1
|
Durozard P, Maarouf A, Zaaraoui W, Stellmann JP, Boutière C, Rico A, Demortière S, Guye M, Le Troter A, Dary H, Ranjeva JP, Audoin B, Pelletier J. Cortical Lesions as an Early Hallmark of Multiple Sclerosis: Visualization by 7 T MRI. Invest Radiol 2024; 59:747-753. [PMID: 38889240 DOI: 10.1097/rli.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVES Compelling evidence indicates a significant involvement of cortical lesions in the progressive phase of multiple sclerosis (MS), significantly contributing to late-stage disability. Despite the promise of ultra-high-field magnetic resonance imaging (MRI) in detecting cortical lesions, current evidence falls short in providing insights into the existence of such lesions during the early stages of MS or their underlying cause. This study delineated, at the early stage of MS, (1) the prevalence and spatial distribution of cortical lesions identified by 7 T MRI, (2) their relationship with white matter lesions, and (3) their clinical implications. MATERIALS AND METHODS Twenty individuals with early-stage relapsing-remitting MS (disease duration <1 year) underwent a 7 T MRI session involving T1-weighted MP2RAGE, T2*-weighted multiGRE, and T2-weighted FLAIR sequences for cortical and white matter segmentation. Disability assessments included the Expanded Disability Status Scale, the Multiple Sclerosis Functional Composite, and an extensive evaluation of cognitive function. RESULTS Cortical lesions were detected in 15 of 20 patients (75%). MP2RAGE revealed a total of 190 intracortical lesions (median, 4 lesions/case [range, 0-44]) and 216 leukocortical lesions (median, 2 lesions/case [range, 0-75]). Although the number of white matter lesions correlated with the total number of leukocortical lesions ( r = 0.91, P < 0.001), no correlation was observed between the number of white matter or leukocortical lesions and the number of intracortical lesions. Furthermore, the number of leukocortical lesions but not intracortical or white-matter lesions was significantly correlated with cognitive impairment ( r = 0.63, P = 0.04, corrected for multiple comparisons). CONCLUSIONS This study highlights the notable prevalence of cortical lesions at the early stage of MS identified by 7 T MRI. There may be a potential divergence in the underlying pathophysiological mechanisms driving distinct lesion types, notably between intracortical lesions and white matter/leukocortical lesions. Moreover, during the early disease phase, leukocortical lesions more effectively accounted for cognitive deficits.
Collapse
Affiliation(s)
- Pierre Durozard
- From the Aix Marseille Univ, CNRS, CRMBM, Marseille, France (P.D., A.M., W.Z., J.-P.S., A.R., M.G., A.T., H.D., J.-P.R., B.A., J.P.); Aix Marseille Univ, APHM, Pôle de Neurosciences Cliniques, MICeME, Marseille, France (A.M., C.B., A.R., S.D., B.A., J.P.); Aix Marseille Univ, APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France (J.-P.S., M.G.); and CRC-SEP Corse, Centre Hospitalier d'Ajaccio, Ajaccio, France (P.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Azilinon M, Wang HE, Makhalova J, Zaaraoui W, Ranjeva JP, Bartolomei F, Guye M, Jirsa V. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Netw Neurosci 2024; 8:673-696. [PMID: 39355432 PMCID: PMC11340996 DOI: 10.1162/netn_a_00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Huifang E Wang
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| | - Julia Makhalova
- APHM, Timone University Hospital, CEMEREM, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| |
Collapse
|
3
|
Wu W, Francis H, Lucien A, Wheeler TA, Gandy M. The Prevalence of Cognitive Impairment in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09640-8. [PMID: 38587704 DOI: 10.1007/s11065-024-09640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
It is increasingly recognized that cognitive symptoms are a common sequelae of relapsing-remitting multiple sclerosis and are associated with adverse functional consequences. However, estimates of cognitive impairment (CIm) prevalence vary widely. This study aimed to determine the pooled prevalence of CIm among adults with RRMS and investigate moderators of prevalence rates. Following prospective registration (PROSPERO; CRD42021281815), electronic databases (Embase, Scopus, Medline, and PsycINFO) were searched from inception until March 2023. Eligible studies reported the prevalence of CIm among adults with RRMS, as determined through standardized neuropsychological testing and defined as evidence of reduced performance across at least two cognitive domains (e.g., processing speed, attention) relative to normative samples, healthy controls, or premorbid estimates. The electronic database search yielded 8695 unique records, of which 50 met selection criteria. The pooled prevalence of cognitive impairment was 32.5% (95% confidence interval 29.3-36.0%) across 5859 participants. Mean disease duration and age were significant predictors of cognitive impairment prevalence, with samples with longer disease durations and older age reporting higher prevalence rates. Studies which administered more extensive test batteries also reported significantly higher cognitive impairment prevalence. Approximately one third of adults with RRMS experience clinical levels of CIm. This finding supports the use of routine cognitive testing to enable early detection of CIm, and to identify individuals who may benefit from additional cognitive and functional support during treatment planning.
