1
|
Wydrych A, Pakuła B, Janikiewicz J, Dobosz AM, Jakubek-Olszewska P, Skowrońska M, Kurkowska-Jastrzębska I, Cwyl M, Popielarz M, Pinton P, Zavan B, Dobrzyń A, Lebiedzińska-Arciszewska M, Więckowski MR. Metabolic impairments in neurodegeneration with brain iron accumulation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149517. [PMID: 39366438 DOI: 10.1016/j.bbabio.2024.149517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a broad, heterogeneous group of rare inherited diseases (1-3 patients/1,000,000 people) characterized by progressive symptoms associated with excessive abnormal iron deposition in the brain. Approximately 15,000-20,000 individuals worldwide are estimated to be affected by NBIA. NBIA is usually associated with slowly progressive pyramidal and extrapyramidal symptoms, axonal motor neuropathy, optic nerve atrophy, cognitive impairment and neuropsychiatric disorders. To date, eleven subtypes of NBIA have been described and the most common ones include pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN). We present a comprehensive overview of the evidence for disturbed cellular homeostasis and metabolic alterations in NBIA variants, with a careful focus on mitochondrial bioenergetics and lipid metabolism which drives a new perspective in understanding the course of this infrequent malady.
Collapse
Affiliation(s)
- Agata Wydrych
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Pakuła
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Skowrońska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Maciej Cwyl
- Warsaw University of Technology, Warsaw, Poland; NBIA Poland Association, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw
| | | | - Mariusz R Więckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Engin Erdal A, Yürek B, Kıreker Köylü O, Ceylan AC, Çıtak Kurt AN, Kasapkara ÇS. Hereditary spastic paraplegia type 35 in a Turkish girl with fatty acid hydroxylase-associated neurodegeneration. J Pediatr Endocrinol Metab 2024; 37:271-275. [PMID: 38353247 DOI: 10.1515/jpem-2023-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The fatty acid 2-hydroxylase gene (FA2H) compound heterozygous or homozygous variants that cause spastic paraplegia type 35 (SPG35) (OMIM # 612319) are autosomal recessive HSPs. FA2H gene variants in humans have been shown to be associated with not only SPG35 but also leukodystrophy and neurodegeneration with brain iron accumulation. CASE PRESENTATION A patient with a spastic gait since age seven was admitted to the paediatric metabolism department. She was born to consanguineous, healthy Turkish parents and had no family history of neurological disease. She had normal developmental milestones and was able to walk at 11 months. At age seven, she developed a progressive gait disorder with increased muscle tone in her lower limbs, bilateral ankle clonus and dysdiadochokinesis. She had frequent falls and deteriorating school performance. Despite physiotherapy, her spastic paraplegia was progressive. Whole exome sequencing (WES) identified a homozygous NM_024306.5:c.460C>T missense variant in the FA2H gene, of which her parents were heterozygous carriers. A brain MRI showed a slight reduction in the cerebellar volume with no iron deposits. CONCLUSIONS Pathogenic variants of the FA2H gene have been linked to neurodegeneration with iron accumulation in the brain, leukodystrophy and SPG35. When patients developed progressive gait deterioration since early childhood even if not exhibited hypointensity in the basal ganglia detected by neuroimaging, FA2H-related neurodegeneration with brain iron accumulation should be ruled out. FA2H/SPG35 disease is characterised by notable clinical and imaging variability, as well as phenotypic diversity.
