1
|
Zhan A, Zhong K, Zhang K. Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2025; 756:151582. [PMID: 40056503 DOI: 10.1016/j.bbrc.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS. While most studies have focused on cytoplasmic protein homeostasis, neurons adaptively reduce aggregates across subcellular compartments during stress through previously uncharacterized mechanisms. Here, we summarize novel compartment-specific proteostatic mechanisms: (1) the ERAD/RESET pathways, (2) HSPs-mediated nuclear sequestration, (3) mitochondrial aggregate import (MAGIC), (4) neurite-localized UPS/autophagosome and NMP, and (5) exopher-mediated extracellular disposal. These mechanisms collectively ensure cellular stress adaptation and provide novel therapeutic targets for ALS treatment.
Collapse
Affiliation(s)
- Aisheng Zhan
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Keke Zhong
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
2
|
Filippi M, Ghirelli A, Spinelli EG, Agosta F. A comprehensive update on neuroimaging endpoints in amyotrophic lateral sclerosis. Expert Rev Neurother 2025; 25:397-413. [PMID: 39985812 DOI: 10.1080/14737175.2025.2470324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION There are currently few treatments approved for amyotrophic lateral sclerosis (ALS). Additionally, there remains a significant unmet need for reliable, standardized biomarkers to assess endpoints in clinical trials. Magnetic resonance imaging (MRI)- and positron emission tomography (PET)-derived metrics could help in patient selection and stratification, shortening trial duration and reducing costs. AREAS COVERED This review focuses on the potential use of neuroimaging endpoints in the context of ALS therapeutic trials, providing insights on structural and functional neuroimaging, plexus and muscle alterations, glial involvement and neuroinflammation, envisioning how these surrogates of disease progression could be implemented in clinical trials. A PubMed search covering the past 15 years was performed. EXPERT OPINION Neuroimaging is essential in understanding ALS pathophysiology, aiding in disease progression tracking and evaluating therapeutic interventions. High costs, limited accessibility, lack of standardization, and patient tolerability limit their use in routine ALS care. Addressing these obstacles is essential for fully harnessing neuroimaging potential in improving diagnostics and treatment in ALS.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
De Marchi F, Spinelli EG, Bendotti C. Neuroglia in neurodegeneration: Amyotrophic lateral sclerosis and frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:45-67. [PMID: 40148057 DOI: 10.1016/b978-0-443-19102-2.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases sharing significant pathologic and genetic overlap, leading to consider these diseases as a continuum in the spectrum of their pathologic features. Although FTD compromises only specific brain districts, while ALS involves both the nervous system and the skeletal muscles, several neurocentric mechanisms are in common between ALS and FTD. Also, recent research has revealed the significant involvement of nonneuronal cells, particularly glial cells such as astrocytes, oligodendrocytes, microglia, and peripheral immune cells, in disease pathology. This chapter aims to provide an extensive overview of the current understanding of the role of glia in the onset and advancement of ALS and FTD, highlighting the recent implications in terms of prognosis and future treatment options.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, Department of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, ALS Center, Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy.
| |
Collapse
|
4
|
Feng F, Feng G, Liu J, Hao W, Huang W, Bi X, Li M, Wang H, Yang F, He Z, Bai J, Wang H, Ma G, Xu B, Shu N, Huang X. Different patterns of structural network impairments in two amyotrophic lateral sclerosis subtypes driven by 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance hybrid imaging. Brain Commun 2024; 6:fcae222. [PMID: 39229489 PMCID: PMC11368155 DOI: 10.1093/braincomms/fcae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/03/2024] [Accepted: 06/29/2024] [Indexed: 09/05/2024] Open
Abstract
The structural network damages in amyotrophic lateral sclerosis patients are evident but contradictory due to the high heterogeneity of the disease. We hypothesized that patterns of structural network impairments would be different in amyotrophic lateral sclerosis subtypes by a data-driven method using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance hybrid imaging. The data of positron emission tomography, structural MRI and diffusion tensor imaging in fifty patients with amyotrophic lateral sclerosis and 23 healthy controls were collected by a 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance hybrid. Two amyotrophic lateral sclerosis subtypes were identified as the optimal cluster based on grey matter volume and standardized uptake value ratio. Network metrics at the global, local and connection levels were compared to explore the impaired patterns of structural networks in the identified subtypes. Compared with healthy controls, the two amyotrophic lateral sclerosis subtypes displayed a pattern of a locally impaired structural network centralized in the sensorimotor network and a pattern of an extensively impaired structural network in the whole brain. When comparing the two amyotrophic lateral sclerosis subgroups by a support vector machine classifier based on the decreases in nodal efficiency of structural network, the individualized network scores were obtained in every amyotrophic lateral sclerosis patient and demonstrated a positive correlation with disease severity. We clustered two amyotrophic lateral sclerosis subtypes by a data-driven method, which encompassed different patterns of structural network impairments. Our results imply that amyotrophic lateral sclerosis may possess the intrinsic damaged pattern of white matter network and thus provide a latent direction for stratification in clinical research.
Collapse
Affiliation(s)
- Feng Feng
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Jiajin Liu
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weijun Hao
- Health Service Department of the Guard Bureau, The Joint Staff Department, Beijing 100017, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xiao Bi
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mao Li
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongfen Wang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Fei Yang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhengqing He
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiongming Bai
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoran Wang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Baixuan Xu
- Department of Nuclear Medicine, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xusheng Huang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Fan H, Zhang M, Wen J, Wang S, Yuan M, Sun H, Shu L, Yang X, Pu Y, Cai Z. Microglia in brain aging: An overview of recent basic science and clinical research developments. J Biomed Res 2024; 38:122-136. [PMID: 38403286 PMCID: PMC11001587 DOI: 10.7555/jbr.37.20220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/25/2022] [Accepted: 01/12/2023] [Indexed: 02/27/2024] Open
Abstract
Aging is characterized by progressive degeneration of tissues and organs, and it is positively associated with an increased mortality rate. The brain, as one of the most significantly affected organs, experiences age-related changes, including abnormal neuronal activity, dysfunctional calcium homeostasis, dysregulated mitochondrial function, and increased levels of reactive oxygen species. These changes collectively contribute to cognitive deterioration. Aging is also a key risk factor for neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. For many years, neurodegenerative disease investigations have primarily focused on neurons, with less attention given to microglial cells. However, recently, microglial homeostasis has emerged as an important mediator in neurological disease pathogenesis. Here, we provide an overview of brain aging from the perspective of the microglia. In doing so, we present the current knowledge on the correlation between brain aging and the microglia, summarize recent progress of investigations about the microglia in normal aging, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and then discuss the correlation between the senescent microglia and the brain, which will culminate with a presentation of the molecular complexity involved in the microglia in brain aging with suggestions for healthy aging.
Collapse
Affiliation(s)
- Haixia Fan
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Minheng Zhang
- Department of Gerontology, the First People's Hospital of Jinzhong, Jinzhong, Shanxi 030009, China
| | - Jie Wen
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Shengyuan Wang
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Houchao Sun
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Liu Shu
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Xu Yang
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing 400042, China
- Department of Neurology, Chongqing General Hospital, Chongqing 400013, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing 400013, China
| |
Collapse
|
7
|
Brusaferri L, Alshelh Z, Schnieders JH, Sandström A, Mohammadian M, Morrissey EJ, Kim M, Chane CA, Grmek GC, Murphy JP, Bialobrzewski J, DiPietro A, Klinke J, Zhang Y, Torrado-Carvajal A, Mercaldo N, Akeju O, Wu O, Rosen BR, Napadow V, Hadjikhani N, Loggia ML. Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset. Brain Behav Immun 2024; 116:259-266. [PMID: 38081435 PMCID: PMC10872439 DOI: 10.1016/j.bbi.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023] Open
Abstract
The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.