Collapse
Affiliation(s)
- Wendy Wu
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Heather Francis
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Neurology Department, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Abbie Lucien
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Tyler-Ann Wheeler
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Milena Gandy
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Wilferth T, Mennecke A, Huhn K, Uder M, Doerfler A, Schmidt M, Nagel AM. Influence of Residual Quadrupolar Interaction on Quantitative Sodium Brain Magnetic Resonance Imaging of Patients With Multiple Sclerosis. Invest Radiol 2023; 58:730-739. [PMID: 37185832 DOI: 10.1097/rli.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The purpose of this work was to evaluate the influence of residual quadrupolar interaction on the determination of human brain apparent tissue sodium concentrations (aTSCs) using quantitative sodium magnetic resonance imaging ( 23 Na MRI) in healthy controls (HCs) and patients with multiple sclerosis (MS). Especially, it was investigated if the more detailed examination of residual quadrupolar interaction effects enables further analysis of the observed 23 Na MRI signal increase in MS patients. MATERIALS AND METHODS 23 Na MRI with a 7 T MR system was performed on 21 HC and 50 MS patients covering all MS subtypes (25 patients with relapsing-remitting MS, 14 patients with secondary progressive MS, and 11 patients with primary progressive MS) using 2 different 23 Na pulse sequences for quantification: a commonly used standard sequence (aTSC Std ) as well as a sequence with shorter excitation pulse length and lower flip angle for minimizing signal loss resulting from residual quadrupolar interactions (aTSC SP ). Apparent tissue sodium concentration was determined using the same postprocessing pipeline including correction of the receive profile of the radiofrequency coil, partial volume correction, and relaxation correction. Spin dynamic simulations of spin-3/2 nuclei were performed to aid in the understanding of the measurement results and to get deeper insight in the underlying mechanisms. RESULTS In normal-appearing white matter (NAWM) of HC and all MS subtypes, the aTSC SP values were approximately 20% higher than the aTSC Std values ( P < 0.001). In addition, the ratio aTSC SP /aTSC Std was significantly higher in NAWM than in normal-appearing gray matter (NAGM) for all subject cohorts ( P < 0.002). In NAWM, aTSC Std values were significantly higher in primary progressive MS compared with HC ( P = 0.01) as well as relapsing-remitting MS ( P = 0.03). However, in contrast, no significant differences between the subject cohorts were found for aTSC SP . Spin simulations assuming the occurrence of residual quadrupolar interaction in NAWM were in good accordance with the measurement results, in particular, the ratio aTSC SP /aTSC Std in NAWM and NAGM. CONCLUSIONS Our results showed that residual quadrupolar interactions in white matter regions of the human brain have an influence on aTSC quantification and therefore must be considered, especially in pathologies with expected microstructural changes such as loss of myelin in MS. Furthermore, the more detailed examination of residual quadrupolar interactions may lead to a better understanding of the pathologies themselves.
