1
|
Asman P, Tasnim I, Muir M, Hall M, Noll K, Prinsloo S, Pellizzer G, Bhavsar S, Tummala S, Ince N, Prabhu S. Intraoperative Cortical Sensorimotor Mapping During Glioma Resection Monitored With Drum Playing During Awake Craniotomy: A Case Report. Case Rep Oncol Med 2025; 2025:4625899. [PMID: 40040926 PMCID: PMC11879599 DOI: 10.1155/crom/4625899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
Background: Tumors infiltrating the precentral gyrus remain a unique operative challenge. In this study, we explored a novel approach for awake craniotomy involving a patient playing a drum pad during resection of low-grade glioma, with the use of preoperative navigated transcranial magnetic stimulation (nTMS)-generated diffusion tensor imaging (DTI) and high-density real-time electrocorticography (ECoG). Observation: A 36-year-old left-handed male with a low-grade glioma in the left hemisphere hand knob region had a grand mal seizure. We combined preoperative nTMS-DTI with intraoperative passive functional mapping using high-density real-time ECoG. During an awake craniotomy, the patient played a drum pad while we assessed somatosensory-evoked potentials (SSEPs) using a 64-channel ECoG grid. This confirmed the absence of motor-evoked potentials (MEPs) over the tumor area, consistent with nTMS findings. Continuous monitoring of the patient's drum pad performance during the resection allowed for a gross total resection (GTR) of the tumor. Following the resection, he experienced some weakness in the intrinsic muscles of his right hand, which returned to full normal function at 6 months. At the end of 1 year, he remained seizure-free. Conclusion: A multimodal mapping strategy combined with awake monitoring of drum playing enabled preservation of function while achieving GTR in a patient with a motor-eloquent glioma.
Collapse
Affiliation(s)
- Priscella Asman
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Israt Tasnim
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mathew Hall
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Kyle Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Giuseppe Pellizzer
- Research Service, Minneapolis VA Health Care System, Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shreyas Bhavsar
- Department of Anesthesiology and Perioperative Care, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nuri Ince
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
- Department of Neurosurgery and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Hsieh JK, Prakash PR, Flint RD, Fitzgerald Z, Mugler E, Wang Y, Crone NE, Templer JW, Rosenow JM, Tate MC, Betzel R, Slutzky MW. Cortical sites critical to language function act as connectors between language subnetworks. Nat Commun 2024; 15:7897. [PMID: 39284848 PMCID: PMC11405775 DOI: 10.1038/s41467-024-51839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors. Both demonstrated lower local and global connectivity, whereas sites causing language errors exhibited higher inter-community connectivity, identifying them as connectors between modules in the language network. We used machine learning to classify these site types with reasonably high accuracy, even across participants, suggesting that a site's pattern of connections within the task-activated language network helps determine its importance to function. These findings help to bridge the gap in our understanding of how focal cortical stimulation interacts with complex brain networks to elicit language deficits.
Collapse
Affiliation(s)
- Jason K Hsieh
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Prashanth R Prakash
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Robert D Flint
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zachary Fitzgerald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Cognitive Science Program, Program in Neuroscience, and Network Science Institute, Indiana University, Bloomington, IN, 47401, USA
| | - Marc W Slutzky
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Arya R, Ervin B, Buroker J, Greiner HM, Byars AW, Rozhkov L, Skoch J, Horn PS, Frink C, Scholle C, Leach JL, Mangano FT, Glauser TA, Holland KD. Neuronal Circuits Supporting Development of Visual Naming Revealed by Intracranial Coherence Modulations. Front Neurosci 2022; 16:867021. [PMID: 35663562 PMCID: PMC9160526 DOI: 10.3389/fnins.2022.867021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Improvement in visual naming abilities throughout the childhood and adolescence supports development of higher-order linguistic skills. We investigated neuronal circuits underlying improvement in the speed of visual naming with age, and age-related dynamics of these circuits. Methods Response times were electronically measured during an overt visual naming task in epilepsy patients undergoing stereo-EEG monitoring. Coherence modulations among pairs of neuroanatomic parcels were computed and analyzed for relationship with response time and age. Results During the overt visual naming task, mean response time (latency) significantly decreased from 4 to 23 years of age. Coherence modulations during visual naming showed that increased connectivity between certain brain regions, particularly that between left fusiform gyrus/left parahippocampal gyrus and left frontal operculum, is associated with improvement in naming speed. Also, decreased connectivity in other brain regions, particularly between left angular and supramarginal gyri, is associated with decreased mean response time. Further, coherence modulations between left frontal operculum and both left fusiform and left posterior cingulate gyri significantly increase, while that between left angular and supramarginal gyri significantly decrease, with age. Conclusion Naming speed continues to improve from pre-school years into young adulthood. This age-related improvement in efficiency of naming environmental objects occurs likely because of strengthened direct connectivity between semantic and phonological nodes, and elimination of intermediate higher-order cognitive steps.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Ervin
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Jason Buroker
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hansel M. Greiner
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna W. Byars
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Leonid Rozhkov
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jesse Skoch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Paul S. Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Clayton Frink
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Craig Scholle
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - James L. Leach
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neuroradiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Francesco T. Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tracy A. Glauser
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine D. Holland
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Mitsuhashi T, Sonoda M, Firestone E, Sakakura K, Jeong JW, Luat AF, Sood S, Asano E. Temporally and functionally distinct large-scale brain network dynamics supporting task switching. Neuroimage 2022; 254:119126. [PMID: 35331870 PMCID: PMC9173207 DOI: 10.1016/j.neuroimage.2022.119126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022] Open
Abstract
Objective: Our daily activities require frequent switches among competing responses at the millisecond time scale. We determined the spatiotemporal characteristics and functional significance of rapid, large-scale brain network dynamics during task switching. Methods: This cross-sectional study investigated patients with drug-resistant focal epilepsy who played a Lumosity cognitive flexibility training game during intracranial electroencephalography (iEEG) recording. According to a given task rule, unpredictably switching across trials, participants had to swipe the screen in the direction the stimulus was pointing or moving. Using this data, we described the spatiotemporal characteristics of iEEG high-gamma augmentation occurring more intensely during switch than repeat trials, unattributable to the effect of task rule (pointing or moving), within-stimulus congruence (the direction of stimulus pointing and moving was same or different in a given trial), or accuracy of an immediately preceding response. Diffusion-weighted imaging (DWI) tractography determined whether distant cortical regions showing enhanced activation during task switch trials were directly connected by white matter tracts. Trial-by-trial iEEG analysis deduced whether the intensity of task switch-related high-gamma augmentation was altered through practice and whether high-gamma amplitude predicted the accuracy of an upcoming response among switch trials. Results: The average number of completed trials during five-minute gameplay was 221.4 per patient (range: 171–285). Task switch trials increased the response times, whereas later trials reduced them. Analysis of iEEG signals sampled from 860 brain sites effectively elucidated the distinct spatiotemporal characteristics of task switch, task rule, and post-error-specific high-gamma modulations. Post-cue, task switch-related high-gamma augmentation was initiated in the right calcarine cortex after 260 ms, right precuneus after 330 ms, right entorhinal after 420 ms, and bilateral anterior middle-frontal gyri after 450 ms. DWI tractography successfully showed the presence of direct white matter tracts connecting the right visual areas to the precuneus and anterior middle-frontal regions but not between the right precuneus and anterior middle-frontal regions. Task-related high-gamma amplitudes in later trials were reduced in the calcarine, entorhinal and anterior middle-frontal regions, but increased in the precuneus. Functionally, enhanced post-cue precuneus high-gamma augmentation improved the accuracy of subsequent responses among switch trials. Conclusions: Our multimodal analysis uncovered two temporally and functionally distinct network dynamics supporting task switching. High-gamma augmentation in the visual-precuneus pathway may reflect the neural process facilitating an attentional shift to a given updated task rule. High-gamma activity in the visual-dorsolateral prefrontal pathway, rapidly reduced through practice, may reflect the cost of executing appropriate stimulus-response translation.