensive care experience for families and loved ones of ICU survivors. A dyadic approach to ICU survivorship with an emphasis on recognizing families and caregivers that may be at risk of developing PICS-F after neurocritical care illness can help improve outcomes for ICU survivors. In this review, we will summarize our current understanding of PICS and PICS-F, emerging literature on PICS in severe acute brain injury, strategies for preventing and treating PICS, and share our recommendations for future directions.
Collapse
Affiliation(s)
- Neha S Dangayach
- Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalie Kreitzer
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jenna Tosto-Mancuso
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
Campos-Fernandez D, Rodrigo-Gisbert M, Abraira L, Quintana Luque M, Santafé M, Lallana S, Fonseca E, Toledo M, Gándara DF, Arikan F, Tomasello A, Sala Padró JX, Falip M, López-Ojeda P, Gabarrós A, Sánchez A, Santamarina E. Predictive Model for Estimating the Risk of Epilepsy After Aneurysmal Subarachnoid Hemorrhage: The RISE Score. Neurology 2024; 102:e209221. [PMID: 38527232 DOI: 10.1212/wnl.0000000000209221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/02/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The occurrence of seizures after aneurysmal subarachnoid hemorrhage (aSAH) is associated with a poorer functional and cognitive prognosis and less favorable quality of life. It would be of value to promptly identify patients at risk of epilepsy to optimize follow-up protocols and design preventive strategies. Our aim was to develop a predictive score to help stratify epilepsy risk in patients with aSAH. METHODS This is a retrospective, longitudinal study of all adults with aSAH admitted to our center (2012-2021). We collected demographic data, clinical and radiologic variables, data on early-onset seizures (EOSs), and data on development of epilepsy. Exclusion criteria were previous structural brain lesion, epilepsy, and ≤7 days' follow-up. Multiple Cox regression was used to evaluate factors independently associated with unprovoked remote seizures (i.e., epilepsy). The best fitting regression model was used to develop a predictive score. Performance was evaluated in an external validation cohort of 308 patients using receiver-operating characteristic curve analysis. RESULTS From an initial database of 743 patients, 419 met the inclusion criteria and were included in the analysis. The mean age was 60 ± 14 years, 269 patients (64%) were women, and 50 (11.9%) developed epilepsy within a median follow-up of 4.2 years. Premorbid modified Rankin Score (mRS) (hazard ratio [HR] 4.74 [1.8-12.4], p = 0.001), VASOGRADE score (HR 2.45 [1.4-4.2], p = 0.001), surgical treatment (HR 2.77 [1.6-4.9], p = 0.001), and presence of EOSs (HR 1.84 [1.0-3.4], p = 0.05) were independently associated with epilepsy. The proposed scale, designated RISE, scores 1 point for premorbid mRS ≥ 2 (R), VASOGRADE-Yellow (I, Ischemia), surgical intervention (S), and history of EOSs (E) and 2 points for VASOGRADE-Red. RISE stratifies patients into 3 groups: low (0-1), moderate (2-3), and high (4-5) risk (2.9%, 20.8%, and 75.7% developed epilepsy, respectively). On validation in a cohort from a different tertiary care center (N = 308), the new scale yielded a similar risk distribution and good predictive power for epilepsy within 5 years after aSAH (area under the curve [AUC] 0.82; 95% CI 0.74-0.90). DISCUSSION The RISE scale is a robust predictor of post-SAH epilepsy with immediate clinical applicability. In addition to facilitating personalized diagnosis and treatment, RISE may be of value for exploring future antiepileptogenesis strategies.
Collapse
Affiliation(s)
- Daniel Campos-Fernandez
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Marc Rodrigo-Gisbert
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Laura Abraira
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Manuel Quintana Luque
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Manel Santafé
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Sofia Lallana
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Elena Fonseca
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Manuel Toledo
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Darío F Gándara
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Fuat Arikan
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Alejandro Tomasello
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Jacint X Sala Padró
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Merce Falip
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Pablo López-Ojeda
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Andreu Gabarrós
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Anna Sánchez
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| | - Estevo Santamarina
- From the Epilepsy Unit (D.C.-F., M.R.-G., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Neurology Department, Vall d'Hebron University Hospital; Epilepsy Research Group (D.C.-F., L.A., M.Q.L., S.L., E.F., M.T., E.S.), Vall d'Hebron Institut de Recerca (VHIR), Barcelona; Medicine Department (D.C.-F., S.L., M.T., E.S.), Universitat Autònoma de Barcelona, Bellaterra; Intensive Care Department (M.S., A.S.); Neurosurgery Department (D.F.G., F.A.); Neuroradiology Department (A.T.), Vall d'Hebron University Hospital; Epilepsy Unit (J.X.S.P., M.F.), Neurology Department; and Neurosurgery Department (P.L.-O., A.G.), Bellvitge University Hospital, Barcelona, Spain
| |
Collapse
|
17
|
Ney JP, Nuwer MR, Hirsch LJ, Burdelle M, Trice K, Parvizi J. The Cost of After-Hour Electroencephalography. Neurol Clin Pract 2024; 14:e200264. [PMID: 38585440 PMCID: PMC10997216 DOI: 10.1212/cpj.0000000000200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 04/09/2024]
Abstract
Background and Objectives High costs associated with after-hour electroencephalography (EEG) constitute a barrier for financially constrained hospitals to provide this neurodiagnostic procedure outside regular working hours. Our study aims to deepen our understanding of the cost elements involved in delivering EEG services during after-hours. Methods We accessed publicly available data sets and created a cost model depending on 3 most commonly seen staffing scenarios: (1) technologist on-site, (2) technologist on-call from home, and (3) a hybrid of the two. Results Cost of EEG depends on the volume of testing and the staffing plan. Within the various cost elements, labor cost of EEG technologists is the predominant expenditure, which varies across geographic regions and urban areas. Discussion We provide a model to explain why access to EEGs during after-hours has a substantial expense. This model provides a cost calculator tool (made available as part of this publication in eAppendix 1, links.lww.com/CPJ/A513) to estimate the cost of EEG platform based on site-specific staffing scenarios and annual volume.
Collapse
Affiliation(s)
- John P Ney
- School of Medicine (JPN), Boston University, MA; Departments of Neurology (MRN), University of California Los Angeles David Geffen School of Medicine; Department of Neurology (LJH), Yale University School of Medicine, New Haven, CT; Department of Neurology and Neurological Sciences (MB, JP), Stanford University School of Medicine, CA; and Neurodiagnostic Technology Programs (KT), Institute of Health Sciences, Hunt Valley, MD
| | - Marc R Nuwer
- School of Medicine (JPN), Boston University, MA; Departments of Neurology (MRN), University of California Los Angeles David Geffen School of Medicine; Department of Neurology (LJH), Yale University School of Medicine, New Haven, CT; Department of Neurology and Neurological Sciences (MB, JP), Stanford University School of Medicine, CA; and Neurodiagnostic Technology Programs (KT), Institute of Health Sciences, Hunt Valley, MD
| | - Lawrence J Hirsch
- School of Medicine (JPN), Boston University, MA; Departments of Neurology (MRN), University of California Los Angeles David Geffen School of Medicine; Department of Neurology (LJH), Yale University School of Medicine, New Haven, CT; Department of Neurology and Neurological Sciences (MB, JP), Stanford University School of Medicine, CA; and Neurodiagnostic Technology Programs (KT), Institute of Health Sciences, Hunt Valley, MD
| | - Mark Burdelle
- School of Medicine (JPN), Boston University, MA; Departments of Neurology (MRN), University of California Los Angeles David Geffen School of Medicine; Department of Neurology (LJH), Yale University School of Medicine, New Haven, CT; Department of Neurology and Neurological Sciences (MB, JP), Stanford University School of Medicine, CA; and Neurodiagnostic Technology Programs (KT), Institute of Health Sciences, Hunt Valley, MD
| | - Kellee Trice
- School of Medicine (JPN), Boston University, MA; Departments of Neurology (MRN), University of California Los Angeles David Geffen School of Medicine; Department of Neurology (LJH), Yale University School of Medicine, New Haven, CT; Department of Neurology and Neurological Sciences (MB, JP), Stanford University School of Medicine, CA; and Neurodiagnostic Technology Programs (KT), Institute of Health Sciences, Hunt Valley, MD
| | - Josef Parvizi
- School of Medicine (JPN), Boston University, MA; Departments of Neurology (MRN), University of California Los Angeles David Geffen School of Medicine; Department of Neurology (LJH), Yale University School of Medicine, New Haven, CT; Department of Neurology and Neurological Sciences (MB, JP), Stanford University School of Medicine, CA; and Neurodiagnostic Technology Programs (KT), Institute of Health Sciences, Hunt Valley, MD
| |
Collapse
|
18
|
Fatima S, Krishnamurthy PV, Sun M, Aparicio MK, Gjini K, Struck AF. Estimate of Patients With Missed Seizures Because of Delay in Conventional EEG. J Clin Neurophysiol 2024; 41:230-235. [PMID: 38436390 PMCID: PMC10912745 DOI: 10.1097/wnp.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE There is frequent delay between ordering and placement of conventional EEG. Here we estimate how many patients had seizures during this delay. METHODS Two hundred fifty consecutive adult patients who underwent conventional EEG monitoring at the University of Wisconsin Hospital were retrospectively chart reviewed for demographics, time of EEG order, clinical and other EEG-related information. Patients were stratified by use of anti-seizure medications before EEG and into low-risk, medium-risk, and high-risk groups based on 2HELPS2B score (0, 1, or >1). Monte Carlo simulations (500 trials) were performed to estimate seizures during delay. RESULTS The median delay from EEG order to performing EEG was 2.00 hours (range of 0.5-8.00 hours) in the total cohort. For EEGs ordered after-hours, it was 2.00 hours (range 0.5-8.00 hours), and during business hours, it was 2.00 hours (range 0.5-6.00 hours). The place of EEG, intensive care unit, emergency department, and general floor, did not show significant difference (P = 0.84). Anti-seizure medication did not affect time to first seizure in the low-risk (P = 0.37), medium-risk (P = 0.44), or high-risk (P = 0.12) groups. The estimated % of patients who had a seizure in the delay period for low-risk group (2HELPS2B = 0) was 0.8%, for the medium-risk group (2HELPS2B = 1) was 10.3%, and for the high-risk group (2HELPS2B > 1) was 17.6%, and overall risk was 7.2%. CONCLUSIONS The University of Wisconsin Hospital with 24-hour in-house EEG technologists has a median delay of 2 hours from order to start of EEG, shorter than published reports from other centers. Nonetheless, seizures were likely missed in about 7.2% of patients.