Collapse
Affiliation(s)
- Ayşenur Engin Erdal
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Burak Yürek
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Oya Kıreker Köylü
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Ahmet Cevdet Ceylan
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Ayşegül Neşe Çıtak Kurt
- Department of Pediatric Neurology, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
3
|
Mo L, Tie X, Che F, Zhang L, Li B, Wang G, Yang Y. A Novel Homozygous Deletion Including Exon 1 of FA2H Gene Causes Spastic Paraplegia-35: Genetic and Lipidomics Analysis of the Patients. Pediatr Neurol 2024; 152:200-208. [PMID: 38306901 DOI: 10.1016/j.pediatrneurol.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
BACKGROUND Fatty acid 2-hydroxylase (FA2H) is encoded by the FA2H gene, with mutations therein leading to the neurodegenerative condition, spastic paraplegia-35 (SPG35). We aim to elucidate the genetic underpinnings of a nonconsanguineous Chinese family diagnosed with SPG35 by examining the clinical manifestations, scrutinizing genetic variants, and establishing the role of FA2H mutation in lipid metabolism. METHODS Using next-generation sequencing analysis to identify the pathogenic gene in this pedigree and family cosegregation verification. The use of lipidomics of patient pedigree peripheral blood mononuclear cells further substantiated alterations in lipid metabolism attributable to the FA2H exon 1 deletion. RESULTS The proband exhibited gait disturbance from age 5 years; he developed further clinical manifestations such as scissor gait and dystonia. His younger sister also presented with a spastic gait from the same age. We identified a homozygous deletion in the region of FA2H exon 1, spanning from chr16:74807867 to chr16: 74810391 in the patients. Lipidomic analysis revealed significant differences in 102 metabolites compared with healthy controls, with 62 metabolites increased and 40 metabolites decreased. We specifically zeroed in on 19 different sphingolipid metabolites, which comprised ceramides, ganglioside, etc., with only three of these sphingolipids previously reported. CONCLUSIONS This is the first study of lipid metabolism in the blood of patients with SPG35. The results broaden our understanding of the SPG35 gene spectrum, offering insights for future molecular mechanism research and laying groundwork for determining metabolic markers.
Collapse
Affiliation(s)
- Lidangzhi Mo
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi'an Children's Hospital, Xi'an, China
| | - Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Benchang Li
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Guoxia Wang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.
| |
Collapse
|
4
|
German A, Jukic J, Laner A, Arnold P, Socher E, Mennecke A, Schmidt MA, Winkler J, Abicht A, Regensburger M. Novel Homozygous FA2H Variant Causing the Full Spectrum of Fatty Acid Hydroxylase-Associated Neurodegeneration (SPG35). Genes (Basel) 2023; 15:14. [PMID: 38275596 PMCID: PMC10815826 DOI: 10.3390/genes15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic variants in FA2H and has been linked to a continuum of specific motor and non-motor neurological symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not been fully elucidated. Here, we present the prototypical workup of a novel FA2H variant, including clinical and in silico validation. An 18-year-old male patient presented with a history of childhood-onset progressive cognitive impairment, as well as progressive gait disturbance and lower extremity muscle cramps from the age of 15. Additional symptoms included exotropia, dystonia, and limb ataxia. Trio exome sequencing revealed a novel homozygous c.75C>G (p.Cys25Trp) missense variant in the FA2H gene, which was located in the cytochrome b5 heme-binding domain. Evolutionary conservation, prediction models, and structural protein modeling indicated a pathogenic loss of function. Brain imaging showed characteristic features, thus fulfilling the complete multisystem neurodegenerative phenotype of FAHN/SPG35. In summary, we here present a novel FA2H variant and provide prototypical clinical findings and structural analyses underpinning its pathogenicity.