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama, 2360004, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Pediatrics, Central Michigan University, Mount Pleasant, MI, 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Herta J, Winter F, Pataraia E, Feucht M, Czech T, Porsche B, Leiss U, Slavc I, Peyrl A, Kasprian G, Rössler K, Dorfer C. Awake brain surgery for language mapping in pediatric patients: a single-center experience. J Neurosurg Pediatr 2022:1-11. [PMID: 35276657 DOI: 10.3171/2022.1.peds21569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to evaluate the feasibility, benefit, and safety of awake brain surgery (ABS) and intraoperative language mapping in children and adolescents with structural epilepsies. Whereas ABS is an established method to monitor language function in adults intraoperatively, reports of ABS in children are scarce. METHODS A retrospective chart review of pediatric patients ≤ 18 years of age who underwent ABS and cortical language mapping for supratentorial tumors and nontumoral epileptogenic lesions between 2008 and 2019 was conducted. The authors evaluated the global intellectual and specific language performance by using detailed neuropsychological testing, the patient's intraoperative compliance, results of intraoperative language mapping assisted by electrocorticography (ECoG), and postsurgical language development and seizure outcomes. Descriptive statistics were used for this study, with a statistical significance of p < 0.05. RESULTS Eleven children (7 boys) with a median age of 13 years (range 10-18 years) underwent ABS for a lesion in close vicinity to cortical language areas as defined by structural and functional MRI (left hemisphere in 9 children, right hemisphere in 2). Patients were neurologically intact but experiencing seizures; these were refractory to therapy in 9 patients. Compliance during the awake phase was high in 10 patients and low in 1 patient. Cortical mapping identified eloquent language areas in 6/10 (60%) patients and was concordant in 3/8 (37.5%), discordant in 3/8 (37.5%), and unclear in 2/8 (25%) patients compared to preoperative functional MRI. Stimulation-induced seizures occurred in 2 patients and could be interrupted easily. ECoG revealed that afterdischarge potentials (ADP) were involved in 5/9 (56%) patients with speech disturbances during stimulation. None of these patients harbored postoperative language dysfunction. Gross-total resection was achieved in 10/11 (91%) patients, and all were seizure free after a median follow-up of 4.3 years. Neuropsychological testing using the Wechsler Intelligence Scale for Children and the verbal learning and memory test showed an overall nonsignificant trend toward an immediate postoperative deterioration followed by an improvement to above preoperative levels after 1 year. CONCLUSIONS ABS is a valuable technique in selected pediatric patients with lesions in language areas. An interdisciplinary approach, careful patient selection, extensive preoperative training of patients, and interpretation of intraoperative ADP are pivotal to a successful surgery.
Collapse
|
6
|
Significance of event related causality (ERC) in eloquent neural networks. Neural Netw 2022; 149:204-216. [PMID: 35248810 PMCID: PMC9029701 DOI: 10.1016/j.neunet.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
Neural activity emerges and propagates swiftly between brain areas. Investigation of these transient large-scale flows requires sophisticated statistical models. We present a method for assessing the statistical confidence of event-related neural propagation. Furthermore, we propose a criterion for statistical model selection, based on both goodness of fit and width of confidence intervals. We show that event-related causality (ERC) with two-dimensional (2D) moving average, is an efficient estimator of task-related neural propagation and that it can be used to determine how different cognitive task demands affect the strength and directionality of neural propagation across human cortical networks. Using electrodes surgically implanted on the surface of the brain for clinical testing prior to epilepsy surgery, we recorded electrocorticographic (ECoG) signals as subjects performed three naming tasks: naming of ambiguous and unambiguous visual objects, and as a contrast, naming to auditory description. ERC revealed robust and statistically significant patterns of high gamma activity propagation, consistent with models of visually and auditorily cued word production. Interestingly, ambiguous visual stimuli elicited more robust propagation from visual to auditory cortices relative to unambiguous stimuli, whereas naming to auditory description elicited propagation in the opposite direction, consistent with recruitment of modalities other than those of the stimulus during object recognition and naming. The new method introduced here is uniquely suitable to both research and clinical applications and can be used to estimate the statistical significance of neural propagation for both cognitive neuroscientific studies and functional brain mapping prior to resective surgery for epilepsy and brain tumors.
Collapse
|
7
|
McMullen DP, Thomas TM, Fifer MS, Candrea DN, Tenore FV, Nickl RW, Pohlmeyer EA, Coogan C, Osborn LE, Schiavi A, Wojtasiewicz T, Gordon CR, Cohen AB, Ramsey NF, Schellekens W, Bensmaia SJ, Cantarero GL, Celnik PA, Wester BA, Anderson WS, Crone NE. Novel intraoperative online functional mapping of somatosensory finger representations for targeted stimulating electrode placement: technical note. J Neurosurg 2021; 135:1493-1500. [PMID: 33770760 DOI: 10.3171/2020.9.jns202675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 11/06/2022]
Abstract
Defining eloquent cortex intraoperatively, traditionally performed by neurosurgeons to preserve patient function, can now help target electrode implantation for restoring function. Brain-machine interfaces (BMIs) have the potential to restore upper-limb motor control to paralyzed patients but require accurate placement of recording and stimulating electrodes to enable functional control of a prosthetic limb. Beyond motor decoding from recording arrays, precise placement of stimulating electrodes in cortical areas associated with finger and fingertip sensations allows for the delivery of sensory feedback that could improve dexterous control of prosthetic hands. In this study, the authors demonstrated the use of a novel intraoperative online functional mapping (OFM) technique with high-density electrocorticography to localize finger representations in human primary somatosensory cortex. In conjunction with traditional pre- and intraoperative targeting approaches, this technique enabled accurate implantation of stimulating microelectrodes, which was confirmed by postimplantation intracortical stimulation of finger and fingertip sensations. This work demonstrates the utility of intraoperative OFM and will inform future studies of closed-loop BMIs in humans.
Collapse
Affiliation(s)
- David P McMullen
- 1National Institute of Mental Health, National Institutes of Health, Bethesda
| | | | - Matthew S Fifer
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | - Francesco V Tenore
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | - Eric A Pohlmeyer
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | - Luke E Osborn
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | | | - Chad R Gordon
- 8Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore
| | - Adam B Cohen
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
- 5Neurology
| | - Nick F Ramsey
- 9UMC Utrecht Brain Center, Utrecht, The Netherlands; and
| | | | - Sliman J Bensmaia
- 10Department of Organismal Biology and Anatomy, University of Chicago, Illinois
| | | | | | - Brock A Wester
- 3Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | | | | |
Collapse
|
8
|
A distributed network supports spatiotemporal cerebral dynamics of visual naming. Clin Neurophysiol 2021; 132:2948-2958. [PMID: 34715419 DOI: 10.1016/j.clinph.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Cerebral spatiotemporal dynamics of visual naming were investigated in epilepsy patients undergoing stereo-electroencephalography (SEEG) monitoring. METHODS Brain networks were defined by Parcel-Activation-Resection-Symptom matching (PARS) approach by matching high-gamma (50-150 Hz) modulations (HGM) in neuroanatomic parcels during visual naming, with neuropsychological outcomes after resection/ablation of those parcels. Brain parcels with >50% electrode contacts simultaneously showing significant HGM were aligned, to delineate spatiotemporal course of naming-related HGM. RESULTS In 41 epilepsy patients, neuroanatomic parcels showed sequential yet temporally overlapping HGM course during visual naming. From bilateral occipital lobes, HGM became increasingly left lateralized, coursing through limbic system. Bilateral superior temporal HGM was noted around response time, and right frontal HGM thereafter. Correlations between resected/ablated parcels, and post-surgical neuropsychological outcomes showed specific regional groupings. CONCLUSIONS Convergence of data from spatiotemporal course of HGM during visual naming, and functional role of specific parcels inferred from neuropsychological deficits after resection/ablation of those parcels, support a model with six cognitive subcomponents of visual naming having overlapping temporal profiles. SIGNIFICANCE Cerebral substrates supporting visual naming are bilaterally distributed with relative hemispheric contribution dependent on cognitive demands at a specific time. PARS approach can be extended to study other cognitive and functional brain networks.