Collapse
Affiliation(s)
- Safoora Fatima
- University of Wisconsin-Madison, Department of Neurology
| | | | - Mengzhen Sun
- University of Wisconsin-Madison, Department of Neurology
| | | | - Klevest Gjini
- University of Wisconsin-Madison, Department of Neurology
| | - Aaron F Struck
- University of Wisconsin-Madison, Department of Neurology
- William S Middleton Veterans Hospital, Madison, WI
| |
Collapse
|
19
|
Xie D, Toutant D, Ng MC. Residual Seizure Rate of Intermittent Inpatient EEG Compared to a Continuous EEG Model. Can J Neurol Sci 2024; 51:246-254. [PMID: 37282558 DOI: 10.1017/cjn.2023.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Subclinical seizures are common in hospitalized patients and require electroencephalography (EEG) for detection and intervention. At our institution, continuous EEG (cEEG) is not available, but intermittent EEGs are subject to constant live interpretation. As part of quality improvement (QI), we sought to estimate the residual missed seizure rate at a typical quaternary Canadian health care center without cEEG. METHODS We calculated residual risk percentages using the clinically validated 2HELPS2B score to risk-stratify EEGs before deriving a risk percentage using a MATLAB calculator which modeled the risk decay curve for each recording. We generated a range of estimated residual seizure rates depending on whether a pre-cEEG screening EEG was simulated, EEGs showing seizures were included, or repeat EEGs on the same patient were excluded. RESULTS Over a 4-month QI period, 499 inpatient EEGs were scored as low (n = 125), medium (n = 123), and high (n = 251) seizure risk according to 2HELPS2B criteria. Median recording duration was 1:00:06 (interquartile range, IQR 30:40-2:21:10). The model with highest residual seizure rate included recordings with confirmed electrographic seizures (median 20.83%, IQR 20.6-26.6%), while the model with lowest residual seizure rate was in seizure-free recordings (median 10.59%, IQR 4%-20.6%). These rates were significantly higher than the benchmark 5% miss-rate threshold set by 2HELPS2B (p<0.0001). CONCLUSIONS We estimate that intermittent inpatient EEG misses 2-4 times more subclinical seizures than the 2HELPS2B-determined acceptable 5% seizure miss-rate threshold for cEEG. Future research is needed to determine the impact of potentially missed seizures on clinical care.
Collapse
Affiliation(s)
- Dave Xie
- Undergraduate Medical Education, University of Manitoba, Winnipeg, MB, Canada
| | - Darion Toutant
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB, Canada
| | - Marcus C Ng
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Findlay MC, Kundu M, Nelson JR, Cole KL, Winterton C, Tenhoeve S, Lucke-Wold B. Emerging Treatments for Subarachnoid Hemorrhage. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1345-1356. [PMID: 38409689 DOI: 10.2174/0118715273279212240130065713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024]
Abstract
The current landscape of therapeutic strategies for subarachnoid hemorrhage (SAH), a significant adverse neurological event commonly resulting from the rupture of intracranial aneurysms, is rapidly evolving. Through an in-depth exploration of the natural history of SAH, historical treatment approaches, and emerging management modalities, the present work aims to provide a broad overview of the shifting paradigms in SAH care. By synthesizing the historical management protocols with contemporary therapeutic advancements, patient-specific treatment plans can be individualized and optimized to deliver outstanding care for the best possible SAH-related outcomes.
Collapse
Affiliation(s)
- Matthew C Findlay
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Jayson R Nelson
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kyril L Cole
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Candace Winterton
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Samuel Tenhoeve
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Husain AM. "T" Times: Revisiting the Timing of Neuronal Injury in Status Epilepticus. Epilepsy Curr 2024; 24:16-18. [PMID: 38327533 PMCID: PMC10846518 DOI: 10.1177/15357597231216003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Effects of Epileptiform Activity on Discharge Outcome in Critically Ill Patients in the USA: A Retrospective Cross-Sectional Study Parikh H, Hoffman K, Sun H, Zafar SF, Ge W, Jing J, Liu L, Sun J, Struck A, Volfovsky A, Rudin C, Westover MB. Lancet Digit Health. 2023;5:e495-e502. doi:10.1016/S2589-7500(23)00088-2 Background: Epileptiform activity is associated with worse patient outcomes, including increased risk of disability and death. However, the effect of epileptiform activity on neurological outcome is confounded by the feedback between treatment with antiseizure medications and epileptiform activity burden. We aimed to quantify the heterogeneous effects of epileptiform activity with an interpretability-centred approach. Methods: We did a retrospective, cross-sectional study of patients in the intensive care unit who were admitted to Massachusetts General Hospital (Boston, MA, USA). Participants were aged 18 years or older and had electrographic epileptiform activity identified by a clinical neurophysiologist or epileptologist. The outcome was the dichotomised modified Rankin Scale (mRS) at discharge and the exposure was epileptiform activity burden defined as mean or maximum proportion of time spent with epileptiform activity in 6 h windows in the first 24 h of electroencephalography. We estimated the change in discharge mRS if everyone in the dataset had experienced a specific epileptiform activity burden and were untreated. We combined pharmacological modelling with an interpretable matching method to account for confounding and epileptiform activity-antiseizure medication feedback. The quality of the matched groups was validated by the neurologists. Findings: Between Dec 1, 2011, and Oct 14, 2017, 1514 patients were admitted to Massachusetts General Hospital intensive care unit, 995 (66%) of whom were included in the analysis. Compared with patients with a maximum epileptiform activity of 0 to less than 25%, patients with a maximum epileptiform activity burden of 75% or more when untreated had a mean 22.27% (SD 0.92) increased chance of a poor outcome (severe disability or death). Moderate but long-lasting epileptiform activity (mean epileptiform activity burden 2% to <10%) increased the risk of a poor outcome by mean 13.52% (SD 1.93). The effect sizes were heterogeneous depending on preadmission profile—eg, patients with hypoxic-ischaemic encephalopathy or acquired brain injury were more adversely affected compared with patients without these conditions. Interpretation: Our results suggest that interventions should put a higher priority on patients with an average epileptiform activity burden 10% or greater, and treatment should be more conservative when maximum epileptiform activity burden is low. Treatment should also be tailored to individual preadmission profiles because the potential for epileptiform activity to cause harm depends on age, medical history, and reason for admission.
Collapse
Affiliation(s)
- Aatif M Husain
- Department of Neurology, Duke University Medical Center, Neurodiagnostic Center, Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
22
|
Suzuki H, Miura Y, Yasuda R, Yago T, Mizutani H, Ichikawa T, Miyazaki T, Kitano Y, Nishikawa H, Kawakita F, Fujimoto M, Toma N. Effects of New-Generation Antiepileptic Drug Prophylaxis on Delayed Neurovascular Events After Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2023; 14:899-909. [PMID: 36333650 DOI: 10.1007/s12975-022-01101-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Neuroelectric disruptions such as seizures and cortical spreading depolarization may contribute to the development of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (SAH). However, effects of antiepileptic drug prophylaxis on outcomes remain controversial in SAH. The authors investigated if prophylactic administration of new-generation antiepileptic drugs levetiracetam and perampanel was beneficial against delayed neurovascular events after SAH. This was a retrospective single-center cohort study of 121 consecutive SAH patients including 56 patients of admission World Federation of Neurological Surgeons grades IV - V who underwent aneurysmal obliteration within 72 h post-SAH from 2013 to 2021. Prophylactic antiepileptic drugs differed depending on the study terms: none (2013 - 2015), levetiracetam for patients at high risks of seizures (2016 - 2019), and perampanel for all patients (2020 - 2021). The 3rd term had the lowest occurrence of delayed cerebral microinfarction on diffusion-weighted magnetic resonance imaging, which was related to less development of DCI. Other outcome measures were similar among the 3 terms including incidences of angiographic vasospasm, computed tomography-detectable delayed cerebral infarction, seizures, and 3-month good outcomes (modified Rankin Scale 0 - 2). The present study suggests that prophylactic administration of levetiracetam and perampanel was not associated with worse outcomes and that perampanel may have the potential to reduce DCI by preventing microcirculatory disturbances after SAH. Further studies are warranted to investigate anti-DCI effects of a selective α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonist perampanel in SAH patients in a large-scale prospective study.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoichi Miura
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tetsushi Yago
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hisashi Mizutani
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tomonori Ichikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takahiro Miyazaki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
23
|
Fenter H, Rossetti AO, Beuchat I. Continuous versus Routine Electroencephalography in the Intensive Care Unit: A Review of Current Evidence. Eur Neurol 2023; 87:17-25. [PMID: 37952533 PMCID: PMC11003555 DOI: 10.1159/000535085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Electroencephalography (EEG) has long been used to detect seizures in patients with disorders of consciousness. In recent years, there has been a drastically increased adoption of continuous EEG (cEEG) in the intensive care units (ICUs). Given the resources necessary to record and interpret cEEG, this is still not available in every center and widespread recommendations to use continuous instead of routine EEG (typically lasting 20 min) are still a matter of some debate. Considering recent literature and personal experience, this review offers a rationale and practical advice to address this question. SUMMARY Despite the development of increasingly performant imaging techniques and several validated biomarkers, EEG remains central to clinicians in the intensive care unit and has been experiencing expanding popularity for at least 2 decades. Not only does EEG allow seizure or status epilepticus detection, which in the ICU often present without clinical movements, but it is also paramount for the prognostic evaluation of comatose patients, especially after cardiac arrest, and for detecting delayed ischemia after subarachnoid hemorrhage. At the end of the last Century, improvements of technical and digital aspects regarding recording and storage of EEG tracings have progressively led to the era of cEEG and automated quantitative analysis. KEY MESSAGES As compared to repeated rEEG, cEEG in comatose patients does not seem to improve clinical prognosis to a relevant extent, despite allowing a more performant of detection ictal events and consequent therapeutic modifications. The choice between cEEG and rEEG must therefore always be patient-tailored.