Collapse
Affiliation(s)
- Alexander German
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jelena Jukic
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andreas Laner
- MGZ—Medizinisch Genetisches Zentrum, 80335 Munich, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Angelika Mennecke
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manuel A. Schmidt
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center for Rare Diseases (ZSEER), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Angela Abicht
- MGZ—Medizinisch Genetisches Zentrum, 80335 Munich, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center for Rare Diseases (ZSEER), University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Schlüter A, Vélez-Santamaría V, Verdura E, Rodríguez-Palmero A, Ruiz M, Fourcade S, Planas-Serra L, Launay N, Guilera C, Martínez JJ, Homedes-Pedret C, Albertí-Aguiló MA, Zulaika M, Martí I, Troncoso M, Tomás-Vila M, Bullich G, García-Pérez MA, Sobrido-Gómez MJ, López-Laso E, Fons C, Del Toro M, Macaya A, Beltran S, Gutiérrez-Solana LG, Pérez-Jurado LA, Aguilera-Albesa S, de Munain AL, Casasnovas C, Pujol A. ClinPrior: an algorithm for diagnosis and novel gene discovery by network-based prioritization. Genome Med 2023; 15:68. [PMID: 37679823 PMCID: PMC10486091 DOI: 10.1186/s13073-023-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Valentina Vélez-Santamaría
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Juan José Martínez
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Christian Homedes-Pedret
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
- Neurology Department, Hospital Universitari General de Catalunya, Barcelona, Spain
| | - M Antonia Albertí-Aguiló
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Miren Zulaika
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Itxaso Martí
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Mónica Troncoso
- Pediatric Neurology Department, Central Campus, Hospital Clínico San Borja Arriarán, Universidad de Chile, Santiago, Chile
| | - Miguel Tomás-Vila
- Neuropediatrics Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
| | - M Asunción García-Pérez
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - María-Jesús Sobrido-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Coruña Institute of Biomedical Research (INIBIC), A Coruña, Spain
- Hospital Clínico Universitario, A Coruña, Spain
| | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Reina Sofía University Hospital, Córdoba, Spain
- Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Sant Joan de Déu University Hospital, Member of the ERN EpiCARE, Barcelona, Spain
- Sant Joan de Déu Research Institute, (IRSJD), Barcelona, Spain
| | - Mireia Del Toro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Facultat de Biologia, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, 08028, Spain
| | - Luis G Gutiérrez-Solana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Children's University Hospital Niño Jesús, Madrid, Spain
| | - Luis A Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Genetics Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Pediatrics Department, Navarra Health Service, Pamplona, Spain
- Navarrabiomed, Biomedical Research Center, Pamplona, Spain
| | - Adolfo López de Munain
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Neurology Department, Donostia University Hospital, San Sebastian, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
7
|
Li Q, Zhu X, Yu C, Shang L, Li R, Wang X, Yang Y, Meng J, Kong X. Case Report: A Novel Homozygous Mutation in MYF5 Due to Paternal Uniparental Isodisomy of Chromosome 12 in a Case of External Ophthalmoplegia With Rib and Vertebral Anomalies. Front Genet 2022; 12:780363. [PMID: 35186005 PMCID: PMC8851471 DOI: 10.3389/fgene.2021.780363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
External ophthalmoplegia with rib and vertebral anomalies (EORVA) is characterized by congenital nonprogressive external ophthalmoplegia, ptosis, scoliosis, torticollis, vertebral, and rib anomalies, caused by homozygous mutations in the myogenic factor 5 gene (MYF5) located on chromosome 12q21.31. Uniparental disomy (UPD) is a rare inheritance of a pair of chromosomes originating from only one parent. This study describes a case of an 8-year-old boy with ptosis, scoliosis, and dysmorphic hypoplastic ribs with fusion anomalies. Trio-based exome sequencing (trio-ES) identified a novel homozygous mutation c.191delC (p.Ala64Valfs*33) in MYF5 in the proband, with the father being heterozygous and the mother wild-type, as verified by Sanger sequencing. UPD identified from trio-ES variant call format data suggested the possibility of paternal UPD of chromosome 12 (UPD12pat) in the proband, further confirmed to be a complete isodisomy type of UPD by genome-wide single nucleotide polymorphism array. MYF5 was significantly downregulated by 69.14% (**p < 0.01) in HeLa cells transfected with mutant MYF5 containing c.191delC compared to those transfected with the wild-type MYF5, resulting in a truncated protein with a size of ∼20 kDa. In conclusion, this study identified a novel homozygous mutation in MYF5, broadening the genetic spectrum of EORVA and further deepening the understanding of this rare disease.