Collapse
|
9
|
Kanaya K, Mitsuhashi T, Kiuchi T, Kobayashi S. The Efficacy of Intraoperative Passive Language Mapping for Glioma Surgery: A Case Report. Front Neurol 2021; 12:652401. [PMID: 34408717 PMCID: PMC8364957 DOI: 10.3389/fneur.2021.652401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, electrocorticographic (ECoG) studies have emphasized the importance of gamma band-based functional mapping in the presurgical localization of the eloquent cortex. Passive functional mapping using ECoG signals provides a reliable method for identifying receptive language areas without many of the risks and limitations associated with electrical cortical stimulation. We report a surgical case of left temporal malignant glioma with intraoperative passive language mapping. Case Description: A 78-year-old woman was diagnosed with left temporal glioma with inspection of her language difficulty. MRI showed a left temporal tumor measuring 74.6 × 50.0 × 51.5 mm in size. Real-time CortiQ-based mapping using high-gamma activity by word-listening and story-listening tasks was performed. Significant listening task-evoked high gamma activities were detected in 5 channels in the superior temporal gyrus and one channel in the middle temporal gyrus. The tumor was grossly removed except for the region corresponding to listening task-evoked high gamma activities. Postoperatively, the patient's symptoms of language comprehension difficulty improved, and no new neurological deficits were observed. Conclusion: Intraoperative passive language mapping was successfully performed, and the patient's language function was well-preserved. Intraoperative passive language mapping, which is applicable in a short time and under general anesthesia, can be an important tool for detecting language areas.
Collapse
Affiliation(s)
- Kohei Kanaya
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Neurosurgery, Iida Municipal Hospital, Nagano, Japan
| | | | - Takafumi Kiuchi
- Department of Neurosurgery, Iida Municipal Hospital, Nagano, Japan
| | - Sumio Kobayashi
- Department of Neurosurgery, Iida Municipal Hospital, Nagano, Japan
| |
Collapse
|
10
|
Clinical applications of neurolinguistics in neurosurgery. Front Med 2021; 15:562-574. [PMID: 33983605 DOI: 10.1007/s11684-020-0771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022]
Abstract
The protection of language function is one of the major challenges of brain surgery. Over the past century, neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identification of language-related brain regions. Neurosurgeons have investigated the neural mechanism of language, developed neurolinguistics theory, and provided unique evidence to further understand the neural basis of language functions by using intraoperative cortical and subcortical electrical stimulation. With the emergence of modern neuroscience techniques and dramatic advances in language models over the last 25 years, novel language mapping methods have been applied in the neurosurgical practice to help neurosurgeons protect the brain and reduce morbidity. The rapid advancements in brain-computer interface have provided the perfect platform for the combination of neurosurgery and neurolinguistics. In this review, the history of neurolinguistics models, advancements in modern technology, role of neurosurgery in language mapping, and modern language mapping methods (including noninvasive neuroimaging techniques and invasive cortical electroencephalogram) are presented.
Collapse
|
11
|
Wang Y, Hays MA, Coogan C, Kang JY, Flinker A, Arya R, Korzeniewska A, Crone NE. Spatial-Temporal Functional Mapping Combined With Cortico-Cortical Evoked Potentials in Predicting Cortical Stimulation Results. Front Hum Neurosci 2021; 15:661976. [PMID: 33935673 PMCID: PMC8079642 DOI: 10.3389/fnhum.2021.661976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Functional human brain mapping is commonly performed during invasive monitoring with intracranial electroencephalographic (iEEG) electrodes prior to resective surgery for drug resistant epilepsy. The current gold standard, electrocortical stimulation mapping (ESM), is time consuming, sometimes elicits pain, and often induces after discharges or seizures. Moreover, there is a risk of overestimating eloquent areas due to propagation of the effects of stimulation to a broader network of language cortex. Passive iEEG spatial-temporal functional mapping (STFM) has recently emerged as a potential alternative to ESM. However, investigators have observed less correspondence between STFM and ESM maps of language than between their maps of motor function. We hypothesized that incongruities between ESM and STFM of language function may arise due to propagation of the effects of ESM to cortical areas having strong effective connectivity with the site of stimulation. We evaluated five patients who underwent invasive monitoring for seizure localization, whose language areas were identified using ESM. All patients performed a battery of language tasks during passive iEEG recordings. To estimate the effective connectivity of stimulation sites with a broader network of task-activated cortical sites, we measured cortico-cortical evoked potentials (CCEPs) elicited across all recording sites by single-pulse electrical stimulation at sites where ESM was performed at other times. With the combination of high gamma power as well as CCEPs results, we trained a logistic regression model to predict ESM results at individual electrode pairs. The average accuracy of the classifier using both STFM and CCEPs results combined was 87.7%, significantly higher than the one using STFM alone (71.8%), indicating that the correspondence between STFM and ESM results is greater when effective connectivity between ESM stimulation sites and task-activated sites is taken into consideration. These findings, though based on a small number of subjects to date, provide preliminary support for the hypothesis that incongruities between ESM and STFM may arise in part from propagation of stimulation effects to a broader network of cortical language sites activated by language tasks, and suggest that more studies, with larger numbers of patients, are needed to understand the utility of both mapping techniques in clinical practice.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adeen Flinker
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Drane DL, Pedersen NP, Sabsevitz DS, Block C, Dickey AS, Alwaki A, Kheder A. Cognitive and Emotional Mapping With SEEG. Front Neurol 2021; 12:627981. [PMID: 33912122 PMCID: PMC8072290 DOI: 10.3389/fneur.2021.627981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
Mapping of cortical functions is critical for the best clinical care of patients undergoing epilepsy and tumor surgery, but also to better understand human brain function and connectivity. The purpose of this review is to explore existing and potential means of mapping higher cortical functions, including stimulation mapping, passive mapping, and connectivity analyses. We examine the history of mapping, differences between subdural and stereoelectroencephalographic approaches, and some risks and safety aspects, before examining different types of functional mapping. Much of this review explores the prospects for new mapping approaches to better understand other components of language, memory, spatial skills, executive, and socio-emotional functions. We also touch on brain-machine interfaces, philosophical aspects of aligning tasks to brain circuits, and the study of consciousness. We end by discussing multi-modal testing and virtual reality approaches to mapping higher cortical functions.