Collapse
Affiliation(s)
- Helene Fenter
- Department of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Beuchat
- Department of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Misra S, Kasner SE, Dawson J, Tanaka T, Zhao Y, Zaveri HP, Eldem E, Vazquez J, Silva LS, Mohidat S, Hickman LB, Khan EI, Funaro MC, Nicolo JP, Mazumder R, Yasuda CL, Sunnerhagen KS, Ihara M, Ross JS, Liebeskind DS, Kwan P, Quinn TJ, Engel J, Mishra NK. Outcomes in Patients With Poststroke Seizures: A Systematic Review and Meta-Analysis. JAMA Neurol 2023; 80:1155-1165. [PMID: 37721736 PMCID: PMC10507596 DOI: 10.1001/jamaneurol.2023.3240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Importance Published data about the impact of poststroke seizures (PSSs) on the outcomes of patients with stroke are inconsistent and have not been systematically evaluated, to the authors' knowledge. Objective To investigate outcomes in people with PSS compared with people without PSS. Data Sources MEDLINE, Embase, PsycInfo, Cochrane, LILACS, LIPECS, and Web of Science, with years searched from 1951 to January 30, 2023. Study Selection Observational studies that reported PSS outcomes. Data Extraction and Synthesis The Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist was used for abstracting data, and the Joanna Briggs Institute tool was used for risk-of-bias assessment. Data were reported as odds ratio (OR) and standardized mean difference (SMD) with a 95% CI using a random-effects meta-analysis. Publication bias was assessed using funnel plots and the Egger test. Outlier and meta-regression analyses were performed to explore the source of heterogeneity. Data were analyzed from November 2022 to January 2023. Main Outcomes and Measures Measured outcomes were mortality, poor functional outcome (modified Rankin scale [mRS] score 3-6), disability (mean mRS score), recurrent stroke, and dementia at patient follow-up. Results The search yielded 71 eligible articles, including 20 110 patients with PSS and 1 166 085 patients without PSS. Of the participants with PSS, 1967 (9.8%) had early seizures, and 10 605 (52.7%) had late seizures. The risk of bias was high in 5 studies (7.0%), moderate in 35 (49.3%), and low in 31 (43.7%). PSSs were associated with mortality risk (OR, 2.1; 95% CI, 1.8-2.4), poor functional outcome (OR, 2.2; 95% CI, 1.8-2.8), greater disability (SMD, 0.6; 95% CI, 0.4-0.7), and increased dementia risk (OR, 3.1; 95% CI, 1.3-7.7) compared with patients without PSS. In subgroup analyses, early seizures but not late seizures were associated with mortality (OR, 2.4; 95% CI, 1.9-2.9 vs OR, 1.2; 95% CI, 0.8-2.0) and both ischemic and hemorrhagic stroke subtypes were associated with mortality (OR, 2.2; 95% CI, 1.8-2.7 vs OR, 1.4; 95% CI, 1.0-1.8). In addition, early and late seizures (OR, 2.4; 95% CI, 1.6-3.4 vs OR, 2.7; 95% CI, 1.8-4.1) and stroke subtypes were associated with poor outcomes (OR, 2.6; 95% CI, 1.9-3.7 vs OR, 1.9; 95% CI, 1.0-3.6). Conclusions and Relevance Results of this systematic review and meta-analysis suggest that PSSs were associated with significantly increased mortality and severe disability in patients with history of stroke. Unraveling these associations is a high clinical and research priority. Trials of interventions to prevent seizures may be warranted.
Collapse
Affiliation(s)
- Shubham Misra
- Division of Stroke & Vascular Neurology, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yize Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Hitten P. Zaveri
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Ece Eldem
- Division of Stroke & Vascular Neurology, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Juan Vazquez
- Albert Einstein College of Medicine, Bronx, New York
| | - Lucas Scárdua Silva
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Sao Paulo, Brazil
| | - Saba Mohidat
- The University of Melbourne, Melbourne, Victoria, Australia
| | - L. Brian Hickman
- Department of Neurology, The University of California, Los Angeles
| | - Erum I. Khan
- Division of Stroke & Vascular Neurology, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Alzheimer’s Disease Research Center, University of Alabama, Birmingham
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - John-Paul Nicolo
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | | | - Clarissa Lin Yasuda
- Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Sao Paulo, Brazil
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Joseph S. Ross
- Section of General Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Patrick Kwan
- The AIM for Health, Faculty of IT, Monash University, Melbourne, Victoria, Australia
| | - Terence J. Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Jerome Engel
- Department of Neurology, The University of California, Los Angeles
| | - Nishant K. Mishra
- Division of Stroke & Vascular Neurology, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a Biomarker of Prognosis in Acute Brain Injury. Semin Neurol 2023; 43:675-688. [PMID: 37832589 DOI: 10.1055/s-0043-1775816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Electroencephalography (EEG) is a noninvasive tool that allows the monitoring of cerebral brain function in critically ill patients, aiding with diagnosis, management, and prognostication. Specific EEG features have shown utility in the prediction of outcomes in critically ill patients with status epilepticus, acute brain injury (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, and traumatic brain injury), anoxic brain injury, and toxic-metabolic encephalopathy. Studies have also found an association between particular EEG patterns and long-term functional and cognitive outcomes as well as prediction of recovery of consciousness following acute brain injury. This review summarizes these findings and demonstrates the value of utilizing EEG findings in the determination of prognosis.
Collapse
Affiliation(s)
- Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Vyas Viswanathan
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Lorena Figueredo
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Carolina B Maciel
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Suzette LaRoche
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Parikh H, Sun H, Amerineni R, Rosenthal ES, Volfovsky A, Rudin C, Westover MB, Zafar SF. How Many Patients Do You Need? Investigating Trial Designs for Anti-Seizure Treatment in Acute Brain Injury Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294339. [PMID: 37662339 PMCID: PMC10473786 DOI: 10.1101/2023.08.21.23294339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Objectives Epileptiform activity (EA) worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine feasibility of RCTs evaluating EA treatment. Methods In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. Results Sample sizes ranged from 500 for levetiracetam 7 mg/kg vs placebo, to >4000 for levetiracetam 15 vs. 7 mg/kg to achieve 80% power (5% type I error). For propofol 1mg/kg/hr vs. placebo 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. Interpretation Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and assess feasibility of future trials of EA treatment.
Collapse
Affiliation(s)
| | - Haoqi Sun
- Beth Israel Deaconess Medical Center, Department of Neurology
| | | | | | | | | | | | | |
Collapse
|
27
|
Snider SB, Fong MWK, Nolan NM, Ruiz AR, Wang W, LaRoche S, Hirsch LJ, Lee JW. Clinical and Electroencephalographic Predictors of Seizures and Status Epilepticus in 12,450 Critically Ill Adults: A Retrospective Cohort Study. Crit Care Med 2023; 51:1001-1011. [PMID: 37010290 DOI: 10.1097/ccm.0000000000005872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
OBJECTIVES Status epilepticus (SE) is associated with significantly higher morbidity and mortality than isolated seizures. Our objective was to identify clinical diagnoses and rhythmic and periodic electroencephalogram patterns (RPPs) associated with SE and seizures. DESIGN Retrospective cohort study. SETTING Tertiary-care hospitals. SUBJECTS Twelve thousand four hundred fifty adult hospitalized patients undergoing continuous electroencephalogram (cEEG) monitoring in selected participating sites in the Critical Care EEG Monitoring Research Consortium database (February 2013 to June 2021). INTERVENTIONS Not applicable. MEASUREMENTS AND MAIN RESULTS We defined an ordinal outcome in the first 72 hours of cEEG: no seizures, isolated seizures without SE, or SE (with or without isolated seizures). Composite groups included isolated seizures or SE (AnySz) and no seizure or isolated seizures. In this cohort (mean age: 60 ± 17 yr), 1,226 patients (9.8%) had AnySz and 439 patients (3.5%) had SE. In a multivariate model, factors independently associated with SE were cardiac arrest (9.2% with SE; adjusted odds ratio, 8.8 [6.3-12.1]), clinical seizures before cEEG (5.7%; 3.3 [2.5-4.3]), brain neoplasms (3.2%; 1.6 [1.0-2.6]), lateralized periodic discharges (LPDs) (15.4%; 7.3 [5.7-9.4]), brief potentially ictal rhythmic discharges (BIRDs) (22.5%; 3.8 [2.6-5.5]), and generalized periodic discharges (GPDs) (7.2%; 2.4 [1.7-3.3]). All above variables and lateralized rhythmic delta activity (LRDA) were also associated with AnySz. Factors disproportionately increasing odds of SE over isolated seizures were cardiac arrest (7.3 [4.4-12.1]), clinical seizures (1.7 [1.3-2.4]), GPDs (2.3 [1.4-3.5]), and LPDs (1.4 [1.0-1.9]). LRDA had lower odds of SE compared with isolated seizures (0.5 [0.3-0.9]). RPP modifiers did not improve SE prediction beyond RPPs presence/absence ( p = 0.8). CONCLUSIONS Using the largest existing cEEG database, we identified specific predictors of SE (cardiac arrest, clinical seizures prior to cEEG, brain neoplasms, LPDs, GPDs, and BIRDs) and seizures (all previous and LRDA). These findings could be used to tailor cEEG monitoring for critically ill patients.