Collapse
Affiliation(s)
- Qianqian Li
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Zhu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Shang
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedic Hospital, Zhengzhou, China
| | - Ranran Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- AiLife Diagnostics, Inc., Houston, TX, United States
| | - Yaping Yang
- AiLife Diagnostics, Inc., Houston, TX, United States
| | - Jingjing Meng
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Identification of novel mutations by targeted NGS in Moroccan families clinically diagnosed with a neuromuscular disorder. Clin Chim Acta 2022; 524:51-58. [PMID: 34852264 DOI: 10.1016/j.cca.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The identification of underlying genes of genetic conditions has expanded greatly in the past decades, which has broadened the field of genes responsible for inherited neuromuscular diseases. We aimed to investigate mutations associated with neuromuscular disorders phenotypes in 2 Moroccan families. MATERIAL AND METHODS Next-generation sequencing combined with Sanger sequencing could assist with understanding the hereditary variety and underlying disease mechanisms in these disorders. RESULTS Two novel homozygous mutations were described in this study. The SIL1 mutation is the first identified in the Moroccan population, the mutation was identified as the main cause of Marinesco-Sjogren syndrome in one patient. While the second mutation identified in the fatty acid 2-hydroxylase gene (FA2H) was associated with the Spastic paraplegia 35 in another patient, both transmitted in an autosomal recessive pattern. DISCUSSION AND CONCLUSIONS These conditions are extremely rare in the North African population and may be underdiagnosed due to overlapping clinical characteristics and heterogeneity of these diseases. We have reported in this study mutations associated with the diseases found in the patients. In addition, we have narrowed the phenotypic spectrum, as well as the diagnostic orientation of patients with neuromuscular disorders, who might have very similar symptoms to other disease groups.
Collapse
|
9
|
Two novel biallelic variants in
TECPR2
and
FA2H
genes causing complicated hereditary spastic paraplegia in Iranian families from Lur ethnicity: Case series. Clin Case Rep 2021. [DOI: 10.1002/ccr3.4293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Dosi C, Pasquariello R, Ticci C, Astrea G, Trovato R, Rubegni A, Tessa A, Cioni G, Santorelli FM, Battini R. Neuroimaging patterns in paediatric onset hereditary spastic paraplegias. J Neurol Sci 2021; 425:117441. [PMID: 33866115 DOI: 10.1016/j.jns.2021.117441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs with a notable phenotypic variation and an autosomal recessive (AR), autosomal dominant (AD), and X-linked inheritance pattern. The recent clinical use of next generation sequencing methods has facilitated the diagnostic approach to HSPs, but the diagnosis remains quite challenging considering its wide clinical and genetic heterogeneity. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool in helping to exclude mimicking disorders and to guide genetic testing. The aim of this study is to investigate the presence of possible patterns of morphostructural MRI findings that may provide relevant clues for a specific genetic HSP subtype. In our cohort, for example, white matter abnormalities were the most common finding followed by the thinning of the corpus callosum, which, interestingly, presented different thinning characteristics depending on the HSP subtype.
Collapse
Affiliation(s)
- Claudia Dosi
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | | | - Giovanni Cioni
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy
| | | | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy.