Collapse
Affiliation(s)
- Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jack H Schnieders
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelica Sandström
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin J Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney A Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace C Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer P Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Bialobrzewski
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa DiPietro
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Klinke
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ona Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Ai Y, Li F, Hou Y, Li X, Li W, Qin K, Suo X, Lei D, Shang H, Gong Q. Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis. Cereb Cortex 2024; 34:bhad426. [PMID: 38061694 DOI: 10.1093/cercor/bhad426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Collapse
Affiliation(s)
- Yuan Ai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| |
Collapse
|
9
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
10
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Barry RL, Torrado-Carvajal A, Kirsch JE, Arabasz GE, Albrecht DS, Alshelh Z, Pijanowski O, Lewis AJ, Keegan M, Reynolds B, Knight PC, Morrissey EJ, Loggia ML, Atassi N, Hooker JM, Babu S. Selective atrophy of the cervical enlargement in whole spinal cord MRI of amyotrophic lateral sclerosis. Neuroimage Clin 2022; 36:103199. [PMID: 36137496 PMCID: PMC9668597 DOI: 10.1016/j.nicl.2022.103199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disorder affecting motor neurons in the spinal cord and brain. Studies have reported on atrophy within segments of the cervical cord, but we are not aware of previous investigations of the whole spinal cord. Herein we present our findings from a 3T MRI study involving 32 subjects (15 ALS participants and 17 healthy controls) characterizing cross-sectional area along the entire cord. We report atrophy of the cervical enlargement in ALS participants, but no evidence of atrophy of the thoracolumbar enlargement. These results suggest that MR-based analyses of the cervical cord may be sufficient for in vivo investigations of spinal cord atrophy in ALS, and that atrophy of the cervical enlargement (C4-C7) is a potential imaging marker for quantifying lower motor neuron degradation.
Collapse
Affiliation(s)
- Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Harvard Medical School, Boston, MA, USA,Harvard–Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA,Corresponding authors.
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - John E. Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Grae E. Arabasz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daniel S. Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zeynab Alshelh
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Olivia Pijanowski
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Austin J. Lewis
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Mackenzie Keegan
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Beverly Reynolds
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Paulina C. Knight
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Erin J. Morrissey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Harvard Medical School, Boston, MA, USA,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nazem Atassi
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Sanofi Genzyme, Cambridge, MA, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Suma Babu
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Corresponding authors.
| |
Collapse
|
12
|
Oestreich LKL, O'Sullivan MJ. Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:638-658. [PMID: 35051668 DOI: 10.1016/j.bpsc.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Accumulating evidence suggests that inflammation is not limited to archetypal inflammatory diseases such as multiple sclerosis, but instead represents an intrinsic feature of many psychiatric and neurological disorders not typically classified as neuroinflammatory. A growing body of research suggests that neuroinflammation can be observed in early and prodromal stages of these disorders and, under certain circumstances, may lead to tissue damage. Traditional methods to assess neuroinflammation include serum or cerebrospinal fluid markers and positron emission tomography. These methods require invasive procedures or radiation exposure and lack the exquisite spatial resolution of magnetic resonance imaging (MRI). There is, therefore, an increasing interest in noninvasive neuroimaging tools to evaluate neuroinflammation reliably and with high specificity. While MRI does not provide information at a cellular level, it facilitates the characterization of several biophysical tissue properties that are closely linked to neuroinflammatory processes. The purpose of this review is to evaluate the potential of MRI as a noninvasive, accessible, and cost-effective technology to image neuroinflammation across neurological and psychiatric disorders. We provide an overview of current and developing MRI methods used to study different aspects of neuroinflammation and weigh their strengths and shortcomings. Novel MRI contrast agents are increasingly able to target inflammatory processes directly, therefore offering a high degree of specificity, particularly if used in conjunction with multitissue, biophysical diffusion MRI compartment models. The capability of these methods to characterize several aspects of the neuroinflammatory milieu will likely push MRI to the forefront of neuroimaging modalities used to characterize neuroinflammation transdiagnostically.
Collapse
Affiliation(s)
- Lena K L Oestreich
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J O'Sullivan
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Xu J, Xie H, Liu L, Shen Z, Yang L, Wei W, Guo X, Liang F, Yu S, Yang J. Brain Mechanism of Acupuncture Treatment of Chronic Pain: An Individual-Level Positron Emission Tomography Study. Front Neurol 2022; 13:884770. [PMID: 35585847 PMCID: PMC9108276 DOI: 10.3389/fneur.2022.884770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAcupuncture has been shown to be effective in the treatment of chronic pain. However, their neural mechanism underlying the effective acupuncture response to chronic pain is still unclear. We investigated whether metabolic patterns in the pain matrix network might predict acupuncture therapy responses in patients with primary dysmenorrhea (PDM) using a machine-learning-based multivariate pattern analysis (MVPA) on positron emission tomography data (PET).MethodsForty-two patients with PDM were selected and randomized into two groups: real acupuncture and sham acupuncture (three menstrual cycles). Brain metabolic data from the three special brain networks (the sensorimotor network (SMN), default mode network (DMN), and salience network (SN)) were extracted at the individual level by using PETSurfer in fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG-PET) data. MVPA analysis based on metabolic network features was employed to predict the pain relief after treatment in the pooled group and real acupuncture treatment, separately.ResultsPaired t-tests revealed significant alterations in pain intensity after real but not sham acupuncture treatment. Traditional mass-univariate correlations between brain metabolic and alterations in pain intensity were not significant. The MVPA results showed that the brain metabolic pattern in the DMN and SMN did predict the pain relief in the pooled group of patients with PDM (R2 = 0.25, p = 0.005). In addition, the metabolic pattern in the DMN could predict the pain relief after treatment in the real acupuncture treatment group (R2 = 0.40, p = 0.01).ConclusionThis study indicates that the individual-level metabolic patterns in DMN is associated with real acupuncture treatment response in chronic pain. The present findings advanced the knowledge of the brain mechanism of the acupuncture treatment in chronic pain.
Collapse
Affiliation(s)
- Jin Xu
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjun Xie
- Department of Nuclear Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Liying Liu
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Shen
- Department of Traditional Chinese and Western Medicine, North Sichuan Medical College, Nanchong, China
| | - Lu Yang
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Guo
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Siyi Yu
| | - Jie Yang
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jie Yang
| |
Collapse
|
14
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
Reyes-Leiva D, Dols-Icardo O, Sirisi S, Cortés-Vicente E, Turon-Sans J, de Luna N, Blesa R, Belbin O, Montal V, Alcolea D, Fortea J, Lleó A, Rojas-García R, Illán-Gala I. Pathophysiological Underpinnings of Extra-Motor Neurodegeneration in Amyotrophic Lateral Sclerosis: New Insights From Biomarker Studies. Front Neurol 2022; 12:750543. [PMID: 35115992 PMCID: PMC8804092 DOI: 10.3389/fneur.2021.750543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) lie at opposing ends of a clinical, genetic, and neuropathological continuum. In the last decade, it has become clear that cognitive and behavioral changes in patients with ALS are more frequent than previously recognized. Significantly, these non-motor features can impact the diagnosis, prognosis, and management of ALS. Partially overlapping neuropathological staging systems have been proposed to describe the distribution of TAR DNA-binding protein 43 (TDP-43) aggregates outside the corticospinal tract. However, the relationship between TDP-43 inclusions and neurodegeneration is not absolute and other pathophysiological processes, such as neuroinflammation (with a prominent role of microglia), cortical hyperexcitability, and synaptic dysfunction also play a central role in ALS pathophysiology. In the last decade, imaging and biofluid biomarker studies have revealed important insights into the pathophysiological underpinnings of extra-motor neurodegeneration in the ALS-FTLD continuum. In this review, we first summarize the clinical and pathophysiological correlates of extra-motor neurodegeneration in ALS. Next, we discuss the diagnostic and prognostic value of biomarkers in ALS and their potential to characterize extra-motor neurodegeneration. Finally, we debate about how biomarkers could improve the diagnosis and classification of ALS. Emerging imaging biomarkers of extra-motor neurodegeneration that enable the monitoring of disease progression are particularly promising. In addition, a growing arsenal of biofluid biomarkers linked to neurodegeneration and neuroinflammation are improving the diagnostic accuracy and identification of patients with a faster progression rate. The development and validation of biomarkers that detect the pathological aggregates of TDP-43 in vivo are notably expected to further elucidate the pathophysiological underpinnings of extra-motor neurodegeneration in ALS. Novel biomarkers tracking the different aspects of ALS pathophysiology are paving the way to precision medicine approaches in the ALS-FTLD continuum. These are essential steps to improve the diagnosis and staging of ALS and the design of clinical trials testing novel disease-modifying treatments.
Collapse
Affiliation(s)
- David Reyes-Leiva
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sonia Sirisi
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Janina Turon-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Noemi de Luna
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
- *Correspondence: Ignacio Illán-Gala
| |
Collapse
|
16
|
Donatelli G, Costagli M, Cecchi P, Migaleddu G, Bianchi F, Frumento P, Siciliano G, Cosottini M. Motor cortical patterns of upper motor neuron pathology in amyotrophic lateral sclerosis: A 3 T MRI study with iron-sensitive sequences. NEUROIMAGE: CLINICAL 2022; 35:103138. [PMID: 36002961 PMCID: PMC9421531 DOI: 10.1016/j.nicl.2022.103138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
M1 regions associated with the body site of onset are frequently affected at MRI. The simultaneous involvement of both homologous M1 regions is frequent. The T2* hypointensity in non-contiguous M1 regions seems rare.