Collapse
Affiliation(s)
- Samuel B Snider
- Division of Neurocritical Care, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michael W K Fong
- Westmead Comprehensive Epilepsy Unit, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
- Comprehensive Epilepsy Center, Dept. of Neurology, Yale University School of Medicine, New Haven, CT
| | - Neal M Nolan
- Division of Neurocritical Care, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Wei Wang
- Division of Sleep Medicine, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Suzette LaRoche
- Department of Neurology, University of North Carolina, Chapel Hill, NC
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Dept. of Neurology, Yale University School of Medicine, New Haven, CT
| | - Jong W Lee
- Division of Epilepsy, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Parikh H, Hoffman K, Sun H, Zafar SF, Ge W, Jing J, Liu L, Sun J, Struck A, Volfovsky A, Rudin C, Westover MB. Effects of epileptiform activity on discharge outcome in critically ill patients in the USA: a retrospective cross-sectional study. Lancet Digit Health 2023; 5:e495-e502. [PMID: 37295971 PMCID: PMC10528143 DOI: 10.1016/s2589-7500(23)00088-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 04/19/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epileptiform activity is associated with worse patient outcomes, including increased risk of disability and death. However, the effect of epileptiform activity on neurological outcome is confounded by the feedback between treatment with antiseizure medications and epileptiform activity burden. We aimed to quantify the heterogeneous effects of epileptiform activity with an interpretability-centred approach. METHODS We did a retrospective, cross-sectional study of patients in the intensive care unit who were admitted to Massachusetts General Hospital (Boston, MA, USA). Participants were aged 18 years or older and had electrographic epileptiform activity identified by a clinical neurophysiologist or epileptologist. The outcome was the dichotomised modified Rankin Scale (mRS) at discharge and the exposure was epileptiform activity burden defined as mean or maximum proportion of time spent with epileptiform activity in 6 h windows in the first 24 h of electroencephalography. We estimated the change in discharge mRS if everyone in the dataset had experienced a specific epileptiform activity burden and were untreated. We combined pharmacological modelling with an interpretable matching method to account for confounding and epileptiform activity-antiseizure medication feedback. The quality of the matched groups was validated by the neurologists. FINDINGS Between Dec 1, 2011, and Oct 14, 2017, 1514 patients were admitted to Massachusetts General Hospital intensive care unit, 995 (66%) of whom were included in the analysis. Compared with patients with a maximum epileptiform activity of 0 to less than 25%, patients with a maximum epileptiform activity burden of 75% or more when untreated had a mean 22·27% (SD 0·92) increased chance of a poor outcome (severe disability or death). Moderate but long-lasting epileptiform activity (mean epileptiform activity burden 2% to <10%) increased the risk of a poor outcome by mean 13·52% (SD 1·93). The effect sizes were heterogeneous depending on preadmission profile-eg, patients with hypoxic-ischaemic encephalopathy or acquired brain injury were more adversely affected compared with patients without these conditions. INTERPRETATION Our results suggest that interventions should put a higher priority on patients with an average epileptiform activity burden 10% or greater, and treatment should be more conservative when maximum epileptiform activity burden is low. Treatment should also be tailored to individual preadmission profiles because the potential for epileptiform activity to cause harm depends on age, medical history, and reason for admission. FUNDING National Institutes of Health and National Science Foundation.
Collapse
Affiliation(s)
- Harsh Parikh
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Kentaro Hoffman
- Deptartment of Statistics and Operation Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Wendong Ge
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jin Jing
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lin Liu
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA; Institute of Natural Sciences, MOELSC, School of Mathematical Sciences and SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jimeng Sun
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Aaron Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Cynthia Rudin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Forss N, Strbian D. Effect of epileptic activity on outcome for critically ill patients. Lancet Digit Health 2023:S2589-7500(23)00097-3. [PMID: 37295972 DOI: 10.1016/s2589-7500(23)00097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Nina Forss
- Department of Neurology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland.
| | - Daniel Strbian
- Department of Neurology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
De Stefano P, Baumann SM, Grzonka P, Sarbu OE, De Marchis GM, Hunziker S, Rüegg S, Kleinschmidt A, Quintard H, Marsch S, Seeck M, Sutter R. Early timing of anesthesia in status epilepticus is associated with complete recovery: A 7-year retrospective two-center study. Epilepsia 2023; 64:1493-1506. [PMID: 37032415 DOI: 10.1111/epi.17614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE This study was undertaken to investigate the efficacy, tolerability, and outcome of different timing of anesthesia in adult patients with status epilepticus (SE). METHODS Patients with anesthesia for SE from 2015 to 2021 at two Swiss academic medical centers were categorized as anesthetized as recommended third-line treatment, earlier (as first- or second-line treatment), and delayed (later as third-line treatment). Associations between timing of anesthesia and in-hospital outcomes were estimated by logistic regression. RESULTS Of 762 patients, 246 received anesthesia; 21% were anesthetized as recommended, 55% earlier, and 24% delayed. Propofol was preferably used for earlier (86% vs. 55.5% for recommended/delayed anesthesia) and midazolam for later anesthesia (17.2% vs. 15.9% for earlier anesthesia). Earlier anesthesia was statistically significantly associated with fewer infections (17% vs. 32.7%), shorter median SE duration (.5 vs. 1.5 days), and more returns to premorbid neurologic function (52.9% vs. 35.5%). Multivariable analyses revealed decreasing odds for return to premorbid function with every additional nonanesthetic antiseizure medication given prior to anesthesia (odds ratio [OR] = .71, 95% confidence interval [CI] = .53-.94) independent of confounders. Subgroup analyses revealed decreased odds for return to premorbid function with increasing delay of anesthesia independent of the Status Epilepticus Severity Score (STESS; STESS = 1-2: OR = .45, 95% CI = .27-.74; STESS > 2: OR = .53, 95% CI = .34-.85), especially in patients without potentially fatal etiology (OR = .5, 95% CI = .35-.73) and in patients experiencing motor symptoms (OR = .67, 95% CI = .48-.93). SIGNIFICANCE In this SE cohort, anesthetics were administered as recommended third-line therapy in only every fifth patient and earlier in every second. Increasing delay of anesthesia was associated with decreased odds for return to premorbid function, especially in patients with motor symptoms and no potentially fatal etiology.
Collapse
Affiliation(s)
- Pia De Stefano
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Sira M Baumann
- Clinic for Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
| | - Pascale Grzonka
- Clinic for Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
| | - Oana E Sarbu
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Gian Marco De Marchis
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Medical faculty of the University of Basel, Basel, Switzerland
| | - Sabina Hunziker
- Medical faculty of the University of Basel, Basel, Switzerland
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Medical faculty of the University of Basel, Basel, Switzerland
| | - Andreas Kleinschmidt
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Medical faculty of the University of Geneva, Geneva, Switzerland
| | - Hervé Quintard
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
- Medical faculty of the University of Geneva, Geneva, Switzerland
| | - Stephan Marsch
- Clinic for Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
- Medical faculty of the University of Basel, Basel, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Medical faculty of the University of Geneva, Geneva, Switzerland
| | - Raoul Sutter
- Clinic for Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Medical faculty of the University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Ferlini L, Maenhout C, Crippa IA, Quispe-Cornejo AA, Creteur J, Taccone FS, Gaspard N. The association between the presence and burden of periodic discharges and outcome in septic patients: an observational prospective study. Crit Care 2023; 27:179. [PMID: 37161485 PMCID: PMC10170680 DOI: 10.1186/s13054-023-04475-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is frequent in septic patients. Electroencephalography (EEG) is very sensitive to detect early epileptic abnormalities, such as seizures and periodic discharges (PDs), and to quantify their duration (the so-called burden). However, the prevalence of these EEG abnormalities in septic patients, as well as their effect on morbidity and mortality, are still unclear. The aims of this study were to assess whether the presence of electrographic abnormalities (i.e. the absence of reactivity, the presence and burden of seizures and PDs) was associated with functional outcome and mortality in septic patients and whether these abnormalities were associated with sepsis-associated encephalopathy (SAE). METHODS We prospectively included septic patients, without known chronic or acute intracranial disease or pre-existing acute encephalopathy, requiring ICU admission in a tertiary academic centre. Continuous EEG monitoring was started within 72 h after inclusion and performed for up to 7 days. A comprehensive assessment of consciousness and delirium was performed twice daily by a trained neuropsychologist. Primary endpoints were unfavourable functional outcome (UO, defined as a Glasgow Outcome Scale-Extended-GOSE-score < 5), and mortality collected at hospital discharge and secondary endpoint was the association of PDs with SAE. Mann-Whitney, Fisher's exact and χ2 tests were used to assess differences in variables between groups, as appropriate. Multivariable logistic regression analysis with in-hospital mortality, functional outcome, SAE or PDs as the dependent variables were performed. RESULTS We included 92 patients. No seizures were identified. Nearly 25% of patients had PDs. The presence of PDs and PDs burden was associated with UO in univariate (n = 15 [41%], p = 0.005 and p = 0.008, respectively) and, for PDs presence, also in multivariate analysis after correcting for disease severity (OR 3.82, IC 95% [1.27-11.49], p = 0.02). The PDs burden negatively correlated with GOSE (Spearman's coefficient ρ = - 0.2, p = 0.047). The presence of PDs was also independently associated with SAE (OR 8.98 [1.11-72.8], p = 0.04). Reactivity was observed in the majority of patients and was associated with outcomes (p = 0.044 for both functional outcome and mortality). CONCLUSION Our findings suggest that PDs and PDs burden are associated with SAE and might affect outcome in septic patients.