Collapse
Affiliation(s)
| | | | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | | | | | | | | |
Collapse
|
6
|
Ricciardi A, Grussu F, Kanber B, Prados F, Yiannakas MC, Solanky BS, Riemer F, Golay X, Brownlee W, Ciccarelli O, Alexander DC, Gandini Wheeler-Kingshott CAM. Patterns of inflammation, microstructural alterations, and sodium accumulation define multiple sclerosis subtypes after 15 years from onset. Front Neuroinform 2023; 17:1060511. [PMID: 37035717 PMCID: PMC10076673 DOI: 10.3389/fninf.2023.1060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Conventional MRI is routinely used for the characterization of pathological changes in multiple sclerosis (MS), but due to its lack of specificity is unable to provide accurate prognoses, explain disease heterogeneity and reconcile the gap between observed clinical symptoms and radiological evidence. Quantitative MRI provides measures of physiological abnormalities, otherwise invisible to conventional MRI, that correlate with MS severity. Analyzing quantitative MRI measures through machine learning techniques has been shown to improve the understanding of the underlying disease by better delineating its alteration patterns. Methods In this retrospective study, a cohort of healthy controls (HC) and MS patients with different subtypes, followed up 15 years from clinically isolated syndrome (CIS), was analyzed to produce a multi-modal set of quantitative MRI features encompassing relaxometry, microstructure, sodium ion concentration, and tissue volumetry. Random forest classifiers were used to train a model able to discriminate between HC, CIS, relapsing remitting (RR) and secondary progressive (SP) MS patients based on these features and, for each classification task, to identify the relative contribution of each MRI-derived tissue property to the classification task itself. Results and discussion Average classification accuracy scores of 99 and 95% were obtained when discriminating HC and CIS vs. SP, respectively; 82 and 83% for HC and CIS vs. RR; 76% for RR vs. SP, and 79% for HC vs. CIS. Different patterns of alterations were observed for each classification task, offering key insights in the understanding of MS phenotypes pathophysiology: atrophy and relaxometry emerged particularly in the classification of HC and CIS vs. MS, relaxometry within lesions in RR vs. SP, sodium ion concentration in HC vs. CIS, and microstructural alterations were involved across all tasks.
Collapse
Affiliation(s)
- Antonio Ricciardi
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Baris Kanber
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- eHealth Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Bhavana S. Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Wallace Brownlee
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- NIHR UCLH Biomedical Research Centre, London, United Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Ruck L, Mennecke A, Wilferth T, Lachner S, Müller M, Egger N, Doerfler A, Uder M, Nagel AM. Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. Magn Reson Med 2023; 89:1102-1116. [PMID: 36373186 DOI: 10.1002/mrm.29476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the classifiability of small multiple sclerosis (MS)-like lesions in simulated sodium (23 Na) MRI for different 23 Na MRI contrasts and reconstruction methods. METHODS 23 Na MRI and 23 Na inversion recovery (IR) MRI of a phantom and simulated brain with and without lesions of different volumes (V = 1.3-38.2 nominal voxels) were simulated 100 times by adding Gaussian noise matching the SNR of real 3T measurements. Each simulation was reconstructed with four different reconstruction methods (Gridding without and with Hamming filter, Compressed sensing (CS) reconstruction without and with anatomical 1 H prior information). Based on the mean signals within the lesion volumes of simulations with and without lesions, receiver operating characteristics (ROC) were determined and the area under the curve (AUC) was calculated to assess the classifiability for each lesion volume. RESULTS Lesions show higher classifiability in 23 Na MRI than in 23 Na IR MRI. For typical parameters and SNR of a 3T scan, the voxel normed minimal classifiable lesion volume (AUC > 0.9) is 2.8 voxels for 23 Na MRI and 19 voxels for 23 Na IR MRI, respectively. In terms of classifiability, Gridding with Hamming filter and CS without anatomical 1 H prior outperform CS reconstruction with anatomical 1 H prior. CONCLUSION Reliability of lesion classifiability strongly depends on the lesion volume and the 23 Na MRI contrast. Additional incorporation of 1 H prior information in the CS reconstruction was not beneficial for the classification of small MS-like lesions in 23 Na MRI.
Collapse
Affiliation(s)
- Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Ridley B, Morsillo F, Zaaraoui W, Nonino F. Variability by region and method in human brain sodium concentrations estimated by 23Na magnetic resonance imaging: a meta-analysis. Sci Rep 2023; 13:3222. [PMID: 36828873 PMCID: PMC9957999 DOI: 10.1038/s41598-023-30363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Sodium imaging (23Na-MRI) is of interest in neurological conditions given potential sensitivity to the physiological and metabolic status of tissues. Benchmarks have so far been restricted to parenchyma or grey/white matter (GM/WM). We investigate (1) the availability of evidence, (2) regional pooled estimates and (3) variability attributable to region/methodology. MEDLINE literature search for tissue sodium concentration (TSC) measured in specified 'healthy' brain regions returned 127 reports, plus 278 retrieved from bibliographies. 28 studies met inclusion criteria, including 400 individuals. Reporting variability led to nested data structure, so we used multilevel meta-analysis and a random effects model to pool effect sizes. The pooled mean from 141 TSC estimates was 40.51 mM (95% CI 37.59-43.44; p < 0.001, I2Total=99.4%). Tissue as a moderator was significant (F214 = 65.34, p-val < .01). Six sub-regional pooled means with requisite statistical power were derived. We were unable to consider most methodological and demographic factors sought because of non-reporting, but each factor included beyond tissue improved model fit. Significant residual heterogeneity remained. The current estimates provide an empirical point of departure for better understanding in 23Na-MRI. Improving on current estimates supports: (1) larger, more representative data collection/sharing, including (2) regional data, and (3) agreement on full reporting standards.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Ben Ridley, Epidemiologia e Statistica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Padiglione G, Via Altura, 3, 40139, Bologna, Italy.