Background Patterns of initiation and propagation of disease in Amyotrophic Lateral Sclerosis (ALS) are still partly unknown. Single or multiple foci of neurodegeneration followed by disease diffusion to contiguous or connected regions have been proposed as mechanisms underlying symptom occurrence. Here, we investigated cortical patterns of upper motor neuron (UMN) pathology in ALS using iron-sensitive MR imaging. Methods Signal intensity and magnetic susceptibility of the primary motor cortex (M1), which are associated with clinical UMN burden and neuroinflammation, were assessed in 78 ALS patients using respectively T2*-weighted images and Quantitative Susceptibility Maps. The signal intensity of the whole M1 and each of its functional regions was rated as normal or reduced, and the magnetic susceptibility of each M1 region was measured. Results The highest frequencies of T2* hypointensity were found in M1 regions associated with the body sites of symptom onset. Homologous M1 regions were both hypointense in 80–93 % of patients with cortical abnormalities, and magnetic susceptibility values measured in homologous M1 regions were strongly correlated with each other (ρ = 0.88; p < 0.0001). In some cases, the T2* hypointensity was detectable in two non-contiguous M1 regions but spared the cortex in between. Conclusions M1 regions associated with the body site of onset are frequently affected at imaging. The simultaneous involvement of both homologous M1 regions is frequent, followed by that of adjacent regions; the affection of non-contiguous regions, instead, seems rare. This type of cortical involvement suggests the interhemispheric connections as one of the preferential paths for the UMN pathology diffusion in ALS.
Collapse
|
17
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Alshelh Z, Brusaferri L, Saha A, Morrissey E, Knight P, Kim M, Zhang Y, Hooker JM, Albrecht D, Torrado-Carvajal A, Placzek MS, Akeju O, Price J, Edwards RR, Lee J, Sclocco R, Catana C, Napadow V, Loggia ML. Neuro-immune signatures in chronic low back pain subtypes. Brain 2021; 145:1098-1110. [PMID: 34528069 DOI: 10.1093/brain/awab336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/11/2021] [Accepted: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine, and Gulf War Illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18 kDa translocator protein, which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple etiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct "neuroinflammatory signatures". To further explore this hypothesis, we tested whether neuroinflammatory signal can characterize putative etiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. "radicular" vs. "axial" back pain). Fifty-four chronic low back pain patients, twenty-six with axial back pain (43.7 ± 16.6 y.o. [mean±SD]) and twenty-eight with radicular back pain (48.3 ± 13.2 y.o.), underwent PET/MRI with [11C]PBR28, a second-generation radioligand for the 18 kDa translocator protein. [11C]PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the [11C]PBR28 data 1) to functionally localize the primary somatosensory cortex back and leg subregions and 2) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of "fibromyalgianess" (i.e. the degree of pain centralization, or "nociplastic pain"). Furthermore, statistical mediation models were employed to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, [11C]PBR28 PET signal and functional connectivity to the thalamus were: 1) higher in radicular compared to axial back pain patients, 2) positively correlated with each other and 3) positively correlated with fibromyalgianess scores, across groups. Finally, 4) fibromyalgianess mediated the association between [11C]PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of "neuroinflammatory signatures" that are accompanied by neurophysiological changes, and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about inter-individual variability in neuro-immune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches.
Collapse
Affiliation(s)
- Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Atreyi Saha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Erin Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paulina Knight
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel Albrecht
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Michael S Placzek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Price
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeungchan Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Roberta Sclocco
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Logan University, Chesterfield, MO, USA
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
21
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Migliarini S, Scaricamazza S, Valle C, Ferri A, Pasqualetti M, Ferraro E. Microglia Morphological Changes in the Motor Cortex of hSOD1 G93A Transgenic ALS Mice. Brain Sci 2021; 11:brainsci11060807. [PMID: 34207086 PMCID: PMC8234003 DOI: 10.3390/brainsci11060807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of spinal motor neurons as well as corticospinal (CSN) large pyramidal neurons within cortex layer V. An intense microglia immune response has been associated with both upper and lower motor neuron degeneration in ALS patients, whereas microgliosis occurrence in the motor cortex of hSOD1G93A mice—the best characterized model of this disease—is not clear and remains under debate. Since the impact of microglia cells in the neuronal environment seems to be crucial for both the initiation and the progression of the disease, here we analyzed the motor cortex of hSOD1G93A mice at the onset of symptoms by the immunolabeling of Iba1/TMEM119 double positive cells and confocal microscopy. By means of Sholl analysis, we were able to identify and quantify the presence of presumably activated Iba1/TMEM119-positive microglia cells with shorter and thicker processes as compared to the normal surveilling and more ramified microglia present in WT cortices. We strongly believe that being able to analyze microglia activation in the motor cortex of hSOD1G93A mice is of great importance for defining the timing and the extent of microglia involvement in CSN degeneration and for the identification of the initiation stages of this disease.
Collapse
Affiliation(s)
- Sara Migliarini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.M.); (M.P.)
| | - Silvia Scaricamazza
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy; (S.S.); (C.V.); (A.F.)
| | - Cristiana Valle
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy; (S.S.); (C.V.); (A.F.)
| | - Alberto Ferri
- National Research Council, Institute of Translational Pharmacology (IFT), 00133 Rome, Italy; (S.S.); (C.V.); (A.F.)
| | - Massimo Pasqualetti
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.M.); (M.P.)
| | - Elisabetta Ferraro
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.M.); (M.P.)
- Correspondence: ; Tel.: +39-339-271-0210 or +39-050-221-1491
| |
Collapse
|
23
|
Zürcher NR, Loggia ML, Mullett JE, Tseng C, Bhanot A, Richey L, Hightower BG, Wu C, Parmar AJ, Butterfield RI, Dubois JM, Chonde DB, Izquierdo-Garcia D, Wey HY, Catana C, Hadjikhani N, McDougle CJ, Hooker JM. [ 11C]PBR28 MR-PET imaging reveals lower regional brain expression of translocator protein (TSPO) in young adult males with autism spectrum disorder. Mol Psychiatry 2021; 26:1659-1669. [PMID: 32076115 PMCID: PMC8159742 DOI: 10.1038/s41380-020-0682-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Mechanisms of neuroimmune and mitochondrial dysfunction have been repeatedly implicated in autism spectrum disorder (ASD). To examine these mechanisms in ASD individuals, we measured the in vivo expression of the 18 kDa translocator protein (TSPO), an activated glial marker expressed on mitochondrial membranes. Participants underwent scanning on a simultaneous magnetic resonance-positron emission tomography (MR-PET) scanner with the second-generation TSPO radiotracer [11C]PBR28. By comparing TSPO in 15 young adult males with ASD with 18 age- and sex-matched controls, we showed that individuals with ASD exhibited lower regional TSPO expression in several brain regions, including the bilateral insular cortex, bilateral precuneus/posterior cingulate cortex, and bilateral temporal, angular, and supramarginal gyri, which have previously been implicated in autism in functional MR imaging studies. No brain region exhibited higher regional TSPO expression in the ASD group compared with the control group. A subset of participants underwent a second MR-PET scan after a median interscan interval of 3.6 months, and we determined that TSPO expression over this period of time was stable and replicable. Furthermore, voxelwise analysis confirmed lower regional TSPO expression in ASD at this later time point. Lower TSPO expression in ASD could reflect abnormalities in neuroimmune processes or mitochondrial dysfunction.