Collapse
Affiliation(s)
- Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Christelle Maenhout
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Ilaria Alice Crippa
- Department of Anesthesiology and Intensive Care, Policlinico San Marco, Gruppo San Donato, Zingonia, Italy
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Jing J, Ge W, Hong S, Fernandes MB, Lin Z, Yang C, An S, Struck AF, Herlopian A, Karakis I, Halford JJ, Ng MC, Johnson EL, Appavu BL, Sarkis RA, Osman G, Kaplan PW, Dhakar MB, Arcot Jayagopal L, Sheikh Z, Taraschenko O, Schmitt S, Haider HA, Kim JA, Swisher CB, Gaspard N, Cervenka MC, Rodriguez Ruiz AA, Lee JW, Tabaeizadeh M, Gilmore EJ, Nordstrom K, Yoo JY, Holmes MG, Herman ST, Williams JA, Pathmanathan J, Nascimento FA, Fan Z, Nasiri S, Shafi MM, Cash SS, Hoch DB, Cole AJ, Rosenthal ES, Zafar SF, Sun J, Westover MB. Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation. Neurology 2023; 100:e1750-e1762. [PMID: 36878708 PMCID: PMC10136013 DOI: 10.1212/wnl.0000000000207127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/12/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Seizures (SZs) and other SZ-like patterns of brain activity can harm the brain and contribute to in-hospital death, particularly when prolonged. However, experts qualified to interpret EEG data are scarce. Prior attempts to automate this task have been limited by small or inadequately labeled samples and have not convincingly demonstrated generalizable expert-level performance. There exists a critical unmet need for an automated method to classify SZs and other SZ-like events with expert-level reliability. This study was conducted to develop and validate a computer algorithm that matches the reliability and accuracy of experts in identifying SZs and SZ-like events, known as "ictal-interictal-injury continuum" (IIIC) patterns on EEG, including SZs, lateralized and generalized periodic discharges (LPD, GPD), and lateralized and generalized rhythmic delta activity (LRDA, GRDA), and in differentiating these patterns from non-IIIC patterns. METHODS We used 6,095 scalp EEGs from 2,711 patients with and without IIIC events to train a deep neural network, SPaRCNet, to perform IIIC event classification. Independent training and test data sets were generated from 50,697 EEG segments, independently annotated by 20 fellowship-trained neurophysiologists. We assessed whether SPaRCNet performs at or above the sensitivity, specificity, precision, and calibration of fellowship-trained neurophysiologists for identifying IIIC events. Statistical performance was assessed by the calibration index and by the percentage of experts whose operating points were below the model's receiver operating characteristic curves (ROCs) and precision recall curves (PRCs) for the 6 pattern classes. RESULTS SPaRCNet matches or exceeds most experts in classifying IIIC events based on both calibration and discrimination metrics. For SZ, LPD, GPD, LRDA, GRDA, and "other" classes, SPaRCNet exceeds the following percentages of 20 experts-ROC: 45%, 20%, 50%, 75%, 55%, and 40%; PRC: 50%, 35%, 50%, 90%, 70%, and 45%; and calibration: 95%, 100%, 95%, 100%, 100%, and 80%, respectively. DISCUSSION SPaRCNet is the first algorithm to match expert performance in detecting SZs and other SZ-like events in a representative sample of EEGs. With further development, SPaRCNet may thus be a valuable tool for an expedited review of EEGs. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that among patients with epilepsy or critical illness undergoing EEG monitoring, SPaRCNet can differentiate (IIIC) patterns from non-IIIC events and expert neurophysiologists.
Collapse
Affiliation(s)
- Jin Jing
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Wendong Ge
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Shenda Hong
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Marta Bento Fernandes
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Zhen Lin
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Chaoqi Yang
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sungtae An
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Aaron F Struck
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Aline Herlopian
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Ioannis Karakis
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jonathan J Halford
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Marcus C Ng
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Emily L Johnson
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Brian L Appavu
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Rani A Sarkis
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Gamaleldin Osman
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Peter W Kaplan
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Monica B Dhakar
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Lakshman Arcot Jayagopal
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Zubeda Sheikh
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Olga Taraschenko
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sarah Schmitt
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Hiba A Haider
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jennifer A Kim
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Christa B Swisher
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Nicolas Gaspard
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Mackenzie C Cervenka
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Andres A Rodriguez Ruiz
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jong Woo Lee
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Mohammad Tabaeizadeh
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Emily J Gilmore
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Kristy Nordstrom
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Ji Yeoun Yoo
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Manisha G Holmes
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Susan T Herman
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jennifer A Williams
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jay Pathmanathan
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Fábio A Nascimento
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Ziwei Fan
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Samaneh Nasiri
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Mouhsin M Shafi
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sydney S Cash
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Daniel B Hoch
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Andrew J Cole
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Eric S Rosenthal
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sahar F Zafar
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jimeng Sun
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - M Brandon Westover
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA.
| |
Collapse
|
33
|
Jing J, Ge W, Struck AF, Fernandes MB, Hong S, An S, Fatima S, Herlopian A, Karakis I, Halford JJ, Ng MC, Johnson EL, Appavu BL, Sarkis RA, Osman G, Kaplan PW, Dhakar MB, Jayagopal LA, Sheikh Z, Taraschenko O, Schmitt S, Haider HA, Kim JA, Swisher CB, Gaspard N, Cervenka MC, Rodriguez Ruiz AA, Lee JW, Tabaeizadeh M, Gilmore EJ, Nordstrom K, Yoo JY, Holmes MG, Herman ST, Williams JA, Pathmanathan J, Nascimento FA, Fan Z, Nasiri S, Shafi MM, Cash SS, Hoch DB, Cole AJ, Rosenthal ES, Zafar SF, Sun J, Westover MB. Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs. Neurology 2023; 100:e1737-e1749. [PMID: 36460472 PMCID: PMC10136018 DOI: 10.1212/wnl.0000000000201670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as "ictal-interictal-injury continuum" (IIIC). Previous interrater reliability (IRR) studies are limited by small samples and selection bias. This study was conducted to assess the reliability of experts in identifying IIIC. METHODS This prospective analysis included 30 experts with subspecialty clinical neurophysiology training from 18 institutions. Experts independently scored varying numbers of ten-second EEG segments as "seizure (SZ)," "lateralized periodic discharges (LPDs)," "generalized periodic discharges (GPDs)," "lateralized rhythmic delta activity (LRDA)," "generalized rhythmic delta activity (GRDA)," or "other." EEGs were performed for clinical indications at Massachusetts General Hospital between 2006 and 2020. Primary outcome measures were pairwise IRR (average percent agreement [PA] between pairs of experts) and majority IRR (average PA with group consensus) for each class and beyond chance agreement (κ). Secondary outcomes were calibration of expert scoring to group consensus, and latent trait analysis to investigate contributions of bias and noise to scoring variability. RESULTS Among 2,711 EEGs, 49% were from women, and the median (IQR) age was 55 (41) years. In total, experts scored 50,697 EEG segments; the median [range] number scored by each expert was 6,287.5 [1,002, 45,267]. Overall pairwise IRR was moderate (PA 52%, κ 42%), and majority IRR was substantial (PA 65%, κ 61%). Noise-bias analysis demonstrated that a single underlying receiver operating curve can account for most variation in experts' false-positive vs true-positive characteristics (median [range] of variance explained ([Formula: see text]): 95 [93, 98]%) and for most variation in experts' precision vs sensitivity characteristics ([Formula: see text]: 75 [59, 89]%). Thus, variation between experts is mostly attributable not to differences in expertise but rather to variation in decision thresholds. DISCUSSION Our results provide precise estimates of expert reliability from a large and diverse sample and a parsimonious theory to explain the origin of disagreements between experts. The results also establish a standard for how well an automated IIIC classifier must perform to match experts. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that an independent expert review reliably identifies ictal-interictal injury continuum patterns on EEG compared with expert consensus.
Collapse
Affiliation(s)
- Jin Jing
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Wendong Ge
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Aaron F Struck
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Marta Bento Fernandes
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Shenda Hong
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sungtae An
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Safoora Fatima
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Aline Herlopian
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Ioannis Karakis
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jonathan J Halford
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Marcus C Ng
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Emily L Johnson
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Brian L Appavu
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Rani A Sarkis
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Gamaleldin Osman
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Peter W Kaplan
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Monica B Dhakar
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Lakshman Arcot Jayagopal
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Zubeda Sheikh
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Olga Taraschenko
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sarah Schmitt
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Hiba A Haider
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jennifer A Kim
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Christa B Swisher
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Nicolas Gaspard
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Mackenzie C Cervenka
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Andres A Rodriguez Ruiz
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jong Woo Lee
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Mohammad Tabaeizadeh
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Emily J Gilmore
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Kristy Nordstrom
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Ji Yeoun Yoo
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Manisha G Holmes
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Susan T Herman
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jennifer A Williams
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jay Pathmanathan
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Fábio A Nascimento
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Ziwei Fan
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Samaneh Nasiri
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Mouhsin M Shafi
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sydney S Cash
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Daniel B Hoch
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Andrew J Cole
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Eric S Rosenthal
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sahar F Zafar
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jimeng Sun
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - M Brandon Westover
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL.
| |
Collapse
|
34
|
Lasek-Bal A, Dewerenda-Sikora M, Binek Ł, Student S, Łabuz-Roszak B, Krzystanek E, Kaczmarczyk A, Krzan A, Żak A, Cieślik A, Bosak M. Epileptiform activity in the acute phase of stroke predicts the outcomes in patients without seizures. Front Neurol 2023; 14:1096876. [PMID: 36994378 PMCID: PMC10040780 DOI: 10.3389/fneur.2023.1096876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background and purposeThe abnormalities in EEG of stroke-patients increase the risk of epilepsy but their significancy for poststroke outcome is unclear. This presented study was aimed at determining the prevalence and nature of changes in EEG recordings from the stroke hemisphere and from the contralateral hemisphere. Another objective was to determine the significance of abnormalities in EEG in the first days of stroke for the post-stroke functional status on the acute and chronic phase of disease.MethodsIn all qualified stroke-patients, EEG was performed during the first 3 days of hospitalization and at discharge. The correlation between EEG abnormalities both in the stroke hemisphere and in the collateral hemisphere with the neurological and functional state in various time points was performed.ResultsOne hundred thirty-one patients were enrolled to this study. Fifty-eight patients (44.27%) had abnormal EEG. The sporadic discharges and generalized rhythmic delta activity were the most common abnormalities in the EEG. The neurological status on the first day and the absence of changes in the EEG in the hemisphere without stroke were the independent factors for good neurological state (0–2 mRS) at discharge. The age-based analysis model (OR 0.981 CI 95% 0.959–1.001, p = 0.047), neurological status on day 1 (OR 0.884 CI 95% 0.82–0.942, p < 0.0001) and EEG recording above the healthy hemisphere (OR 0.607 CI 95% 0.37–0.917, p = 0.028) had the highest prognostic value in terms of achieving good status 90 days after stroke.ConclusionsAbnormalities in EEG without clinical manifestation are present in 40% of patients with acute stroke. Changes in EEG in acute stroke are associated with a poor neurological status in the first days and poor functional status in the chronic period of stroke.