| | - Filomena Morsillo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital de La Timone, CEMEREM, Marseille, France
| | - Francesco Nonino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
10
|
Vaeggemose M, Schulte RF, Laustsen C. Clinically feasible B 1 field correction for multi-organ sodium imaging at 3 T. NMR IN BIOMEDICINE 2023; 36:e4835. [PMID: 36115017 PMCID: PMC10078323 DOI: 10.1002/nbm.4835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sodium MRI allows the non-invasive quantification of intra-organ sodium concentration. RF inhomogeneity introduces uncertainty in this estimated concentration. B1 field corrections can be used to overcome some of these limitations. However, the low signal-to-noise ratio in sodium MRI makes accurate B1 mapping in reasonable scan times challenging. The study aims to evaluate Bloch-Siegert off-resonance (BLOSI) B1 field correction for sodium MRI using a 3D Fermat looped, orthogonally encoded trajectories (FLORET) read-out trajectory. We propose a clinically feasible B1 field map correction method for sodium imaging at 3 T, evaluating five healthy subjects' brain, heart blood, kidneys, and thigh muscle. We scanned the subjects twice for repeatability measures and used sodium phantoms to determine organ total sodium concentration. Conventional proton scans were compared with sodium images for organ structural integrity. The BLOSI approach based on the 3D FLORET read-out trajectory was used in B1 field correction and 3D density-adapted radial acquisition for sodium imaging. Results indicate improvements in sodium imaging based on B1 field correction in a clinically feasible protocol. Improvements are determined in all organs by enhanced anatomical representation, organ homogeneity, and an increase in the total sodium concentration after applying a B1 field correction. The proposed BLOSI-based B1 field correction using a 3D FLORET read-out trajectory is clinically feasible for sodium imaging, which is shown in the brain, heart, kidney, and thigh muscle. This supports using fast B1 field mapping in the clinical setting.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE HealthcareBrondbyDenmark
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
11
|
Adlung A, Licht C, Reichert S, Özdemir S, Mohamed SA, Samartzi M, Fatar M, Gass A, Prost EN, Schad LR. Quantification of tissue sodium concentration in the ischemic stroke: A comparison between external and internal references for 23Na MRI. J Neurosci Methods 2022; 382:109721. [PMID: 36202191 DOI: 10.1016/j.jneumeth.2022.109721] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Anne Adlung
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Christian Licht
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Simon Reichert
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Safa Özdemir
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sherif A Mohamed
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Germany; Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
| | - Melina Samartzi
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Germany
| | - Marc Fatar
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center of Translational Neurosciences (MCTN), Heidelberg University, Germany
| | - Eva Neumaier Prost
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
12
|
Azilinon M, Makhalova J, Zaaraoui W, Medina Villalon S, Viout P, Roussel T, El Mendili MM, Ridley B, Ranjeva J, Bartolomei F, Jirsa V, Guye M. Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy. Hum Brain Mapp 2022; 44:825-840. [PMID: 36217746 PMCID: PMC9842896 DOI: 10.1002/hbm.26102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, CEMEREMMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Patrick Viout
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Tangi Roussel
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Mohamed M. El Mendili
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Jean‐Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| |
Collapse
|
13
|
Maarouf A, Audoin B, Gherib S, El Mendili MM, Viout P, Pariollaud F, Boutière C, Rico A, Guye M, Ranjeva JP, Zaaraoui W, Pelletier J. Grey-matter sodium concentration as an individual marker of multiple sclerosis severity. Mult Scler 2022; 28:1903-1912. [PMID: 35723278 DOI: 10.1177/13524585221102587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Quantification of brain injury in patients with variable disability despite similar disease duration may be relevant to identify the mechanisms underlying disability in multiple sclerosis (MS). We aimed to compare grey-matter sodium abnormalities (GMSAs), a parameter reflecting neuronal and astrocyte dysfunction, in MS patients with benign multiple sclerosis (BMS) and non-benign multiple sclerosis (NBMS). METHODS We identified never-treated BMS patients in our local MS database of 1352 patients. A group with NBMS was identified with same disease duration. All participants underwent 23Na magnetic resonance imaging (MRI). The existence of GMSA was detected by statistical analysis. RESULTS In total, 102 individuals were included (21 BMS, 25 NBMS and 56 controls). GMSA was detected in 10 BMS and 19 NBMS (11/16 relapsing-remitting multiple sclerosis (RRMS) and 8/9 secondary progressive multiple sclerosis (SPMS) patients) (p = 0.05). On logistic regression including the presence or absence of GMSA, thalamic volume, cortical grey-matter volume and T2-weighted lesion load, thalamic volume was independently associated with BMS status (odds ratio (OR) = 0.64 for each unit). Nonetheless, the absence of GMSA was independently associated when excluding patients with significant cognitive alteration (n = 7) from the BMS group (OR = 4.6). CONCLUSION Detection of GMSA in individuals and thalamic volume are promising to differentiate BMS from NBMS as compared with cortical or whole grey-matter atrophy and T2-weighted lesions.