| |
Collapse
|
11
|
Carrasco Salas P, Martínez Fernández E, Méndez Del Barrio C, Serrano Mira A, Guerrero Moreno N, Royo I, Delgado M, Oropesa JM, Vázquez Rico I. Clinical and molecular characterization of hereditary spastic paraplegia in a spanish southern region. Int J Neurosci 2020; 132:767-777. [PMID: 33059505 DOI: 10.1080/00207454.2020.1838514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spastic paraplegia (SPG) is a syndrome characterised by lower limb spasticity, occurring alone or in association with other neurological manifestations. Despite of the new molecular technologies, many patients remain yet undiagnosed. The purpose of this study was to describe the clinical presentation and molecular characteristics of a cohort of 27 patients from 18 different families with SPG in the south of Spain. We used a targeted next-generation sequencing (NGS) approach to study a proband from each family. Variants in SPG11 gene were the most common cause of SPG in our area. We made a genetic diagnosis in 52% of cases, identified 3 novel variants and reclassified one uncertain variant in SPG11 gene as pathogenic variant. We identified a patient with two truncanting mutation in SPG11 gene and late onset disease and report another missense mutation outside of motor domain of KIF1A gene in a family with pure SPG. Our study contributes to enhance the scientific knowledge of SPG. It is important to note the large group of cases (48%) that were not genetically diagnosed in our cohort. Therefore NGS approach is an efficient diagnostic tool, but it still large the number of non-diagnosed subjects, suggesting further genetic heterogeneity.
Collapse
Affiliation(s)
- P Carrasco Salas
- Department of Human Genetics, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | | | | | - A Serrano Mira
- Department of Human Genetics, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - N Guerrero Moreno
- Department of Pediatric Neurology, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - I Royo
- Department of Molecular Genetics, Reference Laboratory (Barcelona, Spain)
| | - M Delgado
- Department of Pediatric Neurology, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - J M Oropesa
- Department of Neurology, Juan Ramon Jimenez Hospital (Huelva, Spain)
| | - I Vázquez Rico
- Department of Human Genetics, Juan Ramon Jimenez Hospital (Huelva, Spain)
| |
Collapse
|
12
|
Lei YL, Zhen L, Xu LL, Yang YD, Li DZ. Foetal phenotype of ALG1-CDG caused by paternal uniparental disomy 16. J OBSTET GYNAECOL 2020; 41:828-830. [PMID: 32811240 DOI: 10.1080/01443615.2020.1786031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ya-Li Lei
- Clinical Laboratory, Dongguan Kanghua Hospital, Dongguan, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li-Li Xu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yan-Dong Yang
- Department of Ultrasound, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
13
|
Rattay TW, Lindig T, Baets J, Smets K, Deconinck T, Söhn AS, Hörtnagel K, Eckstein KN, Wiethoff S, Reichbauer J, Döbler-Neumann M, Krägeloh-Mann I, Auer-Grumbach M, Plecko B, Münchau A, Wilken B, Janauschek M, Giese AK, De Bleecker JL, Ortibus E, Debyser M, Lopez de Munain A, Pujol A, Bassi MT, D'Angelo MG, De Jonghe P, Züchner S, Bauer P, Schöls L, Schüle R. FAHN/SPG35: a narrow phenotypic spectrum across disease classifications. Brain 2020; 142:1561-1572. [PMID: 31135052 DOI: 10.1093/brain/awz102] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/15/2019] [Accepted: 02/16/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.
Collapse
Affiliation(s)
- Tim W Rattay
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Katrien Smets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Tine Deconinck
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Anne S Söhn
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany
| | | | - Kathrin N Eckstein
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | - Sarah Wiethoff
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jennifer Reichbauer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Marion Döbler-Neumann
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | | | - Michaela Auer-Grumbach
- Department of Orthopaedics and Trauma-Surgery, Medical University Vienna, Vienna, Austria
| | - Barbara Plecko
- Division of Child Neurology, University Childrens Hospital Zurich, Zurich, Switzerland
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Germany
| | - Bernd Wilken
- Department of Neuropediatrics, Klinikum Kassel, Germany
| | - Marc Janauschek
- Department for Social Pediatrics, Kinderhospital Osnabrück, Germany
| | - Anne-Katrin Giese
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Martine Debyser
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Adolfo Lopez de Munain
- CIBERNED, Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain.,Neuroscience Area, Institute Biodonostia, and Department of Neurosciences, University of Basque Country EHU-UPV, San Sebastián, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomedica de Bellvitge IDIBELL, Hospital Duran i Reynals, Barcelona, 08908, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Institute Carlos III, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Maria Grazia D'Angelo