Collapse
Affiliation(s)
- Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
- *Correspondence: Anetta Lasek-Bal
| | - Milena Dewerenda-Sikora
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Łukasz Binek
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Beata Łabuz-Roszak
- Department of Neurology, Institute of Medical Sciences University of Opole, Opole, Poland
| | - Ewa Krzystanek
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Aleksandra Kaczmarczyk
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Krzan
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Amadeusz Żak
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Aleksandra Cieślik
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Magdalena Bosak
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
35
|
Waak M, Laing J, Nagarajan L, Lawn N, Harvey AS. Continuous electroencephalography in the intensive care unit: A critical review and position statement from an Australian and New Zealand perspective. CRIT CARE RESUSC 2023; 25:9-19. [PMID: 37876987 PMCID: PMC10581281 DOI: 10.1016/j.ccrj.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objectives This article aims to critically review the literature on continuous electroencephalography (cEEG) monitoring in the intensive care unit (ICU) from an Australian and New Zealand perspective and provide recommendations for clinicians. Design and review methods A taskforce of adult and paediatric neurologists, selected by the Epilepsy Society of Australia, reviewed the literature on cEEG for seizure detection in critically ill neonates, children, and adults in the ICU. The literature on routine EEG and cEEG for other indications was not reviewed. Following an evaluation of the evidence and discussion of controversial issues, consensus was reached, and a document that highlighted important clinical, practical, and economic considerations regarding cEEG in Australia and New Zealand was drafted. Results This review represents a summary of the literature and consensus opinion regarding the use of cEEG in the ICU for detection of seizures, highlighting gaps in evidence, practical problems with implementation, funding shortfalls, and areas for future research. Conclusion While cEEG detects electrographic seizures in a significant proportion of at-risk neonates, children, and adults in the ICU, conferring poorer neurological outcomes and guiding treatment in many settings, the health economic benefits of treating such seizures remain to be proven. Presently, cEEG in Australian and New Zealand ICUs is a largely unfunded clinical resource that is subsequently reserved for the highest-impact patient groups. Wider adoption of cEEG requires further research into impact on functional and health economic outcomes, education and training of the neurology and ICU teams involved, and securement of the necessary resources and funding to support the service.
Collapse
Affiliation(s)
- Michaela Waak
- Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, Australia
| | - Joshua Laing
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
- Comprehensive Epilepsy Program, Alfred Health, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, Perth, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| | - Nicholas Lawn
- Western Australian Adult Epilepsy Service, Sir Charles Gardiner Hospital, Perth, Australia
| | - A. Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Neurosciences Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
36
|
Harrar DB, Sun LR, Segal JB, Lee S, Sansevere AJ. Neuromonitoring in Children with Cerebrovascular Disorders. Neurocrit Care 2023; 38:486-503. [PMID: 36828980 DOI: 10.1007/s12028-023-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Cerebrovascular disorders are an important cause of morbidity and mortality in children. The acute care of a child with an ischemic or hemorrhagic stroke or cerebral sinus venous thrombosis focuses on stabilizing the patient, determining the cause of the insult, and preventing secondary injury. Here, we review the use of both invasive and noninvasive neuromonitoring modalities in the care of pediatric patients with arterial ischemic stroke, nontraumatic intracranial hemorrhage, and cerebral sinus venous thrombosis. METHODS Narrative review of the literature on neuromonitoring in children with cerebrovascular disorders. RESULTS Neuroimaging, near-infrared spectroscopy, transcranial Doppler ultrasonography, continuous and quantitative electroencephalography, invasive intracranial pressure monitoring, and multimodal neuromonitoring may augment the acute care of children with cerebrovascular disorders. Neuromonitoring can play an essential role in the early identification of evolving injury in the aftermath of arterial ischemic stroke, intracranial hemorrhage, or sinus venous thrombosis, including recurrent infarction or infarct expansion, new or recurrent hemorrhage, vasospasm and delayed cerebral ischemia, status epilepticus, and intracranial hypertension, among others, and this, is turn, can facilitate real-time adjustments to treatment plans. CONCLUSIONS Our understanding of pediatric cerebrovascular disorders has increased dramatically over the past several years, in part due to advances in the neuromonitoring modalities that allow us to better understand these conditions. We are now poised, as a field, to take advantage of advances in neuromonitoring capabilities to determine how best to manage and treat acute cerebrovascular disorders in children.
Collapse
Affiliation(s)
- Dana B Harrar
- Division of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA.
| | - Lisa R Sun
- Divisions of Pediatric Neurology and Vascular Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Bradley Segal
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Arnold J Sansevere
- Division of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
37
|
Non-Convulsive Status Epilepticus in Aneurysmal Subarachnoid Hemorrhage: A Prognostic Parameter. Brain Sci 2023; 13:brainsci13020184. [PMID: 36831727 PMCID: PMC9953938 DOI: 10.3390/brainsci13020184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
A non-convulsive status epilepticus (ncSE) is a potentially fatal complication for patients in neurointensive care. In patients with aneurysmal subarachnoid hemorrhage (SAH), ncSE remains scarcely investigated. In this study, we aim to investigate the frequency and influence of non-convulsive status epilepticus on outcome in patients with SAH. We retrospectively analyzed data of consecutive patients with aneurysmal subarachnoid hemorrhage and evaluated clinical, radiological, demographical and electroencephalogram (EEG) data. Outcome was assessed according to the modified Rankin Scale (mRS) at 6 months and stratified into favorable (mRS 0-2) vs. unfavorable (mRS 3-6). We identified 171 patients with SAH, who received EEG between 01/2012 and 12/2020. ncSE was diagnosed in 19 patients (3.7%), only one of whom achieved favorable outcome. The multivariate regression analysis revealed four independent predictors of unfavorable outcome: presence of ncSE (p = 0.003; OR 24.1; 95 CI% 2.9-195.3), poor-grade SAH (p < 0.001; OR 14.0; 95 CI% 8.5-23.1), age (p < 0.001; OR 2.8; 95 CI% 1.6-4.6) and the presence of DIND (p < 0.003; OR 1.9; 95 CI% 1.2-3.1) as independent predictors for unfavorable outcome. According to our study, development of ncSE in patients suffering SAH might correlate with poor prognosis. Even when medical treatment is successful and no EEG abnormalities are detected, the long-term outcome remains poor.
Collapse
|
38
|
Holla SK, Krishnamurthy PV, Subramaniam T, Dhakar MB, Struck AF. Electrographic Seizures in the Critically Ill. Neurol Clin 2022; 40:907-925. [PMID: 36270698 PMCID: PMC10508310 DOI: 10.1016/j.ncl.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identifying and treating critically ill patients with seizures can be challenging. In this article, the authors review the available data on patient populations at risk, seizure prognostication with tools such as 2HELPS2B, electrographic seizures and the various ictal-interictal continuum patterns with their latest definitions and associated risks, ancillary testing such as imaging studies, serum biomarkers, and invasive multimodal monitoring. They also illustrate 5 different patient scenarios, their treatment and outcomes, and propose recommendations for targeted treatment of electrographic seizures in critically ill patients.
Collapse
Affiliation(s)
- Smitha K Holla
- Department of Neurology, UW Medical Foundation Centennial building, 1685 Highland Avenue, Madison, WI 53705, USA.
| | | | - Thanujaa Subramaniam
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, Building LLCI, 10th Floor, Suite 1003 New Haven, CT 06520, USA
| | - Monica B Dhakar
- Department of Neurology, The Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5, Providence, RI 02903, USA
| | - Aaron F Struck
- Department of Neurology, UW Medical Foundation Centennial building, 1685 Highland Avenue, Madison, WI 53705, USA; William S Middleton Veterans Hospital, Madison WI, USA
| |
Collapse
|
39
|
Lucke-Wold B. Utilization of EEG for Monitoring in Subarachnoid hemorrhage Recovery. BIOMEDICAL AND CLINICAL RESEARCH 2022; 1:01-05. [PMID: 36741905 PMCID: PMC9893888 DOI: 10.31579/2834-8486/002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Seizures and delayed cerebral ischemia following subarachnoid hemorrhage are associated with significant morbidity and mortality. In this article, we briefly review subarachnoid hemorrhage, its complications, and the current literature on information gained from EEG monitoring in subarachnoid hemorrhage. We review when EEG should be used implemented in the multi-modal monitoring of patients with subarachnoid hemorrhage. Finally, we discuss the recent advances and future directions in the field.
Collapse
|
40
|
Chowdhury SS, See AP, Eriksson LP, Boulouis G, Lehman LL, Hararr DB, Zabih V, Dlamini N, Fox C, Waak M. Closing the Gap in Pediatric Hemorrhagic Stroke: A Systematic Review. Semin Pediatr Neurol 2022; 43:101001. [PMID: 36344021 DOI: 10.1016/j.spen.2022.101001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Pediatric hemorrhagic stroke (HS) accounts for a large proportion of childhood strokes, 1 of the top 10 causes of pediatric deaths. Morbidity and mortality lead to significant socio-economic and psychosocial burdens. To understand published data on recognizing and managing children with HS, we conducted a systematic review of the literature presented here. We searched PubMed, Embase, CINAHL and the Cochrane Library databases limited to English language and included 174 studies, most conducted in the USA (52%). Terminology used interchangeably for HS included intraparenchymal/intracranial hemorrhage, spontaneous ICH, and cerebrovascular accident (CVA). Key assessments informing prognosis and management included clinical scoring (Glasgow coma scale), and neuroimaging. HS etiologies reported were systemic coagulopathy (genetic, acquired pathologic, or iatrogenic), or focal cerebrovascular lesions (brain arteriovenous malformations, cavernous malformations, aneurysms, or tumor vascularity). Several scales were used to measure outcome: Glasgow outcome score (GOS), Kings outcome score for head injury (KOSCHI), modified Rankin scale (mRS) and pediatric stroke outcome measure (PSOM). Most studies described treatments of at-risk lesions. Few studies described neurocritical care management including raised ICP, seizures, vasospasm, or blood pressure. Predictors of poor outcome included ethnicity, comorbidity, location of bleed, and hematoma >2% of total brain volume. Motor and cognitive outcomes followed independent patterns. Few studies reported on cognitive outcomes, rehabilitation, and transition of care models. Interdisciplinary approach to managing HS is urgently needed, informed by larger cohort studies targeting key clinical question (eg development of a field-guide for the clinician managing patients with HS that is reproducible internationally).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Veda Zabih
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Michaela Waak
- The University of Queensland, Australia; Children's Health Queensland Hospital, Brisbane, Australia
| |
Collapse
|
41
|
Abstract
Subarachnoid haemorrhage (SAH) is the third most common subtype of stroke. Incidence has decreased over past decades, possibly in part related to lifestyle changes such as smoking cessation and management of hypertension. Approximately a quarter of patients with SAH die before hospital admission; overall outcomes are improved in those admitted to hospital, but with elevated risk of long-term neuropsychiatric sequelae such as depression. The disease continues to have a major public health impact as the mean age of onset is in the mid-fifties, leading to many years of reduced quality of life. The clinical presentation varies, but severe, sudden onset of headache is the most common symptom, variably associated with meningismus, transient or prolonged unconsciousness, and focal neurological deficits including cranial nerve palsies and paresis. Diagnosis is made by CT scan of the head possibly followed by lumbar puncture. Aneurysms are commonly the underlying vascular cause of spontaneous SAH and are diagnosed by angiography. Emergent therapeutic interventions are focused on decreasing the risk of rebleeding (ie, preventing hypertension and correcting coagulopathies) and, most crucially, early aneurysm treatment using coil embolisation or clipping. Management of the disease is best delivered in specialised intensive care units and high-volume centres by a multidisciplinary team. Increasingly, early brain injury presenting as global cerebral oedema is recognised as a potential treatment target but, currently, disease management is largely focused on addressing secondary complications such as hydrocephalus, delayed cerebral ischaemia related to microvascular dysfunction and large vessel vasospasm, and medical complications such as stunned myocardium and hospital acquired infections.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA.