Collapse
Affiliation(s)
- N R Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - M L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - J E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - C Tseng
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - A Bhanot
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - L Richey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - B G Hightower
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - C Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - A J Parmar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - R I Butterfield
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - J M Dubois
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - D B Chonde
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - D Izquierdo-Garcia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - H Y Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - C Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - N Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gillberg Neuropsychiatry Center, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - C J McDougle
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - J M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Mini-Review: Induced pluripotent stem cells and the search for new cell-specific ALS therapeutic targets. Neurosci Lett 2021; 755:135911. [PMID: 33892003 DOI: 10.1016/j.neulet.2021.135911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/05/2021] [Accepted: 04/17/2021] [Indexed: 12/30/2022]
Abstract
Amongst the most important discoveries in ALS pathobiology are the works demonstrating that multiple cell types contribute to disease onset and progression. However, a significant limitation in ALS research is the inability to obtain tissues from ALS patient brain and spinal cord during the course of the disease. In vivo modeling has provided insights into the role of these cell subtypes in disease onset and progression. However, in vivo models also have shortcomings, including the reliance on a limited number of models based upon hereditary forms of the disease. Therefore, using human induced pluripotent stem cells (iPSC) reprogrammed from somatic cells of ALS patients, with both hereditary and sporadic forms of the disease, and differentiated into cell subtypes of both the central nervous system (CNS) and peripheral nervous system (PNS), have become powerful complementary tools for investigating basic mechanisms of disease as well as a platform for drug discovery. Motor neuron and other neuron subtypes, as well as non-neuronal cells have been differentiated from human iPSC and studied for their potential contributions to ALS pathobiology. As iPSC technologies have advanced, 3D modeling with multicellular systems organised in microfluidic chambers or organoids are the next step in validating the pathways and therapeutic targets already identified. Precision medicine approaches with iPSC using either traditional strategies of screening drugs that target a known pathogenic mechanism as well as "blind-to-target" drug screenings that allow for patient stratification based on drug response rather than clinical characteristics are now being employed.
Collapse
|
25
|
Babu S, Hightower BG, Chan J, Zürcher NR, Kivisäkk P, Tseng CEJ, Sanders DL, Robichaud A, Banno H, Evora A, Ashokkumar A, Pothier L, Paganoni S, Chew S, Dojillo J, Matsuda K, Gudesblatt M, Berry JD, Cudkowicz ME, Hooker JM, Atassi N. Ibudilast (MN-166) in amyotrophic lateral sclerosis- an open label, safety and pharmacodynamic trial. Neuroimage Clin 2021; 30:102672. [PMID: 34016561 PMCID: PMC8102622 DOI: 10.1016/j.nicl.2021.102672] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/13/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023]
Abstract
Ibudilast (MN-166) is an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterases 3,4,10 and 11 (Gibson et al., 2006; Cho et al., 2010). Ibudilast attenuates CNS microglial activation and secretion of pro-inflammatory cytokines (Fujimoto et al., 1999; Cho et al., 2010). In vitro evidence suggests that ibudilast is neuroprotective by suppressing neuronal cell death induced by microglial activation. People with ALS have increased microglial activation measured by [11C]PBR28-PET in the motor cortices. The primary objective is to determine the impact of ibudilast on reducing glial activation and neuroaxonal loss in ALS, measured by PBR28-PET and serum Neurofilament light (NfL). The secondary objectives included determining safety and tolerability of ibudilast high dosage (up to 100 mg/day) over 36 weeks. In this open label trial, 35 eligible ALS participants underwent ibudilast treatment up to 100 mg/day for 36 weeks. Of these, 30 participants were enrolled in the main study cohort and were included in biomarker, safety and tolerability analyses. Five additional participants were enrolled in the expanded access arm, who did not meet imaging eligibility criteria and were included in the safety and tolerability analyses. The primary endpoints were median change from baseline in (a) PBR28-PET uptake in primary motor cortices, measured by standard uptake value ratio (SUVR) over 12-24 weeks and (b) serum NfL over 36-40 weeks. The secondary safety and tolerability endpoints were collected through Week 40. The baseline median (range) of PBR28-PET SUVR was 1.033 (0.847, 1.170) and NfL was 60.3 (33.1, 219.3) pg/ml. Participants who completed both pre and post-treatment scans had PBR28-PET SUVR median(range) change from baseline of 0.002 (-0.184, 0.156) , P = 0.5 (n = 22). The median(range) NfL change from baseline was 0.4 pg/ml (-1.8, 17.5), P = 0.2 (n = 10 participants). 30(86%) participants experienced at least one, possibly study drug related adverse event. 13(37%) participants could not tolerate 100 mg/day and underwent dose reduction to 60-80 mg/day and 11(31%) participants discontinued study drug early due to drug related adverse events. The study concludes that following treatment with ibudilast up to 100 mg/day in ALS participants, there were no significant reductions in (a) motor cortical glial activation measured by PBR28-PET SUVR over 12-24 weeks or (b) CNS neuroaxonal loss, measured by serum NfL over 36-40 weeks. Dose reductions and discontinuations due to treatment emergent adverse events were common at this dosage in ALS participants. Future pharmacokinetic and dose-finding studies of ibudilast would help better understand tolerability and target engagement in ALS.
Collapse
Affiliation(s)
- Suma Babu
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Baileigh G Hightower
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - James Chan
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole R Zürcher
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pia Kivisäkk
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chieh-En J Tseng
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Danica L Sanders
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley Robichaud
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haruhiko Banno
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Armineuza Evora
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Akshata Ashokkumar
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lindsay Pothier
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Paganoni
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA
| | - Sheena Chew
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - James D Berry
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Merit E Cudkowicz
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob M Hooker
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nazem Atassi
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Makary MM, Weerasekara A, Rodham H, Hightower BG, Tseng CEJ, Chan J, Chew S, Paganoni S, Ratai EM, Zürcher NR, Hooker JM, Atassi N, Babu S. Comparison of Two Clinical Upper Motor Neuron Burden Rating Scales in ALS Using Quantitative Brain Imaging. ACS Chem Neurosci 2021; 12:906-916. [PMID: 33576234 DOI: 10.1021/acschemneuro.0c00772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several clinical upper motor neuron burden scales (UMNSs) variably measure brain dysfunction in amyotrophic lateral sclerosis (ALS). Here, we compare relationship of two widely used clinical UMNSs in ALS (Penn and MGH UMNSs) with (a) neuroimaging markers of brain dysfunction and (b) neurological impairment status using the gold-standard functional measure, the revised ALS Functional Rating Scale (ALSFRS-R). MGH UMNS measures hyperreflexia alone, and Penn UMNS measures hyperreflexia, spasticity, and pseudobulbar affect. Twenty-eight ALS participants underwent both Penn and MGH UMNSs, at a matching time-point as a simultaneous [11C]PBR28 positron emission tomography (PBR28-PET)/Magnetic Resonance scan and ALSFRS-R. The two UMNSs were compared for localization and strength of association with neuroimaging markers of: (a) neuroinflammation, PBR28-PET and MR Spectroscopy metabolites (myo-inositol and choline) and (b) corticospinal axonal loss, fractional anisotropy (FA), and MR Spectroscopy metabolite (N-acetylaspartate). Among clinical UMN manifestations, segmental hyperreflexia, spasticity, and pseudobulbar affect occurred in 100, 43, and 18% ALS participants, respectively. Pseudobulbar affect did not map to any specific brain regional dysfunction, while hyperreflexia and spasticity subdomains significantly correlated and colocalized neurobiological changes to corticospinal pathways on whole brain voxel-wise analyses. Both UMNS total scores showed significant and similar strength of association with (a) neuroimaging changes (PBR28-PET, FA, MR Spectroscopy metabolites) in primary motor cortices and (b) severity of functional decline (ALSFRS-R). Hyperreflexia is the most frequent clinical UMN manifestation and correlates best with UMN molecular imaging changes in ALS. Among Penn UMNS's subdomains, hyperreflexia carries the weight of association with neuroimaging markers of biological changes in ALS. A clinical UMN scale comprising hyperreflexia items alone is clinically relevant and sufficient to predict the highest yield of molecular neuroimaging abnormalities in ALS.