Collapse
Affiliation(s)
- Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David S. Sabsevitz
- Department of Psychology and Psychiatry, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Cady Block
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam S. Dickey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar Kheder
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Wang Y, Korzeniewska A, Usami K, Valenzuela A, Crone NE. The Dynamics of Language Network Interactions in Lexical Selection: An Intracranial EEG Study. Cereb Cortex 2021; 31:2058-2070. [PMID: 33283856 PMCID: PMC7945024 DOI: 10.1093/cercor/bhaa344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/14/2022] Open
Abstract
Speaking in sentences requires selection from contextually determined lexical representations. Although posterior temporal cortex (PTC) and Broca's areas play important roles in storage and selection, respectively, of lexical representations, there has been no direct evidence for physiological interactions between these areas on time scales typical of lexical selection. Using intracranial recordings of cortical population activity indexed by high-gamma power (70-150 Hz) modulations, we studied the causal dynamics of cortical language networks while epilepsy surgery patients performed a sentence completion task in which the number of potential lexical responses was systematically varied. Prior to completion of sentences with more response possibilities, Broca's area was not only more active, but also exhibited more local network interactions with and greater top-down influences on PTC, consistent with activation of, and competition between, more lexical representations. These findings provide the most direct experimental support yet for network dynamics playing a role in lexical selection among competing alternatives during speech production.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto 606-8507, Japan
| | - Alyssandra Valenzuela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Archila-Meléndez ME, Valente G, Gommer ED, Correia JM, Ten Oever S, Peters JC, Reithler J, Hendriks MPH, Cornejo Ochoa W, Schijns OEMG, Dings JTA, Hilkman DMW, Rouhl RPW, Jansma BM, van Kranen-Mastenbroek VHJM, Roberts MJ. Combining Gamma With Alpha and Beta Power Modulation for Enhanced Cortical Mapping in Patients With Focal Epilepsy. Front Hum Neurosci 2020; 14:555054. [PMID: 33408621 PMCID: PMC7779799 DOI: 10.3389/fnhum.2020.555054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/17/2020] [Indexed: 12/03/2022] Open
Abstract
About one third of patients with epilepsy have seizures refractory to the medical treatment. Electrical stimulation mapping (ESM) is the gold standard for the identification of “eloquent” areas prior to resection of epileptogenic tissue. However, it is time-consuming and may cause undesired side effects. Broadband gamma activity (55–200 Hz) recorded with extraoperative electrocorticography (ECoG) during cognitive tasks may be an alternative to ESM but until now has not proven of definitive clinical value. Considering their role in cognition, the alpha (8–12 Hz) and beta (15–25 Hz) bands could further improve the identification of eloquent cortex. We compared gamma, alpha and beta activity, and their combinations for the identification of eloquent cortical areas defined by ESM. Ten patients with intractable focal epilepsy (age: 35.9 ± 9.1 years, range: 22–48, 8 females, 9 right handed) participated in a delayed-match-to-sample task, where syllable sounds were compared to visually presented letters. We used a generalized linear model (GLM) approach to find the optimal weighting of each band for predicting ESM-defined categories and estimated the diagnostic ability by calculating the area under the receiver operating characteristic (ROC) curve. Gamma activity increased more in eloquent than in non-eloquent areas, whereas alpha and beta power decreased more in eloquent areas. Diagnostic ability of each band was close to 0.7 for all bands but depended on multiple factors including the time period of the cognitive task, the location of the electrodes and the patient’s degree of attention to the stimulus. We show that diagnostic ability can be increased by 3–5% by combining gamma and alpha and by 7.5–11% when gamma and beta were combined. We then show how ECoG power modulation from cognitive testing can be used to map the probability of eloquence in individual patients and how this probability map can be used in clinical settings to optimize ESM planning. We conclude that the combination of gamma and beta power modulation during cognitive testing can contribute to the identification of eloquent areas prior to ESM in patients with refractory focal epilepsy.
Collapse
Affiliation(s)
- Mario E Archila-Meléndez
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Neuroscientific MR-Physics Research Group, Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.,Technical University of Munich Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Erik D Gommer
- Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands
| | - João M Correia
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastian, Spain.,Centre for Biomedical Research (CBMR)/Department of Psychology, Universidade do Algarve, Faro, Portugal
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Judith C Peters
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands.,Department of Vision & Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Joel Reithler
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands.,Department of Vision & Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Marc P H Hendriks
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Maastricht University Medical Center Maastricht, Maastricht University, Maastricht, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - William Cornejo Ochoa
- Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Olaf E M G Schijns
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Maastricht University Medical Center Maastricht, Maastricht University, Maastricht, Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jim T A Dings
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Maastricht University Medical Center Maastricht, Maastricht University, Maastricht, Netherlands
| | - Danny M W Hilkman
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands.,Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, Netherlands
| | - Rob P W Rouhl
- Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bernadette M Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Vivianne H J M van Kranen-Mastenbroek
- Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands.,Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands.,Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Trébuchon A, Liégeois-Chauvel C, Gonzalez-Martinez JA, Alario FX. Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy. Epilepsy Behav 2020; 112:107407. [PMID: 33181892 DOI: 10.1016/j.yebeh.2020.107407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
A crucial element of the surgical treatment of medically refractory epilepsy is to delineate cortical areas that must be spared in order to avoid clinically relevant neurological and neuropsychological deficits postoperatively. For each patient, this typically necessitates determining the language lateralization between hemispheres and language localization within hemisphere. Understanding cortical language systems is complicated by two primary challenges: the extent of the neural tissue involved and the substantial variability across individuals, especially in pathological populations. We review the contributions made through the study of electrophysiological activity to address these challenges. These contributions are based on the techniques of magnetoencephalography (MEG), intracerebral recordings, electrical-cortical stimulation (ECS), and the electrovideo analyses of seizures and their semiology. We highlight why no single modality alone is adequate to identify cortical language systems and suggest avenues for improving current practice.
Collapse
Affiliation(s)
- Agnès Trébuchon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA
| | | | - F-Xavier Alario
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA; Aix-Marseille Univ, CNRS, LPC, Marseille, France.