Collapse
Affiliation(s)
- Adil Maarouf
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Soraya Gherib
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | | | - Patrick Viout
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | | | - Clémence Boutière
- APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Audrey Rico
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | | | - Wafaa Zaaraoui
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | - Jean Pelletier
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France/APHM, Hôpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| |
Collapse
|
14
|
Bhatia A, Lee VK, Qian Y, Paldino MJ, Ceschin R, Hect J, Mountz JM, Sun D, Kohanbash G, Pollack IF, Jakacki RI, Boada F, Panigrahy A. Quantitative Sodium ( 23Na) MRI in Pediatric Gliomas: Initial Experience. Diagnostics (Basel) 2022; 12:1223. [PMID: 35626378 PMCID: PMC9140048 DOI: 10.3390/diagnostics12051223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Background: 23Na MRI correlates with tumor proliferation, and studies in pediatric patients are lacking. The purpose of the study: (1) to compare total sodium concentration (TSC) between pediatric glioma and non-neoplastic brain tissue using 23Na MRI; (2) compare tissue conspicuity of bound sodium concentration (BSC) using 23Na MRI dual echo relative to TSC imaging. Methods: TSC was measured in: (1) non-neoplastic brain tissues and (2) three types of manually segmented gliomas (diffuse intrinsic brainstem glioma (DIPG), recurrent supratentorial low-grade glioma (LGG), and high-grade glioma (HGG)). In a subset of patients, serial changes in both TSC and BSC (dual echo 23Na MRI) were assessed. Results: Twenty-six pediatric patients with gliomas (median age of 12.0 years, range 4.9−23.3 years) were scanned with 23Na MRI. DIPG treated with RT demonstrated higher TSC values than the uninvolved infratentorial tissues (p < 0.001). Recurrent supratentorial LGG and HGG exhibited higher TSC values than the uninvolved white matter (WM) and gray matter (GM) (p < 0.002 for LGG, and p < 0.02 for HGG). The dual echo 23Na MRI suppressed the sodium signal within both CSF and necrotic foci. Conclusion: Quantitative 23Na MRI of pediatric gliomas demonstrates a range of values that are higher than non-neoplastic tissues. Dual echo 23Na MRI of BCS improves tissue conspicuity relative to TSC imaging.
Collapse
Affiliation(s)
- Aashim Bhatia
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19096, USA
| | - Vincent Kyu Lee
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (V.K.L.); (M.J.P.); (R.C.); (J.H.); (J.M.M.); (A.P.)
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yongxian Qian
- Center for Biomedical Imaging, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (Y.Q.); (R.I.J.)
| | - Michael J. Paldino
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (V.K.L.); (M.J.P.); (R.C.); (J.H.); (J.M.M.); (A.P.)
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (V.K.L.); (M.J.P.); (R.C.); (J.H.); (J.M.M.); (A.P.)
| | - Jasmine Hect
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (V.K.L.); (M.J.P.); (R.C.); (J.H.); (J.M.M.); (A.P.)
| | - James M. Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (V.K.L.); (M.J.P.); (R.C.); (J.H.); (J.M.M.); (A.P.)