Collapse
Affiliation(s)
- Meena M. Makary
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| | - Akila Weerasekara
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Haley Rodham
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Baileigh G. Hightower
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Chieh-En J. Tseng
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - James Chan
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sheena Chew
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Sabrina Paganoni
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of PM&R, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eva-Maria Ratai
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicole R. Zürcher
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department of Radiology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nazem Atassi
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Sanofi Genzyme, Cambridge, Massachusetts 02142, United States
| | - Suma Babu
- Sean M Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
27
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomed Pharmacother 2021; 138:111428. [PMID: 33667787 DOI: 10.1016/j.biopha.2021.111428] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
In an ageing society, neurodegenerative diseases have attracted attention because of their high incidence worldwide. Despite extensive research, there is a lack of conclusive insights into the pathogenesis of neurodegenerative diseases, which limit the strategies for symptomatic treatment. Therefore, better elucidation of the molecular mechanisms involved in neurodegenerative diseases can provide an important theoretical basis for the discovery of new and effective prevention and treatment methods. The innate immune system is activated during the ageing process and in response to neurodegenerative diseases. Inflammasomes are multiprotein complexes that play an important role in the activation of the innate immune system. They mediate inflammatory reactions and pyroptosis, which are closely involved in neurodegeneration. There are different types of inflammasomes, although the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is the most common inflammasome; NLRP3 plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we will discuss the mechanisms that are involved in the activation of the NLRP3 inflammasome and its crucial role in the pathology of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. We will also review various treatments that target the NLRP3 inflammasome pathway and alleviate neuroinflammation. Finally, we will summarize the novel treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang 050051, PR China.
| |
Collapse
|
28
|
Saitoh Y, Imabayashi E, Mukai T, Matsuda H, Takahashi Y. Visualization of Motor Cortex Involvement by 18F-THK5351 PET Potentially Strengthens Diagnosis of Amyotrophic Lateral Sclerosis. Clin Nucl Med 2021; 46:243-245. [PMID: 33323735 DOI: 10.1097/rlu.0000000000003456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Amyotrophic lateral sclerosis (ALS) involves both upper motor neurons (UMNs) and lower motor neurons. The detection of UMN involvement, a core component of ALS criteria, is primarily dependent on neurological examination because of a lack of definitive biomarkers. We present the 18F-THK5351 PET images of a 76-year-old man diagnosed with ALS comorbid with Alzheimer disease, demonstrating marked accumulation of 18F-THK5351 in the bilateral precentral gyri. Because 18F-THK5351 binds to monoamine oxidase B highly expressed in astrocytes, where the neurodegenerative process is ongoing, our case highlights that 18F-THK5351 tracer should be a useful marker for detecting UMN neurodegeneration in ALS.
Collapse
Affiliation(s)
- Yuji Saitoh
- From the Department of Neurology, National Center Hospital
| | | | - Taiji Mukai
- From the Department of Neurology, National Center Hospital
| | | | - Yuji Takahashi
- From the Department of Neurology, National Center Hospital
| |
Collapse
|
29
|
Steinbach R, Gaur N, Roediger A, Mayer TE, Witte OW, Prell T, Grosskreutz J. Disease aggressiveness signatures of amyotrophic lateral sclerosis in white matter tracts revealed by the D50 disease progression model. Hum Brain Mapp 2021; 42:737-752. [PMID: 33103324 PMCID: PMC7814763 DOI: 10.1002/hbm.25258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous neuroimaging studies in amyotrophic lateral sclerosis (ALS) have reported links between structural changes and clinical data; however phenotypic and disease course heterogeneity have occluded robust associations. The present study used the novel D50 model, which distinguishes between disease accumulation and aggressiveness, to probe correlations with measures of diffusion tensor imaging (DTI). DTI scans of 145 ALS patients and 69 controls were analyzed using tract-based-spatial-statistics of fractional anisotropy (FA), mean- (MD), radial (RD), and axial diffusivity (AD) maps. Intergroup contrasts were calculated between patients and controls, and between ALS subgroups: based on (a) the individual disease covered (Phase I vs. II) or b) patients' disease aggressiveness (D50 value). Regression analyses were used to probe correlations with model-derived parameters. Case-control comparisons revealed widespread ALS-related white matter pathology with decreased FA and increased MD/RD. These affected pathways showed also correlations with the accumulated disease for increased MD/RD, driven by the subgroup of Phase I patients. No significant differences were noted between patients in Phase I and II for any of the contrasts. Patients with high disease aggressiveness (D50 < 30 months) displayed increased AD/MD in bifrontal and biparietal pathways, which was corroborated by significant voxel-wise regressions with D50. Application of the D50 model revealed associations between DTI measures and ALS pathology in Phase I, representing individual disease accumulation early in disease. Patients' overall disease aggressiveness correlated robustly with the extent of DTI changes. We recommend the D50 model for studies developing/validating neuroimaging or other biomarkers for ALS.
Collapse
Affiliation(s)
- Robert Steinbach
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Nayana Gaur
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | | | - Thomas E. Mayer
- Department of NeuroradiologyJena University HospitalJenaGermany
| | - Otto W. Witte
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| | - Tino Prell
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| | - Julian Grosskreutz
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
- Center for Healthy AgeingJena University HospitalJenaGermany
| |
Collapse
|
30
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
31
|
Tortelli R, Zecca C, Piccininni M, Benmahamed S, Dell'Abate MT, Barulli MR, Capozzo R, Battista P, Logroscino G. Plasma Inflammatory Cytokines Are Elevated in ALS. Front Neurol 2020; 11:552295. [PMID: 33281700 PMCID: PMC7691268 DOI: 10.3389/fneur.2020.552295] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease which leads to death in a median time of 2–3 years. Inflammation has been claimed important to the ALS pathogenesis, but its role is still not well-characterized. In the present study, a panel of five cytokines (IL-2, IL-6, IL-10, IFN-gamma, and TNF-alpha) measured in plasma has been investigated in ALS. These biomarkers of inflammation were measured in a population-based cohort of 79 patients with ALS and 79 age- and sex-matched healthy controls using the Bio-Plex technology (Bio-Rad). All the five cytokines were significantly increased in plasma samples of patients compared with controls (p < 0.0001), with IL-6 having the highest median concentration (10.11 pg/ml) in the ALS group. Furthermore, IL-6 was the plasma cytokine with the highest discrimination ability between patients and controls according to the receiver operating characteristic analysis (area under the curve = 0.93). At a cut-off point of 5.71 pg/ml, it was able to classify patients and controls with 91% of sensitivity and 87% of specificity. In the ALS group, plasma IL-6 concentration correlated with demographic (age: rs = 0.25, p = 0.025) and clinical (revised ALS Functional Rating Scale at evaluation: rs = −0.32, p = 0.007; Manual Muscle Testing: rs = −0.33, p = 0.004; progression: rs = 0.29, p = 0.0395) parameters. In line with previous studies, our results confirm that inflammatory cytokines are elevated in ALS, supporting a possible role of inflammation in disease mechanism and progression. However, the precise role of inflammation in ALS needs to be further investigated on larger samples and with more mechanistic studies.
Collapse
Affiliation(s)
- Rosanna Tortelli
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy.,UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Marco Piccininni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy.,Institute of Public Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Benmahamed
- UMR_S 1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, University Limoges, CNRS FR 3503 GEIST, Limoges, France
| | - Maria Teresa Dell'Abate
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Maria Rosaria Barulli
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Rosa Capozzo
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy
| | - Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Pavia, Italy.,Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" - A.O. Pia Fond "Card. G. Panico" Hospital, Lecce, Italy.,Department of Basic Medical Science and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| |
Collapse
|
32
|
Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol 2020; 19:940-950. [PMID: 33098803 PMCID: PMC7912433 DOI: 10.1016/s1474-4422(20)30346-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
A growing need exists for reliable in-vivo measurement of neuroinflammation to better characterise the inflammatory processes underlying various diseases and to inform the development of novel therapeutics that target deleterious glial activity. PET is well suited to quantify neuroinflammation and has the potential to discriminate components of the neuroimmune response. However, there are several obstacles to the reliable quantification of neuroinflammation by PET imaging. Despite these challenges, PET studies have consistently identified associations between neuroimmune responses and pathophysiology in brain disorders such as Alzheimer's disease. Tissue studies have also begun to clarify the meaning of changes in PET signal in some diseases. Furthermore, although PET imaging of neuroinflammation does not have an established clinical application, novel targets are under investigation and a small but growing number of studies have suggested that this imaging modality could have a role in drug development. Future studies are needed to further improve our knowledge of the cellular mechanisms that underlie changes in PET signal, how immune response contributes to neurological disease, and how it might be therapeutically modified.