| |
Collapse
|
16
|
Nourski KV, Steinschneider M, Rhone AE, Kovach CK, Banks MI, Krause BM, Kawasaki H, Howard MA. Electrophysiology of the Human Superior Temporal Sulcus during Speech Processing. Cereb Cortex 2020; 31:1131-1148. [PMID: 33063098 DOI: 10.1093/cercor/bhaa281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.,Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Ervin B, Buroker J, Rozhkov L, Holloway T, Horn PS, Scholle C, Byars AW, Mangano FT, Leach JL, Greiner HM, Holland KD, Arya R. High-gamma modulation language mapping with stereo-EEG: A novel analytic approach and diagnostic validation. Clin Neurophysiol 2020; 131:2851-2860. [PMID: 33137575 DOI: 10.1016/j.clinph.2020.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping. METHODS SEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50-150 Hz power modulations in time-frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated. RESULTS In 21 patients (9 females), aged 4.8-21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites. CONCLUSIONS SEEG HGM mapping can accurately localize neuroanatomic and ESM language sites. SIGNIFICANCE Predictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
Collapse
Affiliation(s)
- Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Timothy Holloway
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Arya R, Babajani-Feremi A, Byars AW, Vannest J, Greiner HM, Wheless JW, Mangano FT, Holland KD. A model for visual naming based on spatiotemporal dynamics of ECoG high-gamma modulation. Epilepsy Behav 2019; 99:106455. [PMID: 31419636 DOI: 10.1016/j.yebeh.2019.106455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We studied spatiotemporal dynamics of electrocorticographic (ECoG) high-gamma modulation (HGM) during visual naming. METHODS In 8 patients, aged 4-19 years, with left hemisphere subdural electrodes, propagation of ECoG HGM during overt visual naming was mapped with trial-averaged time-frequency analysis. Group-level synthesis was performed by transforming all electrodes to a standard space and assigning cortical parcels based on a reference atlas. RESULTS After image display following cortical parcels were activated: inferior occipital, caudal angular, fusiform, and middle temporal gyri, and superior temporal sulcus [0-400 ms]; rostral pars triangularis (A45r), inferior frontal sulcus, caudal dorsolateral premotor cortex (A6cdl) [300-600 ms]; caudal ventrolateral premotor cortex (A6cvl), caudal pars triangularis (A45c), pars opercularis (A44) [400-800 ms]; primary sensorimotor cortex [600-1400 ms], with most prominent HGM in glossolaryngeal region (A4tl). Lastly, auditory cortex (A41/A42) and superior temporal gyrus (A22) were activated [900 ms-1.4 s]. After 1.5 s, HGM decreased globally, except in ventrolateral premotor cortex. CONCLUSIONS During visual naming, ECoG HGM shows a sequential but overlapping spatiotemporal course through cortical regions. We provide neurophysiologic validation for a model of visual naming incorporating both modular and distributed cortical processing. This may explain cognitive deficits seen in some patients after surgery involving HGM naming sites outside perisylvian language cortex.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| | - Abbas Babajani-Feremi
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America; Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jennifer Vannest
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - James W Wheless
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
19
|
Arya R, Ervin B, Dudley J, Buroker J, Rozhkov L, Scholle C, Horn PS, Vannest J, Byars AW, Leach JL, Mangano FT, Greiner HM, Holland KD, Glauser TA. Electrical stimulation mapping of language with stereo-EEG. Epilepsy Behav 2019; 99:106395. [PMID: 31422309 DOI: 10.1016/j.yebeh.2019.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We prospectively validated stereo-electroencephalography (EEG) electrical stimulation mapping (ESM) of language against a reference standard of meta-analytic functional magnetic resonance imaging (fMRI) framework (Neurosynth). METHODS Language ESM was performed using 50 Hz, biphasic, bipolar, stimulation at 1-8 mA, with a picture naming task. Electrode contacts (ECs) were scored as ESM+ if ESM interfered with speech/language function. For each patient, presurgical MRI was transformed to a standard space and coregistered with computed tomographic (CT) scan to obtain EC locations. After whole-brain parcellation, this fused image data were intersected with three-dimensional language fMRI (Neurosynth), and each EC was classified as lying within/outside the fMRI language parcel. Diagnostic odds ratio (DOR) and other indices were estimated. Current thresholds for language inhibition and after-discharges (ADs) were analyzed using multivariable linear mixed models. RESULTS In 10 patients (5 females), aged 5.4-21.2 years, speech/language inhibition was noted with ESM on 87/304 (29%) ECs. Stereo-EEG language ESM was a valid classifier of fMRI (Neurosynth) language sites (DOR: 9.02, p < 0.0001), with high specificity (0.87) but poor sensitivity (0.57). Similar diagnostic indices were seen for ECs in frontal or posterior regions, and gray or white matter. Language threshold (3.1 ± 1.5 mA) was lower than AD threshold (4.0 ± 2.0 mA, p = 0.0001). Language and AD thresholds decreased with age and intelligence quotient. Electrical stimulation mapping triggered seizures/auras represented patients' habitual semiology with 1 Hz stimulation. CONCLUSIONS Stereo-EEG ESM can reliably identify cerebral parcels with/without language function but may under detect all language sites. We suggest a 50-Hz stimulation protocol for language ESM with stereo-EEG.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tracy A Glauser
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
20
|
Similarity of spatiotemporal dynamics of language-related ECoG high-gamma modulation in Japanese and English speakers. Clin Neurophysiol 2019; 130:1403-1404. [DOI: 10.1016/j.clinph.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/17/2022]
|
21
|
Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream. eNeuro 2019; 6:eN-NWR-0214-18. [PMID: 30847390 PMCID: PMC6402539 DOI: 10.1523/eneuro.0214-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High γ frequency activity (65–115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high γ power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream.
Collapse
|
22
|
Milsap G, Collard M, Coogan C, Crone NE. BCI2000Web and WebFM: Browser-Based Tools for Brain Computer Interfaces and Functional Brain Mapping. Front Neurosci 2019; 12:1030. [PMID: 30814923 PMCID: PMC6381053 DOI: 10.3389/fnins.2018.01030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022] Open
Abstract
BCI2000 has been a popular platform for development of real-time brain computer interfaces (BCIs). Since BCI2000's initial release, web browsers have evolved considerably, enabling rapid development of internet-enabled applications and interactive visualizations. Linking the amplifier abstraction and signal processing native to BCI2000 with the host of technologies and ease of development afforded by modern web browsers could enable a new generation of browser-based BCIs and visualizations. We developed a server and filter module called BCI2000Web providing an HTTP connection capable of escalation into an RFC6455 WebSocket, which enables direct communication between a browser and a BCI2000 distribution in real-time, facilitating a number of novel applications. We also present a JavaScript module, bci2k.js, that allows web developers to create paradigms and visualizations using this interface in an easy-to-use and intuitive manner. To illustrate the utility of BCI2000Web, we demonstrate a browser-based implementation of a real-time electrocorticographic (ECoG) functional mapping suite called WebFM. We also explore how the unique characteristics of our browser-based framework make BCI2000Web an attractive tool for future BCI applications. BCI2000Web leverages the advances of BCI2000 to provide real-time browser-based interactions with human neurophysiological recordings, allowing for web-based BCIs and other applications, including real-time functional brain mapping. Both BCI2000 and WebFM are provided under open source licenses. Enabling a powerful BCI suite to communicate with today's most technologically progressive software empowers a new cohort of developers to engage with BCI technology, and could serve as a platform for internet-enabled BCIs.