- Scientific Institute IRCCS E. Medea, Neuromuscular Unit, 23842 Bosisio Parini , Lecco, Italy
| | - Peter De Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, FL33136 Miami, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, FL33136 Miami, USA
| | - Peter Bauer
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
14
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2019; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
15
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Wang H, Luo C, Liu Y, Li S, Jiang N, Zhang G, Xie J, Zhong M. UPD16 itself is not a cause of intrauterine growth restriction. Fetal Pediatr Pathol 2018; 37:452-464. [PMID: 30468402 DOI: 10.1080/15513815.2018.1538275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The clinical relevance of uniparental disomy (UPD16) for chromosome 16 is currently unclear. METHODS AND RESULT We performed chromosome microarray analysis on two fetus and their placentas, fluorescence in situ hybridization (FISH) to exclude the hidden chr16 trisomy mosaicism in the fetuses, and clinical whole-exome sequencing to assess for homozygosity mutations of autosomal-recessive diseases. RESULTS Microarray analysis of two fetuses had UPD16. The membranous placenta of the case 1 had confined placental mosaicism (CPM) for trisomy 16. Clinical whole-exome sequencing on chromosome 16 revealed three potentially pathogenic single nucleotide polymorphisms (SNPs). Gap-polymerase chain reaction (PCR) and MLPA for a-thal deletions demonstrated that case 2 was homozygous for the -SEA deletion. CONCLUSIONS The poor outcome in these fetuses may be attributed to other factors, the membranous placenta and the -SEA deletion, respectively. Fetal UPD16 itself might be not correlated with intrauterine growth restriction (IUGR) and thus is not the basic cause of IUGR.
Collapse
Affiliation(s)
- Hui Wang
- a Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China.,b Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital , henzhen, Guangdong Province , China
| | - Caiqun Luo
- b Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital , henzhen, Guangdong Province , China
| | - Yang Liu
- b Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital , henzhen, Guangdong Province , China
| | - Shengli Li
- c Ultrasound Department, Shenzhen Maternity and Child Healthcare Hospital , Shenzhen, Guangdong Province , China
| | - Niping Jiang
- b Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital , henzhen, Guangdong Province , China
| | - Guanglin Zhang
- d AmCare Genomics Laboratory, International BioIsland , Guangzhou, Guangdong , China
| | - Jiansheng Xie
- b Prenatal Diagnosis Center, Shenzhen Maternity and Child Healthcare Hospital , henzhen, Guangdong Province , China
| | - Mei Zhong
- a Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong , China
| |
Collapse
|
17
|
Bis-Brewer DM, Züchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 2018; 9:958. [PMID: 30534106 PMCID: PMC6275194 DOI: 10.3389/fneur.2018.00958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over 50 Mendelian genes. Recent applications of next-generation sequencing, large scale data analysis, and data sharing/matchmaking, have discovered a quickly expanding set of additional HSP genes. Since most recently discovered HSP genes are rare causes of the disease, there is a growing concern of a persisting diagnostic gap, estimated at 30-40%, and even higher for sporadic cases. This missing heritability may not be fully closed by classic Mendelian mutations in protein coding genes. Here we show strategies and published examples of broadening areas of attention for Mendelian and non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately lead to more precise and comprehensive genetic diagnoses, which is the starting point for emerging, highly specific gene therapies.
Collapse
Affiliation(s)
- Dana M. Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
Autosomal recessive hereditary spastic paraplegia type SPG35 due to a novel variant in the FA2H gene in a Czech patient. J Clin Neurosci 2018; 59:337-339. [PMID: 30446360 DOI: 10.1016/j.jocn.2018.10.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/23/2018] [Accepted: 10/24/2018] [Indexed: 11/23/2022]
Abstract
Biallelic pathogenic variants in FA2H gene have been repeatedly described as a cause of hereditary spastic paraplegia (HSP) type35 (SPG35). Targeted massive parallel sequencing (MPS) of the HSP genes panel revealed a novel homozygous variant c.130C > T (p.P44S) in the FA2H gene in the 30-year-old patient presenting with spastic paraplegia. The patient originated form the Czech minority in Romania. The patient manifests typical clinical signs for SPG35 (youth onset gait impairment, progressive spastic paraparesis on lower limbs, dysarthria, white matter changes in MRI).