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
42
|
Dhakar MB, Sheikh Z, Kumari P, Lawson EC, Jeanneret V, Desai D, Ruiz AR, Haider HA. Epileptiform Abnormalities in Acute Ischemic Stroke: Impact on Clinical Management and Outcomes. J Clin Neurophysiol 2022; 39:446-452. [PMID: 33298681 PMCID: PMC8371977 DOI: 10.1097/wnp.0000000000000801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Studies examining seizures (Szs) and epileptiform abnormalities (EAs) using continuous EEG in acute ischemic stroke (AIS) are limited. Therefore, we aimed to describe the prevalence of Sz and EA in AIS, its impact on anti-Sz drug management, and association with discharge outcomes. METHODS The study included 132 patients with AIS who underwent continuous EEG monitoring >6 hours. Continuous EEG was reviewed for background, Sz and EA (lateralized periodic discharges [LPD], generalized periodic discharges, lateralized rhythmic delta activity, and sporadic epileptiform discharges). Relevant clinical, demographic, and imaging factors were abstracted to identify risk factors for Sz and EA. Outcomes included all-cause mortality, functional outcome at discharge (good outcome as modified Rankin scale of 0-2 and poor outcome as modified Rankin scale of 3-6) and changes to anti-Sz drugs (escalation or de-escalation). RESULTS The frequency of Sz was 7.6%, and EA was 37.9%. Patients with Sz or EA were more likely to have cortical involvement (84.6% vs. 67.5% P = 0.028). Among the EAs, the presence of LPD was associated with an increased risk of Sz (25.9% in LPD vs. 2.9% without LPD, P = 0.001). Overall, 21.2% patients had anti-Sz drug changes because of continuous EEG findings, 16.7% escalation and 4.5% de-escalation. The presence of EA or Sz was not associated with in-hospital mortality or discharge functional outcomes. CONCLUSIONS Despite the high incidence of EA, the rate of Sz in AIS is relatively lower and is associated with the presence of LPDs. These continuous EEG findings resulted in anti-Sz drug changes in one-fifth of the cohort. Epileptiform abnormality and Sz did not affect mortality or discharge functional outcomes.
Collapse
Affiliation(s)
- Monica B. Dhakar
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Zubeda Sheikh
- Department of Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A
| | - Polly Kumari
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Eric C. Lawson
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Valerie Jeanneret
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Dhaval Desai
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Andres Rodriguez Ruiz
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Hiba A. Haider
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| |
Collapse
|
43
|
Sanches PR, Tabaeizadeh M, Moura LMVR, Rosenthal ES, Caboclo LO, Hsu J, Patorno E, Westover MB, Zafar SF. Anti-seizure medication treatment and outcomes in acute ischemic stroke patients undergoing continuous EEG monitoring. Neurol Sci 2022; 43:5441-5449. [PMID: 35713732 PMCID: PMC11550088 DOI: 10.1007/s10072-022-06183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To determine the association of anti-seizure medication (ASM) treatment with outcomes in acute ischemic stroke (AIS) patients undergoing continuous electroencephalography (cEEG). METHODS Retrospective analysis of AIS patients admitted between 2012 and 2019. The following are the inclusion criteria: age ≥ 18 years and ≥ 16 h of cEEG within the first 7 days of admission. ASM treatment exposure was defined as > 48 h of treatment after the first 24 h of cEEG. The primary outcome measure was 90-day mortality, and the secondary outcome was 90-day functional recovery (Modified Ranking Scale 0-3). Propensity scores were used to adjust for baseline covariates and presence of epileptiform abnormalities (seizures, periodic and rhythmic patterns). RESULTS One hundred thirteen patients met the inclusion criteria; 39 (34.5%) were exposed to ASM. ASM treatment was not associated with 90-day mortality (propensity adjusted HR 1.0 [0.31-3.27], p = 0.999) or functional outcomes (adjusted HR 0.99 [0.32-3.02], p = 0.989), compared to no treatment. CONCLUSIONS In our study, ASM treatment in AIS patients with cEEG abnormalities was not significantly associated with a change in 90-day mortality and functional recovery. Larger comparative effectiveness studies are indicated to identify which acute ischemic stroke patients with cEEG abnormalities benefit most from ASM treatment.
Collapse
Affiliation(s)
- Paula R Sanches
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Mohammad Tabaeizadeh
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Lidia M V R Moura
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Luis Otavio Caboclo
- Department of Clinical Neurophysiology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - John Hsu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sahar F Zafar
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
44
|
Kim JA, Zheng WL, Elmer J, Jing J, Zafar SF, Ghanta M, Moura V, Gilmore EJ, Hirsch LJ, Patel A, Rosenthal E, Westover MB. High epileptiform discharge burden predicts delayed cerebral ischemia after subarachnoid hemorrhage. Clin Neurophysiol 2022; 141:139-146. [PMID: 33812771 PMCID: PMC8429508 DOI: 10.1016/j.clinph.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether epileptiform discharge burden can identify those at risk for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH). METHODS Retrospective analysis of 113 moderate to severe grade SAH patients who had continuous EEG (cEEG) recordings during their hospitalization. We calculated the burden of epileptiform discharges (ED), measured as number of ED per hour. RESULTS We find that many SAH patients have an increase in ED burden during the first 3-10 days following rupture, the major risk period for DCI. However, those who develop DCI have a significantly higher hourly burden from days 3.5-6 after SAH vs. those who do not. ED burden is higher in DCI patients when assessed in relation to the onset of DCI (area under the receiver operator curve 0.72). Finally, specific trends of ED burden over time, assessed by group-based trajectory analysis, also help stratify DCI risk. CONCLUSIONS These results suggest that ED burden is a useful parameter for identifying those at higher risk of developing DCI after SAH. The higher burden rate associated with DCI supports the theory of metabolic supply-demand mismatch which contributes to this complication. SIGNIFICANCE ED burden is a novel biomarker for predicting those at high risk of DCI.
Collapse
Affiliation(s)
- Jennifer A Kim
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | - Wei-Long Zheng
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Elmer
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jin Jing
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Manohar Ghanta
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Valdery Moura
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily J Gilmore
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | | | - Aman Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
45
|
Wickstrom R, Taraschenko O, Dilena R, Payne ET, Specchio N, Nabbout R, Koh S, Gaspard N, Hirsch LJ. International consensus recommendations for management of New Onset Refractory Status Epilepticus (NORSE) incl. Febrile Infection-Related Epilepsy Syndrome (FIRES): Statements and Supporting Evidence. Epilepsia 2022; 63:2840-2864. [PMID: 35997591 PMCID: PMC9828002 DOI: 10.1111/epi.17397] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To develop consensus-based recommendations for the management of adult and paediatric patients with NORSE/FIRES based on best evidence and experience. METHODS The Delphi methodology was followed. A facilitator group of 9 experts was established, who defined the scope, users and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment and research directions were generated which were then voted on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was greater or equal to 7, and inappropriate if the median score was less than or equal to 3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. RESULTS Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: 1) disease characteristics, 2) diagnostic testing and sampling, 3) acute treatment, 4) treatment in the post-acute phase, and 5) research, registries and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. SIGNIFICANCE This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research.