Collapse
Affiliation(s)
- Griffin Milsap
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Max Collard
- Department of Neurology, Johns Hopkins Universit, Baltimore, MD, United States
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins Universit, Baltimore, MD, United States
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins Universit, Baltimore, MD, United States
| |
Collapse
|
23
|
Arya R, Ervin B, Wilson JA, Byars AW, Rozhkov L, Buroker J, Horn PS, Scholle C, Fujiwara H, Greiner HM, Leach JL, Rose DF, Mangano FT, Glauser TA, Holland KD. Development of information sharing in language neocortex in childhood-onset drug-resistant epilepsy. Epilepsia 2019; 60:393-405. [PMID: 30740659 DOI: 10.1111/epi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We studied age-related dynamics of information sharing among cortical language regions with electrocorticographic high-gamma modulation during picture-naming and story-listening tasks. METHODS Seventeen epilepsy patients aged 4-19 years, undergoing extraoperative monitoring with left-hemispheric subdural electrodes, were included. Mutual information (MI), a nondirectional measure of shared information, between 16 pairs of cortical regions of interest, was computed from trial-averaged 70-150 Hz power modulations during language tasks. Impact of age on pairwise MI between language regions and their determinants were ascertained with regression analysis. RESULTS During picture naming, significant increase in MI with age was seen between pairwise combinations of Broca's area, inferior precentral gyrus (iPreC), and frontal association cortex (FAC); Wernicke's area and posterior association cortex (PAC); and Broca's and Wernicke's areas. During story listening, significant age-related increase in MI was seen between Wernicke's area and either Broca's area, FAC, or PAC; and between Broca's area and FAC. Significant impact of baseline intelligence quotient was seen on the relationship between age and MI for all pairs, except between Broca's area and iPreC. The mean MI was higher during naming compared to listening for pairs including iPreC with Broca's area, FAC, or PAC and was lower for pairs of Wernicke's area or PAC with anterior language regions. SIGNIFICANCE Information sharing matures with age "within" frontal and temporoparietal language cortices, and "between" Broca's and Wernicke's areas. This study provides evidence for distinct patterns of developmental plasticity within perisylvian language cortex and has implications for planning epilepsy surgery.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brian Ervin
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio
| | - J Adam Wilson
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anna W Byars
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leonid Rozhkov
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Buroker
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Craig Scholle
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hisako Fujiwara
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hansel M Greiner
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James L Leach
- Division of Pediatric Neuroradiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Douglas F Rose
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tracy A Glauser
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine D Holland
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
24
|
Arya R, Roth C, Leach JL, Middeler D, Wilson JA, Vannest J, Rozhkov L, Greiner HM, Buroker J, Scholle C, Fujiwara H, Horn PS, Rose DF, Crone NE, Mangano FT, Byars AW, Holland KD. Neuropsychological outcomes after resection of cortical sites with visual naming associated electrocorticographic high-gamma modulation. Epilepsy Res 2019; 151:17-23. [PMID: 30721879 DOI: 10.1016/j.eplepsyres.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Language mapping with high-gamma modulation (HGM) has compared well with electrical cortical stimulation mapping (ESM). However, there is limited prospective data about its functional validity. We compared changes in neuropsychological evaluation (NPE) performed before and 1-year after epilepsy surgery, between patients with/without resection of cortical sites showing HGM during a visual naming task. METHODS Pediatric drug-resistant epilepsy (DRE) patients underwent pre-surgical language localization with ESM and HGM using a visual naming task. Surgical decisions were based solely on ESM results. NPE difference scores were compared between patients with/without resection of HGM naming sites using principal component (PC) analysis. Follow-up NPE scores were modeled with resection group as main effect and respective pre-surgical score as a covariate, using analysis of covariance. RESULTS Seventeen native English speakers (12 females), aged 6.5-20.2 years, were included. One year after epilepsy surgery, first PC score increased by (mean ± standard deviation) 14.4 ± 16.5 points in patients without resection, whereas it decreased by 7.6 ± 24.6 points in those with resection of HGM naming sites (p = 0.040). This PC score represented verbal comprehension, working memory, perceptual reasoning (Wechsler subscales); Woodcock-Johnson Tests of Achievement; and Peabody Picture Vocabulary Test. Subsequent analysis showed significant difference in working memory score between patients with/without resection of HGM naming sites (-15.2 points, 95% confidence limits -29.7 to -0.7, p = 0.041). CONCLUSION We highlight the functional consequences of resecting HGM language sites, and suggest that NPE of DRE patients should include comprehensive assessment of multiple linguistic and cognitive domains besides naming ability.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Celie Roth
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuroradiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Denise Middeler
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Adam Wilson
- Pediatric Neuroimaging Research Consortium, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hisako Fujiwara
- Pediatric Neuroimaging Research Consortium, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas F Rose
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
Swift JR, Coon WG, Guger C, Brunner P, Bunch M, Lynch T, Frawley B, Ritaccio AL, Schalk G. Passive functional mapping of receptive language areas using electrocorticographic signals. Clin Neurophysiol 2018; 129:2517-2524. [PMID: 30342252 DOI: 10.1016/j.clinph.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To validate the use of passive functional mapping using electrocorticographic (ECoG) broadband gamma signals for identifying receptive language cortex. METHODS We mapped language function in 23 patients using ECoG and using electrical cortical stimulation (ECS) in a subset of 15 subjects. RESULTS The qualitative comparison between cortical sites identified by ECoG and ECS show a high concordance. A quantitative comparison indicates a high level of sensitivity (95%) and a lower level of specificity (59%). Detailed analysis reveals that 82% of all cortical sites identified by ECoG were within one contact of a site identified by ECS. CONCLUSIONS These results show that passive functional mapping reliably localizes receptive language areas, and that there is a substantial concordance between the ECoG- and ECS-based methods. They also point to a more refined understanding of the differences between ECoG- and ECS-based mappings. This refined understanding helps to clarify the instances in which the two methods disagree and can explain why neurosurgical practice has established the concept of a "safety margin." SIGNIFICANCE Passive functional mapping using ECoG signals provides a fast, robust, and reliable method for identifying receptive language areas without many of the risks and limitations associated with ECS.
Collapse
Affiliation(s)
- J R Swift
- g.tec neurotechnology USA, Rensselaer, NY, USA; Dept. of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - W G Coon
- g.tec neurotechnology USA, Rensselaer, NY, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - C Guger
- g.tec neurotechnology USA, Rensselaer, NY, USA.
| | - P Brunner
- Dept. of Neurology, Albany Medical College, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - M Bunch
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - T Lynch
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - B Frawley
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - A L Ritaccio
- Dept. of Neurology, Mayo Clinic, Jacksonville, FL, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - G Schalk
- Dept. of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Dept. of Neurology, Albany Medical College, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| |
Collapse
|
26
|
Wen J, Yu T, Wang X, Liu C, Zhou T, Li Y, Li X. Continuous behavioral tracing-based online functional brain mapping with intracranial electroencephalography. J Neural Eng 2018; 15:054002. [DOI: 10.1088/1741-2552/aad405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Flinker A, Knight RT. Broca’s area in comprehension and production, insights from intracranial studies in humans. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Mooij AH, Sterkman LCM, Zijlmans M, Huiskamp GJM. Electrocorticographic high gamma language mapping: Mind the pitfalls of comparison with electrocortical stimulation. Epilepsy Behav 2018. [PMID: 29525721 DOI: 10.1016/j.yebeh.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- A H Mooij
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - L C M Sterkman
- Faculty of Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - M Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - G J M Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
29
|
ECoG high-gamma modulation versus electrical stimulation for presurgical language mapping. Epilepsy Behav 2018; 79:26-33. [PMID: 29247963 PMCID: PMC5815885 DOI: 10.1016/j.yebeh.2017.10.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This meta-analysis compared diagnostic validity of electrocorticographic (ECoG) high-γ modulation (HGM) with electrical stimulation mapping (ESM) for presurgical language localization. METHODS From a structured literature search, studies with electrode level data comparing ECoG HGM and ESM for language localization were included in the meta-analysis. Outcomes included global measures of diagnostic validity: area under the summary receiver operating characteristic (SROC) curve (AUC), and diagnostic odds ratio (DOR); as well as pooled estimates of sensitivity and specificity. Clinical and technical determinants of sensitivity/specificity were explored. RESULTS Fifteen studies were included in qualitative synthesis, and 10 studies included in the meta-analysis (number of patients 1-17, mean age 10.3-53.6years). Overt picture naming was the most commonly used task for language mapping with either method. Electrocorticographic high-γ modulation was analyzed at 50-400Hz with different bandwidths in individual studies. For ESM, pulse duration, train duration, and maximum current varied greatly among studies. Sensitivity (0.23-0.99), specificity (0.48-0.96), and DOR (1.45-376.28) varied widely across studies. The pooled estimates are: sensitivity 0.61 (95% CI 0.44, 0.76), specificity 0.79 (95% CI 0.68, 0.88), and DOR 6.44 (95% CI 3.47, 11.94). Area under the SROC curve was 0.77. Results of bivariate meta-regression were limited by small samples for individual variables. CONCLUSION Electrocorticographic high-γ modulation is a specific but not sensitive method for language localization compared with gold-standard ESM. Given the pooled DOR of 6.44 and AUC of 0.77, ECoG HGM can fairly reliably ascertain electrodes overlying ESM cortical language sites.