Collapse
|
19
|
Incecik F, Besen S, Bozdogan ST. Hereditary Spastic Paraplegia Type 35 with a Novel Mutation in Fatty Acid 2-Hydroxylase Gene and Literature Review of the Clinical Features. Ann Indian Acad Neurol 2018; 21:335-339. [PMID: 30532373 PMCID: PMC6238570 DOI: 10.4103/aian.aian_106_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Faruk Incecik
- Department of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Seyda Besen
- Department of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Sevcan Tug Bozdogan
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
20
|
Mari F, Berti B, Romano A, Baldacci J, Rizzi R, Grazia Alessandrì M, Tessa A, Procopio E, Rubegni A, Lourenḉo CM, Simonati A, Guerrini R, Santorelli FM. Clinical and neuroimaging features of autosomal recessive spastic paraplegia 35 (SPG35): case reports, new mutations, and brief literature review. Neurogenetics 2018; 19:123-130. [DOI: 10.1007/s10048-018-0538-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
|
21
|
Axpe IR, Blanco Martín E, Garcia Ribes A, Bermejo-Ramirez R, Arroyo Andújar D. Sensory-motor neuropathy in a case with SPG35: Expanding the phenotype. J Neurol Sci 2017; 380:98-100. [PMID: 28870598 DOI: 10.1016/j.jns.2017.05.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/05/2017] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Idoia Rouco Axpe
- Ataxias and Spastic Paraplegias Unit, Department of Neurology, Cruces University Hospital, BioCruces Health Research Institute, Barakaldo-Bizkaia, Spain; Department of Neurology, Cruces University Hospital, BioCruces Health Research Institute, Barakaldo-Bizkaia, Spain.
| | - Elisa Blanco Martín
- Department of Neurology, Cruces University Hospital, BioCruces Health Research Institute, Barakaldo-Bizkaia, Spain
| | - Ainhoa Garcia Ribes
- Department of Pediatric Neurology, Pediatric Service, Cruces University Hospital, Barakaldo-Bizkaia, Spain
| | | | | |
Collapse
|
22
|
Bis DM, Schüle R, Reichbauer J, Synofzik M, Rattay TW, Soehn A, de Jonghe P, Schöls L, Züchner S. Uniparental disomy determined by whole-exome sequencing in a spectrum of rare motoneuron diseases and ataxias. Mol Genet Genomic Med 2017; 5:280-286. [PMID: 28546998 PMCID: PMC5441426 DOI: 10.1002/mgg3.285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
Background The genetic causes of many rare inherited motoneuron diseases and ataxias (MND and ATX) remain largely unresolved, especially for sporadic patients, despite tremendous advances in gene discovery. Whole exome data is often available for patients, but it is rarely evaluated for unusual inheritance patterns, such as uniparental disomy (UPD). UPD is the inheritance of two copies of a chromosomal region from one parent, which may generate homozygosity for a deleterious recessive variant from only one carrier‐parent. Detection of UPD‐caused homozygous disease‐causing variants is detrimental to accurate genetic counseling. Whole‐exome sequencing can allow for the detection of such events. Methods We systematically studied the exomes of a phenotypically heterogeneous cohort of unresolved cases (n = 96 families) to reveal UPD events hindering a diagnosis and to evaluate the prevalence of UPD in recessive MND and ATX. Results One hereditary spastic paraplegia case harbored homozygous regions spanning 80% of chromosome 16. A homozygous disease‐causing mutation in the SPG35 disease gene was then identified within this region. Conclusion This study demonstrates the ability to detect UPD in exome data of index patients. Our results suggest that UPD is a rare mechanism for recessive MND and ATX.