Collapse
Affiliation(s)
- Ronny Wickstrom
- Neuropaediatric UnitDepartment of Women's and Children's HealthKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Olga Taraschenko
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Robertino Dilena
- Neuropathophysiology UnitFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Eric T. Payne
- Department of Pediatrics, Section of NeurologyAlberta Children's HospitalCalgaryAlbertaCanada
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARERomeItaly
| | - Rima Nabbout
- Department of Pediatric Neurology, APHP, Member of EPICARE ERN, Centre de Reference Epilepsies RaresUniversite de Paris, Institut Imagine, INSERM 1163ParisFrance
| | - Sookyong Koh
- Department of Pediatrics, Children's Hospital and Medical CenterUniversity of NebraskaOmahaNebraskaUSA
| | | | - Lawrence J. Hirsch
- Department of Neurology, Comprehensive Epilepsy CenterYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
46
|
Vychopen M, Hamed M, Bahna M, Racz A, Ilic I, Salemdawod A, Schneider M, Lehmann F, Eichhorn L, Bode C, Jacobs AH, Behning C, Schuss P, Güresir E, Vatter H, Borger V. A Validation Study for SHE Score for Acute Subdural Hematoma in the Elderly. Brain Sci 2022; 12:981. [PMID: 35892422 PMCID: PMC9330492 DOI: 10.3390/brainsci12080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The aim of this study was the verification of the Subdural Hematoma in the Elderly (SHE) score proposed by Alford et al. as a mortality predictor in patients older than 65 years with nontraumatic/minor trauma acute subdural hematoma (aSDH). Additionally, we evaluated further predictors associated with poor outcome. METHODS Patients were scored according to age (1 point is given if patients were older than 80 years), GCS by admission (1 point for GCS 5-12, 2 points for GCS 3-4), and SDH volume (1 point for volume 50 mL). The sum of points determines the SHE score. Multivariate logistic regression analysis was performed to identify additional independent risk factors associated with 30-day mortality. RESULTS We evaluated 131 patients with aSDH who were treated at our institution between 2008 and 2020. We observed the same 30-day mortality rates published by Alford et al.: SHE 0: 4.3% vs. 3.2%, p = 1.0; SHE 1: 12.2% vs. 13.1%, p = 1.0; SHE 2: 36.6% vs. 32.7%, p = 0.8; SHE 3: 97.1% vs. 95.7%, p = 1.0 and SHE 4: 100% vs. 100%, p = 1.0. Additionally, 18 patients who developed status epilepticus (SE) had a mortality of 100 percent regardless of the SHE score. The distribution of SE among the groups was: 1 for SHE 1, 6 for SHE 2, 9 for SHE 3, and 2 for SHE 4. The logistic regression showed the surgical evacuation to be the only significant risk factor for developing the seizure. All patients who developed SE underwent surgery (p = 0.0065). Furthermore, SHE 3 and 4 showed no difference regarding the outcome between surgical and conservative treatment. CONCLUSIONS SHE score is a reliable mortality predictor for minor trauma acute subdural hematoma in elderly patients. In addition, we identified status epilepticus as a strong life-expectancy-limiting factor in patients undergoing surgical evacuation.
Collapse
Affiliation(s)
- Martin Vychopen
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Majd Bahna
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Inja Ilic
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Abdallah Salemdawod
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Felix Lehmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (F.L.); (L.E.); (C.B.)
| | - Lars Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (F.L.); (L.E.); (C.B.)
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (F.L.); (L.E.); (C.B.)
| | - Andreas H. Jacobs
- Department of Geriatric Medicine and Neurology, Johanniter Hospital Bonn, 53113 Bonn, Germany;
| | - Charlotte Behning
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| |
Collapse
|
47
|
Monsson OS, Roberg LE, Gesche J, Beier CP, Krøigård T. Salzburg consensus criteria are associated with long-term outcome after non-convulsive status epilepticus. Seizure 2022; 99:28-35. [DOI: 10.1016/j.seizure.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
|
48
|
Alkhachroum A, Ganesan SL, Koren JP, Kromm J, Massad N, Reyes RA, Miller MR, Roh D, Agarwal S, Park S, Claassen J. Quantitative EEG-Based Seizure Estimation in Super-Refractory Status Epilepticus. Neurocrit Care 2022; 36:897-904. [PMID: 34791594 PMCID: PMC9987776 DOI: 10.1007/s12028-021-01395-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The objective of this study was to evaluate the accuracy of seizure burden in patients with super-refractory status epilepticus (SRSE) by using quantitative electroencephalography (qEEG). METHODS EEG recordings from 69 patients with SRSE (2009-2019) were reviewed and annotated for seizures by three groups of reviewers: two board-certified neurophysiologists using only raw EEG (gold standard), two neurocritical care providers with substantial experience in qEEG analysis (qEEG experts), and two inexperienced qEEG readers (qEEG novices) using only a qEEG trend panel. RESULTS Raw EEG experts identified 35 (51%) patients with seizures, accounting for 2950 seizures (3,126 min). qEEG experts had a sensitivity of 93%, a specificity of 61%, a false positive rate of 6.5 per day, and good agreement (κ = 0.64) between both qEEG experts. qEEG novices had a sensitivity of 98.5%, a specificity of 13%, a false positive rate of 15 per day, and fair agreement (κ = 0.4) between both qEEG novices. Seizure burden was not different between the qEEG experts and the gold standard (3,257 vs. 3,126 min), whereas qEEG novices reported higher burden (6066 vs. 3126 min). CONCLUSIONS Both qEEG experts and novices had a high sensitivity but a low specificity for seizure detection in patients with SRSE. qEEG could be a useful tool for qEEG experts to estimate seizure burden in patients with SRSE.
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, USA
| | - Saptharishi Lalgudi Ganesan
- Children's Hospital of Western Ontario, London Health Sciences Centre, London, ON, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nina Massad
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA
| | - Renz A Reyes
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA
| | - Michael R Miller
- Children's Hospital of Western Ontario, London Health Sciences Centre, London, ON, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - David Roh
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University and NewYork Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
49
|
Zafar SF, Rosenthal ES, Postma EN, Sanches P, Ayub MA, Rajan S, Kim JA, Rubin DB, Lee H, Patel AB, Hsu J, Patorno E, Westover MB. Antiseizure Medication Treatment and Outcomes in Patients with Subarachnoid Hemorrhage Undergoing Continuous EEG Monitoring. Neurocrit Care 2022; 36:857-867. [PMID: 34843082 PMCID: PMC9117405 DOI: 10.1007/s12028-021-01387-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients with aneurysmal subarachnoid hemorrhage (aSAH) with electroencephalographic epileptiform activity (seizures, periodic and rhythmic patterns, and sporadic discharges) are frequently treated with antiseizure medications (ASMs). However, the safety and effectiveness of ASM treatment for epileptiform activity has not been established. We used observational data to investigate the effectiveness of ASM treatment in patients with aSAH undergoing continuous electroencephalography (cEEG) to develop a causal hypothesis for testing in prospective trials. METHODS This was a retrospective single-center cohort study of patients with aSAH admitted between 2011 and 2016. Patients underwent ≥ 24 h of cEEG within 4 days of admission. All patients received primary ASM prophylaxis until aneurysm treatment (typically within 24 h of admission). Treatment exposure was defined as reinitiation of ASMs after aneurysm treatment and cEEG initiation. We excluded patients with non-cEEG indications for ASMs (e.g., epilepsy, acute symptomatic seizures). Outcomes measures were 90-day mortality and good functional outcome (modified Rankin Scale scores 0-3). Propensity scores were used to adjust for baseline covariates and disease severity. RESULTS Ninety-four patients were eligible (40 continued ASM treatment; 54 received prophylaxis only). ASM continuation was not significantly associated with higher 90-day mortality (propensity-adjusted hazard ratio [HR] = 2.01 [95% confidence interval (CI) 0.57-7.02]). ASM continuation was associated with lower likelihood for 90-day good functional outcome (propensity-adjusted HR = 0.39 [95% CI 0.18-0.81]). In a secondary analysis, low-intensity treatment (low-dose single ASM) was not significantly associated with mortality (propensity-adjusted HR = 0.60 [95% CI 0.10-3.59]), although it was associated with a lower likelihood of good outcome (propensity-adjusted HR = 0.37 [95% CI 0.15-0.91]), compared with prophylaxis. High-intensity treatment (high-dose single ASM, multiple ASMs, or anesthetics) was associated with higher mortality (propensity-adjusted HR = 6.80 [95% CI 1.67-27.65]) and lower likelihood for good outcomes (propensity-adjusted HR = 0.30 [95% CI 0.10-0.94]) compared with prophylaxis only. CONCLUSIONS Our findings suggest the testable hypothesis that continuing ASMs in patients with aSAH with cEEG abnormalities does not improve functional outcomes. This hypothesis should be tested in prospective randomized studies.
Collapse
Affiliation(s)
- Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Eva N Postma
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paula Sanches
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Subapriya Rajan
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel B Rubin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - John Hsu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Health Care Policy, Harvard Medical School, Harvard University, Boston, MA, USA
| | | | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
50
|
Chen Y, Fang M, Wu P, Xie Z, Wu H, Wu Q, Xu S, Li Y, Sun B, Pang B, Zheng N, Zhang J, Hu X, You C. Seizure prophylaxis following aneurysmal subarachnoid haemorrhage (SPSAH): study protocol for a multicentre randomised placebo-controlled trial of short-term sodium valproate prophylaxis in patients with acute subarachnoid haemorrhage. BMJ Open 2022; 12:e057917. [PMID: 35508338 PMCID: PMC9073395 DOI: 10.1136/bmjopen-2021-057917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Seizures are a common complication that leads to neurological deficits and affects outcomes after aneurysmal subarachnoid haemorrhage (aSAH). However, whether to use prophylactic anticonvulsants in patients with aSAH remains controversial. Our study aims to determine whether short-term (7 days) sodium valproate could prevent seizure occurrence and improve neurological function in patients with SAH caused by anterior circulation aneurysm rupture and treated with clipping. METHODS AND ANALYSIS In this multicentre randomised evaluator-blind placebo-controlled trial, 182 eligible patients with good-grade aSAH planned for surgical clipping will be enrolled from four neurosurgical centres in China. In addition to standard care, patients will be randomly assigned to receive sodium valproate 20 mg/kg daily or matching placebo. After aneurysmal clipping, patients will be followed up at discharge, 90 days and 180 days. The primary outcomes are the incidence of early and late seizures. The secondary outcomes include aSAH-related complications, sodium valproate-related adverse effects, modified Rankin Scale (mRS) (on discharge, at 90 days, 180 days), rate of good outcome (defined as mRS 0-2), all-cause death (at 90 days, 180 days) and Montreal Cognitive Assessment score (at 180 days). All analyses are by intention-to-treat. ETHICS AND DISSEMINATION This study will be conducted according to the principles of Declaration of Helsinki and good clinical practice guidelines. This trial involves human participants and has been approved by the ethics committee of West China Hospital. Informed consent will be achieved from each included patient and/or their legally authorised representative. Preliminary and final results from this study will be disseminated through manuscript publishing and international congresses presentations. Any protocol amendments will be approved by the ethics committee of West China Hospital and subsequently updated on ChiCTR. TRIAL REGISTRATION NUMBER ChiCTR.org identifier: ChiCTR2100050161.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honggang Wu
- Department of Neurosurgery, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Qiaowei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shancai Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuchen Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bowen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Pang
- Department of Neurosurgery, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Niandong Zheng
- Department of Neurosurgery, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|