Collapse
|
30
|
Nakai Y, Nagashima A, Hayakawa A, Osuki T, Jeong JW, Sugiura A, Brown EC, Asano E. Four-dimensional map of the human early visual system. Clin Neurophysiol 2017; 129:188-197. [PMID: 29190524 DOI: 10.1016/j.clinph.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We generated a large-scale, four-dimensional map of neuronal modulations elicited by full-field flash stimulation. METHODS We analyzed electrocorticography (ECoG) recordings from 63 patients with focal epilepsy, and delineated the spatial-temporal dynamics of visually-elicited high-gamma70-110 Hz amplitudes on a standard brain template. We then clarified the neuronal events underlying visual evoked potential (VEP) components, by correlating with high-gamma amplitude measures. RESULTS The medial-occipital cortex initially revealed rapid neural activation followed by prolonged suppression, reflected by augmentation of high-gamma activity lasting up to 100 ms followed by attenuation lasting up to 1000 ms, respectively. With a number of covariate factors incorporated into a prediction model, the eccentricity representation independently predicted the magnitude of post-activation suppression, which was more intense in regions representing more parafoveal visual fields compared to those of more peripheral fields. The initial negative component on VEP was sharply contoured and co-occurred with early high-gamma augmentation, whose offset then co-occurred with a large positive VEP peak. A delayed negative VEP peak was blunt and co-occurred with prolonged high-gamma attenuation. CONCLUSIONS Eccentricity-dependent gradient in neural suppression in the medial-occipital region may explain the functional difference between peripheral and parafoveal/central vision. Early negative and positive VEP components may reflect neural activation, whereas a delayed negative VEP peak reflecting neural suppression. SIGNIFICANCE Our observation provides the mechanistic rationale for transient scotoma or mild flash-blindness, characterized by physiological afterimage preferentially formed in central vision following intense but non-injurious light exposure.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama 6418510, Japan
| | - Akari Nagashima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Akane Hayakawa
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Takuya Osuki
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
31
|
Kambara T, Sood S, Alqatan Z, Klingert C, Ratnam D, Hayakawa A, Nakai Y, Luat AF, Agarwal R, Rothermel R, Asano E. Presurgical language mapping using event-related high-gamma activity: The Detroit procedure. Clin Neurophysiol 2017; 129:145-154. [PMID: 29190521 DOI: 10.1016/j.clinph.2017.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
A number of investigators have reported that event-related augmentation of high-gamma activity at 70-110 Hz on electrocorticography (ECoG) can localize functionally-important brain regions in children and adults who undergo epilepsy surgery. The advantages of ECoG-based language mapping over the gold-standard stimulation include: (i) lack of stimulation-induced seizures, (ii) better sensitivity of localization of language areas in young children, and (iii) shorter patient participant time. Despite its potential utility, ECoG-based language mapping is far less commonly practiced than stimulation mapping. Here, we have provided video presentations to explain, point-by-point, our own hardware setting and time-frequency analysis procedures. We also have provided standardized auditory stimuli, in multiple languages, ready to be used for ECoG-based language mapping. Finally, we discussed the technical aspects of ECoG-based mapping, including its pitfalls, to facilitate appropriate interpretation of the data.
Collapse
Affiliation(s)
- Toshimune Kambara
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 1020083, Japan
| | - Sandeep Sood
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Zahraa Alqatan
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | - Diksha Ratnam
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Akane Hayakawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Aimee F Luat
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Rajkumar Agarwal
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Robert Rothermel
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
32
|
Nakai Y, Jeong JW, Brown EC, Rothermel R, Kojima K, Kambara T, Shah A, Mittal S, Sood S, Asano E. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain 2017; 140:1351-1370. [PMID: 28334963 PMCID: PMC5405238 DOI: 10.1093/brain/awx051] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 11/13/2022] Open
Abstract
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama, 6418510, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert Rothermel
- Department of Psychiatry, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Pediatrics, University of California San Francisco, CA, 94143, USA
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
| | - Aashit Shah
- Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
33
|
Zea Vera A, Aungaroon G, Horn PS, Byars AW, Greiner HM, Tenney JR, Arthur TM, Crone NE, Holland KD, Mangano FT, Arya R. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping. Clin Neurophysiol 2017; 128:2087-2093. [PMID: 28774583 DOI: 10.1016/j.clinph.2017.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine current thresholds and their determinants for language and motor mapping with extra-operative electrical cortical stimulation (ECS). METHODS ECS electrocorticograph recordings were reviewed to determine functional thresholds. Predictors of functional thresholds were found with multivariable analyses. RESULTS In 122 patients (age 11.9±5.4years), average minimum, frontal, and temporal language thresholds were 7.4 (± 3.0), 7.8 (± 3.0), and 7.4 (± 3.1) mA respectively. Average minimum, face, upper and lower extremity motor thresholds were 5.4 (± 2.8), 6.1 (± 2.8), 4.9 (± 2.3), and 5.3 (± 3.3) mA respectively. Functional and after-discharge (AD)/seizure thresholds were significantly related. Minimum, frontal, and temporal language thresholds were higher than AD thresholds at all ages. Minimum motor threshold was higher than minimum AD threshold up to 8.0years of age, face motor threshold was higher than frontal AD threshold up to 11.8years age, and lower subsequently. UE motor thresholds remained below frontal AD thresholds throughout the age range. CONCLUSIONS Functional thresholds are frequently above AD thresholds in younger children. SIGNIFICANCE These findings raise concerns about safety and neurophysiologic validity of ECS mapping. Functional and AD/seizure thresholds relationships suggest individual differences in cortical excitability which cannot be explained by clinical variables.
Collapse
Affiliation(s)
- Alonso Zea Vera
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffrey R Tenney
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Todd M Arthur
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
34
|
Bandt SK, Roland JL, Pahwa M, Hacker CD, Bundy DT, Breshears JD, Sharma M, Shimony JS, Leuthardt EC. The impact of high grade glial neoplasms on human cortical electrophysiology. PLoS One 2017; 12:e0173448. [PMID: 28319187 PMCID: PMC5358752 DOI: 10.1371/journal.pone.0173448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 02/21/2017] [Indexed: 11/18/2022] Open
Abstract
Objective The brain’s functional architecture of interconnected network-related oscillatory patterns in discrete cortical regions has been well established with functional magnetic resonance imaging (fMRI) studies or direct cortical electrophysiology from electrodes placed on the surface of the brain, or electrocorticography (ECoG). These resting state networks exhibit a robust functional architecture that persists through all stages of sleep and under anesthesia. While the stability of these networks provides a fundamental understanding of the organization of the brain, understanding how these regions can be perturbed is also critical in defining the brain’s ability to adapt while learning and recovering from injury. Methods Patients undergoing an awake craniotomy for resection of a tumor were studied as a unique model of an evolving injury to help define how the cortical physiology and the associated networks were altered by the presence of an invasive brain tumor. Results This study demonstrates that there is a distinct pattern of alteration of cortical physiology in the setting of a malignant glioma. These changes lead to a physiologic sequestration and progressive synaptic homogeneity suggesting that a de-learning phenomenon occurs within the tumoral tissue compared to its surroundings. Significance These findings provide insight into how the brain accommodates a region of “defunctionalized” cortex. Additionally, these findings may have important implications for emerging techniques in brain mapping using endogenous cortical physiology.