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Gary Kohanbash
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (G.K.); (I.F.P.)
| | - Ian F. Pollack
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (G.K.); (I.F.P.)
| | - Regina I. Jakacki
- Center for Biomedical Imaging, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (Y.Q.); (R.I.J.)
| | - Fernando Boada
- New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (V.K.L.); (M.J.P.); (R.C.); (J.H.); (J.M.M.); (A.P.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
15
|
Handa P, Samkaria A, Sharma S, Arora Y, Mandal PK. Comprehensive Account of Sodium Imaging and Spectroscopy for Brain Research. ACS Chem Neurosci 2022; 13:859-875. [PMID: 35324144 DOI: 10.1021/acschemneuro.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sodium (23Na) is a vital component of neuronal cells and plays a key role in various signal transmission processes. Hence, information on sodium distribution in the brain using magnetic resonance imaging (MRI) provides useful information on neuronal health. 23Na MRI and MR spectroscopy (MRS) improve the diagnosis, prognosis, and clinical monitoring of neurological diseases but confront some inherent limitations that lead to low signal-to-noise ratio, longer scan time, and diminished partial volume effects. Recent advancements in multinuclear MR technology have helped in further exploration in this domain. We aim to provide a comprehensive description of 23Na MRI and MRS for brain research including the following aspects: (a) theoretical background for understanding 23Na MRI and MRS fundamentals; (b) technological advancements of 23Na MRI with respect to pulse sequences, RF coils, and sodium compartmentalization; (c) applications of 23Na MRI in the early diagnosis and prognosis of various neurological disorders; (d) structural-chronological evolution of sodium spectroscopy in terms of its numerous applications in human studies; (e) the data-processing tools utilized in the quantitation of sodium in the respective anatomical regions.
Collapse
Affiliation(s)
- Palak Handa
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3010, Australia
| |
Collapse
|
16
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Jandric D, Doshi A, Scott R, Paling D, Rog D, Chataway J, Schoonheim M, Parker G, Muhlert N. A systematic review of resting state functional MRI connectivity changes and cognitive impairment in multiple sclerosis. Brain Connect 2021; 12:112-133. [PMID: 34382408 DOI: 10.1089/brain.2021.0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Cognitive impairment in multiple sclerosis (MS) is increasingly being investigated with resting state functional MRI (rs-fMRI) functional connectivity (FC) . However, results remain difficult to interpret, showing both high and low FC associated with cognitive impairment. We conducted a systematic review of rs-fMRI studies in MS to understand whether the direction of FC change relates to cognitive dysfunction, and how this may be influenced by the choice of methodology. METHODS Embase, Medline and PsycINFO were searched for studies assessing cognitive function and rs-fMRI FC in adults with MS. RESULTS Fifty-seven studies were included in a narrative synthesis. Of these, 50 found an association between cognitive impairment and FC abnormalities. Worse cognition was linked to high FC in 18 studies, and to low FC in 17 studies. Nine studies found patterns of both high and low FC related to poor cognitive performance, in different regions or for different MR metrics. There was no clear link to increased FC during early stages of MS and reduced FC in later stages, as predicted by common models of MS pathology. Throughout, we found substantial heterogeneity in study methodology, and carefully consider how this may impact on the observed findings. DISCUSSION These results indicate an urgent need for greater standardisation in the field - in terms of the choice of MRI analysis and the definition of cognitive impairment. This will allow us to use rs-fMRI FC as a biomarker in future clinical studies, and as a tool to understand mechanisms underpinning cognitive symptoms in MS.