Collapse
Affiliation(s)
- William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Illán-Gala I, Montal V, Pegueroles J, Vilaplana E, Alcolea D, Dols-Icardo O, de Luna N, Turón-Sans J, Cortés-Vicente E, Martinez-Roman L, Sánchez-Saudinós MB, Subirana A, Videla L, Sala I, Barroeta I, Valldeneu S, Blesa R, Clarimón J, Lleó A, Fortea J, Rojas-García R. Cortical microstructure in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Neurology 2020; 95:e2565-e2576. [PMID: 32913016 DOI: 10.1212/wnl.0000000000010727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To characterize the cortical macrostructure and microstructure of behavioral and cognitive changes along the amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD) continuum. METHODS We prospectively recruited 88 participants with a 3T MRI structural and diffusion-weighted imaging sequences: 31 with ALS, 20 with the behavioral variant of FTD (bvFTD), and 37 cognitively normal controls. Participants with ALS underwent a comprehensive cognitive and behavioral assessment and were dichotomized into ALS without cognitive or behavioral impairment (ALSno-cbi; n = 12) and ALS with cognitive or behavioral impairment (ALScbi; n = 19). We computed cortical thickness and cortical mean diffusivity using a surface-based approach and explored the cortical correlates of cognitive impairment with the Edinburgh Cognitive and Behavioral ALS Screen. RESULTS The ALSno-cbi and ALScbi groups showed different patterns of reduced cortical thickness and increased cortical mean diffusivity. In the ALSno-cbi group, cortical thinning was restricted mainly to the dorsal motor cortex. In contrast, in the ALScbi group, cortical thinning was observed primarily on frontoinsular and temporal regions bilaterally. There were progressive cortical mean diffusivity changes along the ALSno-cbi, ALScbi, and bvFTD clinical continuum. Participants with ALS with either cognitive or behavioral impairment showed increased cortical mean diffusivity in the prefrontal cortex in the absence of cortical thickness. CONCLUSIONS Cortical mean diffusivity might be a useful biomarker for the study of extramotor cortical neurodegeneration in the ALS-FTD clinical spectrum. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that the cortical microstructure correlates with cognitive impairment in the ALS-FTD continuum.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain.
| | - Victor Montal
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Jordi Pegueroles
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Eduard Vilaplana
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Oriol Dols-Icardo
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Noemi de Luna
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Janina Turón-Sans
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Elena Cortés-Vicente
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Luis Martinez-Roman
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Maria Belén Sánchez-Saudinós
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Andrea Subirana
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Laura Videla
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Isabel Sala
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Isabel Barroeta
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Sílvia Valldeneu
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Rafael Blesa
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Jordi Clarimón
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Alberto Lleó
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| | - Juan Fortea
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain.
| | - Ricard Rojas-García
- From the Sant Pau Memory Unit (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., L.M.-R., M.B.S.-S., A.S., L.V., I.S., I.B., S.V., R.B., J.C., A.L., J.F.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Neuromuscular Diseases Unit (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.d.L., J.T.-S., E.C.-V., R.R.-G.), Valencia; Barcelona Down Medical Center (I.I.G., L.V., J.F.), Fundació Catalana de Síndrome de Down, Barcelona; and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (I.I.-G., V.M., J.P., E.V., D.A., O.D.-I., I.B., R.B., J.C., A.L., J.F.), CIBERNED, Madrid, Spain
| |
Collapse
|
34
|
Schreiber S, Vielhaber S, Schreiber F, Cartwright MS. Peripheral nerve imaging in amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131:2315-2326. [DOI: 10.1016/j.clinph.2020.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
|
35
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
36
|
Tondo G, Iaccarino L, Cerami C, Vanoli GE, Presotto L, Masiello V, Coliva A, Salvi F, Bartolomei I, Mosca L, Lunetta C, Perani D. 11 C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1513-1523. [PMID: 32762033 PMCID: PMC7480909 DOI: 10.1002/acn3.51112] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Neuroinflammation is considered a key driver for neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). SOD1 mutations cause about 20% of familial ALS, and related pathology might generate microglial activation triggering neurodegeneration. 11C‐PK11195 is the prototypical and most validated PET radiotracer, targeting the 18‐kDa translocator protein which is overexpressed in activated microglia. In this study, we investigated microglia activation in asymptomatic (ASYM) and symptomatic (SYM) SOD1 mutated carriers, by using 11C‐PK11195 and PET imaging. Methods We included 20 subjects: 4 ASYM‐carriers, neurologically normal, 6 SYM‐carriers with probable ALS, and 10 healthy controls. A receptor parametric mapping procedure estimated 11C‐PK11195 binding potentials and voxel‐wise statistical comparisons were performed at group and single‐subject levels. Results Both the SYM‐ and ASYM‐carriers showed significant microglia activation in cortical and subcortical structures, with variable patterns at individual level. Clusters of activation were present in occipital and temporal regions, cerebellum, thalamus, and medulla oblongata. Notably, SYM‐carriers showed microglia activation also in supplementary and primary motor cortices and in the somatosensory regions. Interpretation In vivo neuroinflammation occurred in all SOD1 mutated cases since the presymptomatic stages, as shown by a significant cortical and subcortical microglia activation. The involvement of sensorimotor cortex became evident at the symptomatic disease stage. Although our data indicate the role of in vivo PET imaging for assessing resident microglia in the investigation of SOD1‐ALS pathophysiology, further studies are needed to clarify the temporal and spatial dynamics of microglia activation and its relationship with neurodegeneration.
Collapse
Affiliation(s)
- Giacomo Tondo
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Chiara Cerami
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Scuola Universitaria di Studi Superiori IUSS Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | | | - Luca Presotto
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Masiello
- Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| | - Angela Coliva
- Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| | - Fabrizio Salvi
- Bellaria Hospital, IRCCS of Neurological Sciences, Bologna, Italy
| | | | - Lorena Mosca
- Department of Laboratory Medicine, Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS and San Raffaele Hospital, Milan, Italy
| |
Collapse
|
37
|
Ashford BA, Boche D, Cooper-Knock J, Heath PR, Simpson JE, Highley JR. Review: Microglia in motor neuron disease. Neuropathol Appl Neurobiol 2020; 47:179-197. [PMID: 32594542 DOI: 10.1111/nan.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Motor Neuron Disease (MND) is a fatal neurodegenerative condition, which is characterized by the selective loss of the upper and lower motor neurons. At the sites of motor neuron injury, accumulation of activated microglia, the primary immune cells of the central nervous system, is commonly observed in both human post mortem studies and animal models of MND. Microglial activation has been found to correlate with many clinical features and importantly, the speed of disease progression in humans. Both anti-inflammatory and pro-inflammatory microglial responses have been shown to influence disease progression in humans and models of MND. As such, microglia could both contribute to and protect against inflammatory mechanisms of pathogenesis in MND. While murine models have characterized the microglial response to MND, these studies have painted a complex and often contradictory picture, indicating a need for further characterization in humans. This review examines the potential role microglia play in MND in human and animal studies. Both the pro-inflammatory and anti-inflammatory responses will be addressed, throughout the course of disease, followed by the potential of microglia as a target in the development of disease-modifying treatments for MND.