Collapse
Affiliation(s)
- S. Kathleen Bandt
- Department of Neurological Surgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Jarod L. Roland
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, United States of America
| | - Mrinal Pahwa
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Carl D. Hacker
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David T. Bundy
- Department of Rehabilitation Medicine, University of Kansas, Kansas City, Kansas, United States of America
| | - Jonathan D. Breshears
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Mohit Sharma
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Joshua S. Shimony
- Washington University School of Medicine, St. Louis, Missouri, United States of America
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Brain Laser Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
35
|
Kambara T, Brown EC, Jeong JW, Ofen N, Nakai Y, Asano E. Spatio-temporal dynamics of working memory maintenance and scanning of verbal information. Clin Neurophysiol 2017; 128:882-891. [PMID: 28399442 DOI: 10.1016/j.clinph.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE During verbal communication, humans briefly maintain mental representations of speech sounds conveying verbal information, and constantly scan these representations for comparison to incoming information. We determined the spatio-temporal dynamics of such short-term maintenance and subsequent scanning of verbal information, by intracranially measuring high-gamma activity at 70-110Hz during a working memory task. METHODS Patients listened to a stimulus set of two or four spoken letters and were instructed to remember those letters over a two-second interval, following which they were asked to determine if a subsequent target letter had been presented earlier in that trial's stimulus set. RESULTS Auditory presentation of letter stimuli sequentially elicited high-gamma augmentation bilaterally in the superior-temporal and pre-central gyri. During the two-second maintenance period, high-gamma activity was augmented in the left pre-central gyrus, and this effect was larger during the maintenance of stimulus sets consisting of four compared to two letters. During the scanning period following target presentation, high-gamma augmentation involved the left inferior-frontal and supra-marginal gyri. CONCLUSIONS Short-term maintenance of verbal information is, at least in part, supported by the left pre-central gyrus, whereas scanning by the left inferior-frontal and supra-marginal gyri. SIGNIFICANCE The cortical structures involved in short-term maintenance and scanning of speech stimuli were segregated with an excellent temporal resolution.
Collapse
Affiliation(s)
- Toshimune Kambara
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 1020083, Japan
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
36
|
Arya R, Wilson JA, Fujiwara H, Rozhkov L, Leach JL, Byars AW, Greiner HM, Vannest J, Buroker J, Milsap G, Ervin B, Minai A, Horn PS, Holland KD, Mangano FT, Crone NE, Rose DF. Presurgical language localization with visual naming associated ECoG high- gamma modulation in pediatric drug-resistant epilepsy. Epilepsia 2017; 58:663-673. [PMID: 28225156 DOI: 10.1111/epi.13708] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This prospective study compared presurgical language localization with visual naming-associated high-γ modulation (HGM) and conventional electrical cortical stimulation (ECS) in children with intracranial electrodes. METHODS Patients with drug-resistant epilepsy who were undergoing intracranial monitoring were included if able to name pictures. Electrocorticography (ECoG) signals were recorded during picture naming (overt and covert) and quiet baseline. For each electrode the likelihood of high-γ (70-116 Hz) power modulation during naming task relative to the baseline was estimated. Electrodes with significant HGM were plotted on a three-dimensional (3D) cortical surface model. Sensitivity, specificity, and accuracy were calculated compared to clinical ECS. RESULTS Seventeen patients with mean age of 11.3 years (range 4-19) were included. In patients with left hemisphere electrodes (n = 10), HGM during overt naming showed high specificity (0.81, 95% confidence interval [CI] 0.78-0.85), and accuracy (0.71, 95% CI 0.66-0.75, p < 0.001), but modest sensitivity (0.47) when ECS interference with naming (aphasia or paraphasic errors) and/or oral motor function was regarded as the gold standard. Similar results were reproduced by comparing covert naming-associated HGM with ECS naming sites. With right hemisphere electrodes (n = 7), no ECS-naming deficits were seen without interference with oral-motor function. HGM mapping showed a high specificity (0.81, 95% CI 0.78-0.84), and accuracy (0.76, 95% CI 0.71-0.81, p = 0.006), but modest sensitivity (0.44) compared to ECS interference with oral-motor function. Naming-associated ECoG HGM was consistently observed over Broca's area (left posterior inferior-frontal gyrus), bilateral oral/facial motor cortex, and sometimes over the temporal pole. SIGNIFICANCE This study supports the use of ECoG HGM mapping in children in whom adverse events preclude ECS, or as a screening method to prioritize electrodes for ECS testing.
Collapse
Affiliation(s)
- Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - J Adam Wilson
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Hisako Fujiwara
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - James L Leach
- Division of Pediatric Neuroradiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Griffin Milsap
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, U.S.A.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Brian Ervin
- Complex Adaptive Systems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ali Minai
- Complex Adaptive Systems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A.,Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Douglas F Rose
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| |
Collapse
|
37
|
Foster BL, Parvizi J. Direct cortical stimulation of human posteromedial cortex. Neurology 2017; 88:685-691. [PMID: 28100728 DOI: 10.1212/wnl.0000000000003607] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/17/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The posteromedial cortex (PMC) is a collective term for an anatomically heterogeneous area of the brain constituting a core node of the human default mode network (DMN), which is engaged during internally focused subjective cognition such as autobiographical memory. METHODS We explored the effects of causal perturbations of PMC with direct electric brain stimulation (EBS) during presurgical epilepsy monitoring with intracranial EEG electrodes. RESULTS Data were collected from 885 stimulations in 25 patients implanted with intracranial electrodes across the PMC. While EBS of regions immediately dorsal or ventral to the PMC reliably produced somatomotor or visual effects, respectively, we found no observable behavioral or subjectively reported effects when sites within the boundaries of PMC were electrically perturbed. In each patient, null effects of PMC stimulation were observed for sites in which intracranial recordings had clearly demonstrated electrophysiologic responses during autobiographical recall. CONCLUSIONS Direct electric modulation of the human PMC produced null effects when standard functional mapping methods were used. More sophisticated stimulation paradigms (e.g., EBS during experimental cognitive tests) will be required for testing the causal contribution of PMC to human cognition and subjective experience. Nonetheless, our findings suggest that some extant theories of PMC and DMN contribution to human awareness and subjective conscious states require cautious re-examination.
Collapse
Affiliation(s)
- Brett L Foster
- From the Laboratory of Behavioral and Cognitive Neuroscience (B.L.F., J.P.), Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University, CA; and Departments of Neurosurgery and Neuroscience (B.L.F.), Baylor College of Medicine, Houston, TX.
| | - Josef Parvizi
- From the Laboratory of Behavioral and Cognitive Neuroscience (B.L.F., J.P.), Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University, CA; and Departments of Neurosurgery and Neuroscience (B.L.F.), Baylor College of Medicine, Houston, TX.
| |
Collapse
|
38
|
Alhourani A, Wozny TA, Richardson RM. Real-Time Electrocorticography-Based Functional Mapping of Language Cortex. Neurosurgery 2016; 79:N21-2. [DOI: 10.1227/01.neu.0000499713.81584.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Asano E, Gotman J. Is electrocorticography-based language mapping ready to replace stimulation? Neurology 2016; 86:1174-6. [PMID: 26935896 DOI: 10.1212/wnl.0000000000002533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eishi Asano
- From the Departments of Pediatrics and Neurology (E.A.), Wayne State University; Department of Neurodiagnostics (E.A.), Children's Hospital of Michigan, Detroit; and Montreal Neurological Institute (J.G.), McGill University, Montréal, Canada.
| | - Jean Gotman
- From the Departments of Pediatrics and Neurology (E.A.), Wayne State University; Department of Neurodiagnostics (E.A.), Children's Hospital of Michigan, Detroit; and Montreal Neurological Institute (J.G.), McGill University, Montréal, Canada
| |
Collapse
|