Collapse
Affiliation(s)
- Danka Jandric
- The University of Manchester, 5292, Oxford Road, Manchester, United Kingdom of Great Britain and Northern Ireland, M13 9PL;
| | - Anisha Doshi
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Richelle Scott
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - David Paling
- Royal Hallamshire Hospital, 105629, Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland;
| | - David Rog
- Salford Royal Hospital, 105621, Salford, Salford, United Kingdom of Great Britain and Northern Ireland;
| | - Jeremy Chataway
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Menno Schoonheim
- Amsterdam UMC Locatie VUmc, 1209, Anatomy & Neurosciences, Amsterdam, Noord-Holland, Netherlands;
| | - Geoff Parker
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland.,The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - Nils Muhlert
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
18
|
Stobbe R, Boyd A, Smyth P, Emery D, Valdés Cabrera D, Beaulieu C. Sodium Intensity Changes Differ Between Relaxation- and Density-Weighted MRI in Multiple Sclerosis. Front Neurol 2021; 12:693447. [PMID: 34335450 PMCID: PMC8323606 DOI: 10.3389/fneur.2021.693447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: The source of Tissue Sodium Concentration (TSC) increase in Multiple Sclerosis (MS) remains unclear, and could be attributed to altered intracellular sodium concentration or tissue microstructure. This paper investigates sodium in MS using three new MRI sequences. Methods: Three sodium scans were acquired at 4.7 T from 30 patients (11 relapsing-remitting, 10 secondary-progressive, 9 primary-progressive) and 9 healthy controls including: Density-Weighted (NaDW), with very short 30° excitation for more accurate TSC measurement; Projection Acquisition with Coherent MAgNetization (NaPACMAN), designed for enhanced relaxation-based contrast; and Soft Inversion Recovery FLuid Attenuation (NaSIRFLA), developed to reduce fluid space contribution. Signal was measured in both lesions (n = 397) and normal appearing white matter (NAWM) relative to controls in the splenium of corpus callosum and the anterior and posterior limbs of internal capsule. Correlations with clinical and cognitive evaluations were tested over all MS patients. Results: Sodium intensity in MS lesions was elevated over control WM by a greater amount for NaPACMAN (75%) than NaDW (35%), the latter representing TSC. In contrast, NaSIRFLA exhibited lower intensity, but only for region specific analysis in the SCC (-7%). Sodium intensity in average MS NAWM was not significantly different than control WM for either of the three scans. NaSIRFLA in the average NAWM and specifically the posterior limb of internal capsules positively correlated with the Paced Auditory Serial Addition Test (PASAT). Discussion: Lower NaSIRFLA signal in lesions and ~2× greater NaPACMAN signal elevation over control WM than NaDW can be explained with a demyelination model that also includes edema. A NAWM demyelination model that includes tissue atrophy suggests no signal change for NaSIRFLA, and only slightly greater NAWM signal than control WM for both NaDW and NaPACMAN, reflecting experimental results. Models were derived from previous total and myelin water fraction study in MS with T2-relaxometry, and for the first time include sodium within the myelin water space. Reduced auditory processing association with lower signal on NaSIRFLA cannot be explained by greater demyelination and its modeled impact on the three sodium MRI sequences. Alternative explanations include intra- or extracellular sodium concentration change. Relaxation-weighted sodium MRI in combination with sodium-density MRI may help elucidate microstructural and metabolic changes in MS.
Collapse
Affiliation(s)
- Robert Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Annie Boyd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Penelope Smyth
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Diana Valdés Cabrera
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Collorone S, Prados F, Kanber B, Cawley NM, Tur C, Grussu F, Solanky BS, Yiannakas M, Davagnanam I, Wheeler-Kingshott CAMG, Barkhof F, Ciccarelli O, Toosy AT. Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event. Brain 2021; 144:1409-1421. [PMID: 33903905 PMCID: PMC8219367 DOI: 10.1093/brain/awab043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
In early multiple sclerosis, a clearer understanding of normal-brain tissue microstructural and metabolic abnormalities will provide valuable insights into its pathophysiology. We used multi-parametric quantitative MRI to detect alterations in brain tissues of patients with their first demyelinating episode. We acquired neurite orientation dispersion and density imaging [to investigate morphology of neurites (dendrites and axons)] and 23Na MRI (to estimate total sodium concentration, a reflection of underlying changes in metabolic function). In this cross-sectional study, we enrolled 42 patients diagnosed with clinically isolated syndrome or multiple sclerosis within 3 months of their first demyelinating event and 16 healthy controls. Physical and cognitive scales were assessed. At 3 T, we acquired brain and spinal cord structural scans, and neurite orientation dispersion and density imaging. Thirty-two patients and 13 healthy controls also underwent brain 23Na MRI. We measured neurite density and orientation dispersion indices and total sodium concentration in brain normal-appearing white matter, white matter lesions, and grey matter. We used linear regression models (adjusting for brain parenchymal fraction and lesion load) and Spearman correlation tests (significance level P ≤ 0.01). Patients showed higher orientation dispersion index in normal-appearing white matter, including the corpus callosum, where they also showed lower neurite density index and higher total sodium concentration, compared with healthy controls. In grey matter, compared with healthy controls, patients demonstrated: lower orientation dispersion index in frontal, parietal and temporal cortices; lower neurite density index in parietal, temporal and occipital cortices; and higher total sodium concentration in limbic and frontal cortices. Brain volumes did not differ between patients and controls. In patients, higher orientation dispersion index in corpus callosum was associated with worse performance on timed walk test (P = 0.009, B = 0.01, 99% confidence interval = 0.0001 to 0.02), independent of brain and lesion volumes. Higher total sodium concentration in left frontal middle gyrus was associated with higher disability on Expanded Disability Status Scale (rs = 0.5, P = 0.005). Increased axonal dispersion was found in normal-appearing white matter, particularly corpus callosum, where there was also axonal degeneration and total sodium accumulation. The association between increased axonal dispersion in the corpus callosum and worse walking performance implies that morphological and metabolic alterations in this structure could mechanistically contribute to disability in multiple sclerosis. As brain volumes were neither altered nor related to disability in patients, our findings suggest that these two advanced MRI techniques are more sensitive at detecting clinically relevant pathology in early multiple sclerosis.