Collapse
Affiliation(s)
| | - D Boche
- University of Southampton, Southampton, UK
| | | | - P R Heath
- University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
38
|
Katsumi Y, Racine AM, Torrado-Carvajal A, Loggia ML, Hooker JM, Greve DN, Hightower BG, Catana C, Cavallari M, Arnold SE, Fong TG, Vasunilashorn SM, Marcantonio ER, Schmitt EM, Xu G, Libermann TA, Barrett LF, Inouye SK, Dickerson BC, Touroutoglou A, Collins JA. The Role of Inflammation after Surgery for Elders (RISE) study: Examination of [ 11C]PBR28 binding and exploration of its link to post-operative delirium. Neuroimage Clin 2020; 27:102346. [PMID: 32712451 PMCID: PMC7390821 DOI: 10.1016/j.nicl.2020.102346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Major surgery is associated with a systemic inflammatory cascade that is thought, in some cases, to contribute to transient and/or sustained cognitive decline, possibly through neuroinflammatory mechanisms. However, the relationship between surgery, peripheral and central nervous system inflammation, and post-operative cognitive outcomes remains unclear in humans, primarily owing to limitations of in vivo biomarkers of neuroinflammation which vary in sensitivity, specificity, validity, and reliability. In the present study, [11C]PBR28 positron emission tomography, cerebrospinal fluid (CSF), and blood plasma biomarkers of inflammation were assessed pre-operatively and 1-month post-operatively in a cohort of patients (N = 36; 30 females; ≥70 years old) undergoing major orthopedic surgery under spinal anesthesia. Delirium incidence and severity were evaluated daily during hospitalization. Whole-brain voxel-wise and regions-of-interest analyses were performed to determine the magnitude and spatial extent of changes in [11C]PBR28 uptake following surgery. Results demonstrated that, compared with pre-operative baseline, [11C]PBR28 binding in the brain was globally downregulated at 1 month following major orthopedic surgery, possibly suggesting downregulation of the immune system of the brain. No significant relationship was identified between post-operative delirium and [11C]PBR28 binding, possibly due to a small number (n = 6) of delirium cases in the sample. Additionally, no significant relationships were identified between [11C]PBR28 binding and CSF/plasma biomarkers of inflammation. Collectively, these results contribute to the literature by demonstrating in a sizeable sample the effect of major surgery on neuroimmune activation and preliminary evidence identifying no apparent associations between [11C]PBR28 binding and fluid inflammatory markers or post-operative delirium.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Psychology, Northeastern University, Boston, MA, United States; Japan Society for the Promotion of Science, Tokyo, Japan; Harvard Medical School, Boston, MA, United States
| | - Annie M Racine
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Angel Torrado-Carvajal
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Marco L Loggia
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jacob M Hooker
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Douglas N Greve
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Baileigh G Hightower
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Ciprian Catana
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Michele Cavallari
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Steven E Arnold
- Harvard Medical School, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Tamara G Fong
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Sarinnapha M Vasunilashorn
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Edward R Marcantonio
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Eva M Schmitt
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Guoquan Xu
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Towia A Libermann
- Harvard Medical School, Boston, MA, United States; Genomics, Proteomics, Bioinformatics and Systems Biology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Sharon K Inouye
- Harvard Medical School, Boston, MA, United States; Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Bradford C Dickerson
- Harvard Medical School, Boston, MA, United States; Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandra Touroutoglou
- Harvard Medical School, Boston, MA, United States; Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jessica A Collins
- Harvard Medical School, Boston, MA, United States; Frontotemporal Disorders Unit, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
39
|
Dhankhar J, Agrawal N, Shrivastava A. An interplay between immune response and neurodegenerative disease progression: An assessment using Drosophila as a model. J Neuroimmunol 2020; 346:577302. [PMID: 32683186 DOI: 10.1016/j.jneuroim.2020.577302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Neurodegeneration, the slow and progressive loss of neurons in the central nervous system has become a major challenge to public health worldwide particularly with elderly people. Until recently, the brain and immune system were studied exclusively, independent of each other representing two distinct systems. Recent studies ensue crosstalk between these two systems to maintain homeostasis. Though the progressive loss of specific neuronal subsets is a hallmark of neurodegenerative disease, emerging evidences indicate that immune response also plays a critical role in disease progression. Due to conservation of mechanisms that govern neural development and innate immune activation in flies and humans, and availability of powerful genetic tools, the fruit fly Drosophila melanogaster is one of the best model organisms to investigate the immune response in neurodegenerative disease. Owing to significant homology between human and Drosophila immune system and recent reports on interplay between immune system and neurodegenerative disease progression, the main focus of the review is to develop a comprehensive understanding of how neuro-immune interactions contribute to neurodegeneration using Drosophila as a model system.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, Delhi, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
40
|
In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav Immun 2020; 87:498-507. [PMID: 32027960 PMCID: PMC7864588 DOI: 10.1016/j.bbi.2020.01.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic disorder affecting approximately 30% of the veterans who served in the 1991 Gulf War. It is characterised by a constellation of symptoms including musculoskeletal pain, cognitive problems and fatigue. The cause of GWI is not definitively known but exposure to neurotoxicants, the prophylactic use of pyridostigmine bromide (PB) pills, and/or stressors during deployment have all been suspected to play some pathogenic role. Recent animal models of GWI have suggested that neuroinflammatory mechanisms may be implicated, including a dysregulated activation of microglia and astrocytes. However, neuroinflammation has not previously been directly observed in veterans with GWI. To measure GWI-related neuroinflammation in GW veterans, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the 18 kDa translocator protein (TSPO), a protein upregulated in activated microglia/macrophages and astrocytes. Veterans with GWI (n = 15) and healthy controls (HC, n = 33, including a subgroup of healthy GW veterans, HCVET, n = 8), were examined using integrated [11C]PBR28 PET/MRI. Standardized uptake values normalized by occipital cortex signal (SUVR) were compared across groups and against clinical variables and circulating inflammatory cytokines (TNF-α, IL-6 and IL-1β). SUVR were validated against volume of distribution ratio (n = 13). Whether compared to the whole HC group, or only the HCVET subgroup, veterans with GWI demonstrated widespread cortical elevations in [11C]PBR28 PET signal, in areas including precuneus, prefrontal, primary motor and somatosensory cortices. There were no significant group differences in the plasma levels of the inflammatory cytokines evaluated. There were also no significant correlations between [11C]PBR28 PET signal and clinical variables or circulating inflammatory cytokines. Our study provides the first direct evidence of brain upregulation of the neuroinflammatory marker TSPO in veterans with GWI and supports the exploration of neuroinflammation as a therapeutic target for this disorder.
Collapse
|
41
|
Dalamagkas K, Tsintou M, Rathi Y, O'Donnell LJ, Pasternak O, Gong X, Zhu A, Savadjiev P, Papadimitriou GM, Kubicki M, Yeterian EH, Makris N. Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging Behav 2020; 14:696-714. [PMID: 30617788 PMCID: PMC6614022 DOI: 10.1007/s11682-018-0006-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston, Boston, MA, 02215, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, USA
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
- UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Magdalini Tsintou
- Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston, Boston, MA, 02215, USA
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Peter Savadjiev
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George M Papadimitriou
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
42
|
Shavit-Stein E, Abu Rahal I, Bushi D, Gera O, Sharon R, Gofrit SG, Pollak L, Mindel K, Maggio N, Kloog Y, Chapman J, Dori A. Brain Protease Activated Receptor 1 Pathway: A Therapeutic Target in the Superoxide Dismutase 1 (SOD1) Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E3419. [PMID: 32408605 PMCID: PMC7279358 DOI: 10.3390/ijms21103419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Glia cells are involved in upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Protease activated receptor 1 (PAR1) pathway is related to brain pathologies. Brain PAR1 is located on peri-synaptic astrocytes, adjacent to pyramidal motor neurons, suggesting possible involvement in ALS. Brain thrombin activity in superoxide dismutase 1 (SOD1) mice was measured using a fluorometric assay, and PAR1 levels by western blot. PAR1 was localized using immunohistochemistry staining. Treatment targeted PAR1 pathway on three levels; thrombin inhibitor TLCK (N-Tosyl-Lys-chloromethylketone), PAR1 antagonist SCH-79797 and the Ras intracellular inhibitor FTS (S-trans-trans-farnesylthiosalicylic acid). Mice were weighed and assessed for motor function and survival. SOD1 brain thrombin activity was increased (p < 0.001) particularly in the posterior frontal lobe (p = 0.027) and hindbrain (p < 0.01). PAR1 levels were decreased (p < 0.001, brain, spinal cord, p < 0.05). PAR1 and glial fibrillary acidic protein (GFAP) staining decreased in the cerebellum and cortex. SOD1 mice lost weight (≥17 weeks, p = 0.047), and showed shorter rotarod time (≥14 weeks, p < 0.01). FTS 40mg/kg significantly improved rotarod scores (p < 0.001). Survival improved with all treatments (p < 0.01 for all treatments). PAR1 antagonism was the most efficient, with a median survival improvement of 10 days (p < 0.0001). Our results support PAR1 pathway involvement in ALS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ihab Abu Rahal
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Doron Bushi
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Roni Sharon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Shany G. Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Lea Pollak
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Kate Mindel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoel Kloog
- Department of Neurobiochemistry, Weiss Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
43
|
Van Weehaeghe D, Babu S, De Vocht J, Zürcher NR, Chew S, Tseng CEJ, Loggia ML, Koole M, Rezaei A, Schramm G, Van Damme P, Hooker JM, Van Laere K, Atassi N. Moving Toward Multicenter Therapeutic Trials in Amyotrophic Lateral Sclerosis: Feasibility of Data Pooling Using Different Translocator Protein PET Radioligands. J Nucl Med 2020; 61:1621-1627. [PMID: 32169920 DOI: 10.2967/jnumed.119.241059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been implicated in amyotrophic lateral sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, TSPO radioligands have some challenges to overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudo reference analysis technique for 18F-DPA714. Methods: Seven ALS patients from Belgium (58.9 ± 6.7 y old, 5 men and 2 women), 8 healthy volunteers from Belgium (52.1 ± 15.2 y old, 3 men and 5 women), 7 ALS patients from the United States (53.4 ± 9.8 y old, 5 men and 2 women), and 7 healthy volunteers from the United States (54.6 ± 9.6 y old, 4 men and 3 women) from a previously published study underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, Massachusetts) PET/MRI. For 18F-DPA714, maps of total volume of distribution (VT) were compared with SUV ratio (SUVR) images from 40 to 60 min after injection (SUVR40-60) calculated using the pseudo reference regions cerebellum, occipital cortex, and whole brain (WB) without ventricles. For 11C-PBR28, SUVR images from 60 to 90 min after injection using the WB without ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0% ± 5.6%) in primary motor cortices was observed in ALS subjects, as measured by both VT and SUVR40-60 approaches. The highest sensitivity was found for SUVR calculated using the WB without ventricles (average cluster, 21.6% ± 0.1%). 18F-DPA714 VT ratio was highly correlated with the SUVR40-60 (r > 0.8, P < 0.001). A similar pattern of increased uptake (average cluster, 20.5% ± 0.5%) in the primary motor cortices was observed in ALS subjects for 11C-PBR28 SUVR calculated using the WB without ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together resulted in a more extensive pattern of significantly increased glial activation bilaterally in the primary motor cortices. Conclusion: The same pseudo reference region analysis technique for 11C-PBR28 PET can be extended toward 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these 2 tracers enables pooling of TSPO PET data across multiple centers and increases the power of TSPO as a biomarker for future therapeutic trials.