Collapse
Affiliation(s)
- Dana M Bis
- John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFlorida.,Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of MiamiMiamiFlorida
| | - Rebecca Schüle
- John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFlorida.,Center for Neurology and Hertie Institute for Clinical Brain ResearchEberhard-Karls-UniversityTübingenGermany.,German Center of Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Jennifer Reichbauer
- Center for Neurology and Hertie Institute for Clinical Brain ResearchEberhard-Karls-UniversityTübingenGermany
| | - Matthis Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain ResearchEberhard-Karls-UniversityTübingenGermany.,German Center of Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Tim W Rattay
- Center for Neurology and Hertie Institute for Clinical Brain ResearchEberhard-Karls-UniversityTübingenGermany.,German Center of Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Anne Soehn
- Department of Medical GeneticsInstitute of Human GeneticsUniversity of TübingenTübingenGermany
| | - Peter de Jonghe
- Neurogenetics GroupDepartment of Molecular GeneticsVIBUniversity of AntwerpCampus Drie Eiken, Universiteitsplein 1Antwerp2610Belgium.,Department of NeurologyAntwerp University HospitalAntwerpBelgium.,Laboratories of Neurogenetics and NeuropathologyInstitute Born-BungeUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain ResearchEberhard-Karls-UniversityTübingenGermany.,German Center of Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Stephan Züchner
- John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFlorida.,Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of MiamiMiamiFlorida
| |
Collapse
|
23
|
Alsina Casanova M, Monteagudo-Sánchez A, Rodiguez Guerineau L, Court F, Gazquez Serrano I, Martorell L, Rovira Zurriaga C, Moore GE, Ishida M, Castañon M, Moliner Calderon E, Monk D, Moreno Hernando J. Maternal mutations of FOXF1 cause alveolar capillary dysplasia despite not being imprinted. Hum Mutat 2017; 38:615-620. [PMID: 28256047 DOI: 10.1002/humu.23213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 11/06/2022]
Abstract
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long-range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full-term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal-inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent-of-origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.
Collapse
Affiliation(s)
- Miguel Alsina Casanova
- Department of Neonatology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Hospital Duran & Reynals, Barcelona, Spain
| | | | - Franck Court
- Genetics, Reproduction and Development laboratories (GreD), CNRS, UMR6247, Clermont Université, INSERM U931, Clermont-Ferrand, France
| | - Isabel Gazquez Serrano
- Department of Neonatology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Loreto Martorell
- Laboratory of Molecular Genètics, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Carlota Rovira Zurriaga
- Department of Pathology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Gudrun E Moore
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, UK
| | - Miho Ishida
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, UK
| | - Montserrat Castañon
- Department of Surgery, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Hospital Duran & Reynals, Barcelona, Spain
| | - Julio Moreno Hernando
- Department of Neonatology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Synofzik M, Schüle R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord 2017; 32:332-345. [PMID: 28195350 PMCID: PMC6287914 DOI: 10.1002/mds.26944] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/07/2017] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease classifications. This classification system still largely frames clinical thinking and genetic workup in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased studies have revealed the limitations of this classification system. Various genes (eg, SPG7, SYNE1, PNPLA6) traditionally rooted in either the ataxia or hereditary spastic paraplegia classification system have now been shown to cause ataxia on the one end of the disease continuum and hereditary spastic paraplegia on the other. Other genes such as GBA2 and KIF1C were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene. The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a rethinking of the traditional classification system. We propose to replace this divisive diagnosis-driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased approach of modular phenotyping. This approach is also open to expansion of the phenotype beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and underlying genes, but also common cellular pathways and disease mechanisms. This suggests a shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological processes. It might be this mechanistic overlap that drives their clinical overlap. A mechanistically inspired classification system will help to pave the way for mechanism-based strategies for drug development. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|