Collapse
Affiliation(s)
- Donatienne Van Weehaeghe
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Suma Babu
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joke De Vocht
- Department of Neurology, University Hospital Leuven, and Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium; and
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Sheena Chew
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chieh-En J Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Michel Koole
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven, and Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium; and
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Koen Van Laere
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Nazem Atassi
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Reliable and efficient scale to assess upper motor neuron disease burden in amyotrophic lateral sclerosis. Muscle Nerve 2019; 61:508-511. [DOI: 10.1002/mus.26764] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
45
|
Hshieh TT, Vasunilashorn SM, D'Aquila ML, Arnold SE, Dickerson BC, Fong TG, Jones RN, Marcantonio ER, Schmitt EM, Xu G, Gou Y, Chen F, Kunze LJ, Vlassakov KV, Abdeen AR, Lange JK, Earp BE, Touroutoglou A, Carlyle BC, Kivisakk-Webb P, Travison TG, Dillon ST, Libermann TA, Inouye SK. The Role of Inflammation after Surgery for Elders (RISE) study: Study design, procedures, and cohort profile. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:752-762. [PMID: 31737775 PMCID: PMC6849121 DOI: 10.1016/j.dadm.2019.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction The Role of Inflammation after Surgery for Elders study correlates novel inflammatory markers measured in blood, cerebrospinal fluid (CSF) assays, and [11C]-PBR28 positron-emission tomography imaging. Methods This study involved a prospective cohort design with patients who underwent elective hip and knee arthroplasty under spinal anesthesia. Sixty-five adults participated with their family members. Inflammatory biomarker assays were measured preoperatively on day 1 and postoperatively at one month. Results On average, participants were 75 years old, and 72% were female. 54% underwent total knee arthroplasty, and 46% underwent total hip arthroplasty. The mean Modified Mini-Mental State (3MS) Examination score was 89.3; four patients (6%) scored ≤77 points. Plasma assays were completed in 63 (97%) participants, cerebrospinal fluid assays in 61 (94%), and PET imaging in 44 (68%). Discussion This complex study presents an innovative effort to correlate peripheral and central inflammatory biomarkers before and after major surgery in older adults. Strengths include collecting concurrent blood, cerebrospinal fluid, and positron-emission tomography with detailed clinical characterization of delirium, cognition, and functional status. We describe the methodology of the Role of Inflammation after Surgery for Elders Study. This is a prospective cohort of elective hip/knee arthroplasty patients 70 years or older. We examine inflammation in blood, cerebrospinal fluid and positron emission tomography. We collect novel biomarkers preoperatively and one-month postoperatively. There is clinical characterization of delirium, cognition and functional status.
Collapse
Affiliation(s)
- Tammy T Hshieh
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Sarinnapha M Vasunilashorn
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Madeline L D'Aquila
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford C Dickerson
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tamara G Fong
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richard N Jones
- Department of Psychiatry and Human Behavior, Brown University Warren Alpert Medical School, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Edward R Marcantonio
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eva M Schmitt
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Guoquan Xu
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yun Gou
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Fan Chen
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Lisa J Kunze
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kamen V Vlassakov
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ayesha R Abdeen
- Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeffrey K Lange
- Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Brandon E Earp
- Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Brigham and Women's Faulkner Hospital, Boston, MA, USA
| | - Alexandra Touroutoglou
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Pia Kivisakk-Webb
- Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G Travison
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Simon T Dillon
- Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Towia A Libermann
- Harvard Medical School, Boston, MA, USA.,Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sharon K Inouye
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
46
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
47
|
Dios AM, Babu S, Granucci EJ, Mueller KA, Mills AN, Alshikho MJ, Zürcher NR, Cernasov P, Gilbert TM, Glass JD, Berry JD, Atassi N, Hooker JM, Sadri-Vakili G. Class I and II histone deacetylase expression is not altered in human amyotrophic lateral sclerosis: Neuropathological and positron emission tomography molecular neuroimaging evidence. Muscle Nerve 2019; 60:443-452. [PMID: 31241177 DOI: 10.1002/mus.26620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is an unmet need for mechanism-based biomarkers and effective disease modifying treatments in amyotrophic lateral sclerosis (ALS). Previous findings have provided evidence that histone deacetylases (HDAC) are altered in ALS, providing a rationale for testing HDAC inhibitors as a therapeutic option. METHODS We measured class I and II HDAC protein and transcript levels together with acetylation levels of downstream substrates by using Western blotting in postmortem tissue of ALS and controls. [11 C]Martinostat, a novel HDAC positron emission tomography ligand, was also used to assess in vivo brain HDAC alterations in patients with ALS and healthy controls (HC). RESULTS There was no significant difference in HDAC levels between patients with ALS and controls as measured by Western blotting and reverse-transcription quantitative polymerase chain reaction. Similarly, no differences were detected in [11 C]Martinostat-positron emission tomography uptake in ALS participants compared with HCs. DISCUSSION These findings provide evidence that alterations in HDAC isoforms are not a dominant pathological feature at the bulk tissue level in ALS.
Collapse
Affiliation(s)
- Amanda M Dios
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Suma Babu
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric J Granucci
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kaly A Mueller
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra N Mills
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohamad J Alshikho
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Paul Cernasov
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - James D Berry
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nazem Atassi
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA.,Sanofi-Genzyme, Cambridge, Massachusetts, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ghazaleh Sadri-Vakili
- Sean M Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
48
|
|
49
|
Sugiyama A, Sato N, Kimura Y, Shigemoto Y, Suzuki F, Morimoto E, Takahashi Y, Matsuda H, Kuwabara S. Exploring the frequency and clinical background of the "zebra sign" in amyotrophic lateral sclerosis and multiple system atrophy. J Neurol Sci 2019; 401:90-94. [PMID: 31075684 DOI: 10.1016/j.jns.2019.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), the "zebra sign" in the precentral gyrus on phase difference enhanced magnetic resonance imaging (PADRE) recently has been reported as a possible imaging biomarker for upper motor neuron (UMN) involvement. A previous study has shown that the "zebra sign" allowed us to differentiate patients with ALS from healthy subjects with excellent accuracy. We validated the usefulness of the sign for differentiating patients with ALS from healthy subjects and investigated whether the "zebra sign" can be observed other neurodegenerative disorders with UMN involvement. The "zebra sign" on PADRE was assessed in 26 patients with ALS, 26 with multiple system atrophy (MSA) and 26 healthy controls, and the sign was observed in 50%, 23%, and no subjects, respectively. ALS patients with the "zebra sign" demonstrated a higher UMN burden score than those without the sign. The "zebra sign" on PADRE is not specific to ALS, also present in MSA, but might reflect the degeneration of the UMN within the motor cortex in neurodegenerative disorders.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Emiko Morimoto
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
50
|
Catana C. Development of Dedicated Brain PET Imaging Devices: Recent Advances and Future Perspectives. J Nucl Med 2019; 60:1044-1052. [PMID: 31028166 DOI: 10.2967/jnumed.118.217901] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Whole-body PET scanners are not optimized for imaging small structures in the human brain. Several PET devices specifically designed for this task have been proposed either for stand-alone operation or as MR-compatible inserts. The main distinctive features of some of the most recent concepts and their performance characteristics, with a focus on spatial resolution and sensitivity, are reviewed. The trade-offs between the various performance characteristics, desired capabilities, and cost that need to be considered when designing a dedicated brain scanner are presented. Finally, the aspirational goals for future-generation scanners, some of the factors that have contributed to the current status, and how recent advances may affect future developments in dedicated brain PET instrumentation are briefly discussed.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|