Collapse
Affiliation(s)
- Sara Collorone
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Universitat Oberta de Catalunya, Barcelona, Spain
| | - Baris Kanber
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Niamh M Cawley
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing (CMIC), Department of Computer Sciences, University College London, London, UK
| | - Bhavana S Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Indran Davagnanam
- Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, The Netherlands.,National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Ahmed T Toosy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
20
|
Petracca M, Pontillo G, Moccia M, Carotenuto A, Cocozza S, Lanzillo R, Brunetti A, Brescia Morra V. Neuroimaging Correlates of Cognitive Dysfunction in Adults with Multiple Sclerosis. Brain Sci 2021; 11:346. [PMID: 33803287 PMCID: PMC8000635 DOI: 10.3390/brainsci11030346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a frequent and meaningful symptom in multiple sclerosis (MS), caused by the accrual of brain structural damage only partially counteracted by effective functional reorganization. As both these aspects can be successfully investigated through the application of advanced neuroimaging, here, we offer an up-to-date overview of the latest findings on structural, functional and metabolic correlates of cognitive impairment in adults with MS, focusing on the mechanisms sustaining damage accrual and on the identification of useful imaging markers of cognitive decline.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80125 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| |
Collapse
|
21
|
Stellmann JP, Wanke N, Maarouf A, Gellißen S, Heesen C, Audoin B, Gold SM, Zaaraoui W, Poettgen J. Cognitive performance shows domain specific associations with regional cortical thickness in multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 30:102606. [PMID: 33744503 PMCID: PMC7985400 DOI: 10.1016/j.nicl.2021.102606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Cognitive impairment correlates with loss of cortical thickness in MS. Cognitive tests show distinctive regional associations with cortical thickness. Some regions, such as the left insula, correlate with multiple tests. Associations patterns seem reproducible in patients with very mild impairment. Better localization of cognitive functions may improve future MRI studies.
Multiple Sclerosis (MS) patients often suffer from significant cognitive impairment. Earlier research has shown relationships between regional cortical atrophy and cognitive deterioration. However, due to a large number of neuropsychological assessments and a heterogenous pattern of cognitive deficits in MS patients, reported associations patterns are also heterogenous. Using an extensive neuropsychological battery of 23 different tasks, we explored domain (attention/information processing, memory, spatial processing, executive functioning) and task-specific associations with regional cortical thickness in a representative sample of MS patients (N = 97). Cortical regions associated with multiple cognitive tasks in the left hemisphere were predominantly located in the inferior insula (attention p < 0.001, memory p = 0.047, spatial processing p = 0.004, executive functioning p = 0.037), the gyrus frontalis superior (attention p = 0.015, memory p = 0.037, spatial processing p = 0.033, executive functioning p = 0.017) and temporal medial (attention p < 0.001, memory two clusters p = 0.016 and p < 0.001, executive functioning p = 0.016). In the right hemisphere, we detected the strongest association in the sulcus interparietalis with five cluster (attention SDMT p = 0.003 and TAP_DA p < 0.001; memory Rey recall p = 0.013 and VLMT verbal learning p = 0.016; spatial processing Rey copy p < 0.001). We replicated parts of our results in an independent sample of 30 mildly disabled MS patients. Moreover, comparisons to 29 healthy controls showed that the regional associations seemed to represent rather pathophysiological dependency than a physiological one. We believe that our results may prove useful in diagnosis and rehabilitation of cognitive impairments and may serve as guidance in future magnetic resonance imaging (MRI) studies.
Collapse
Affiliation(s)
- Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - Nadine Wanke
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany
| | - Adil Maarouf
- APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Susanne Gellißen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Bertrand Audoin
- APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité Universitätsmedizin Berlin, Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Wafaa Zaaraoui
- APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jana Poettgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
22
|
Bruschi N, Boffa G, Inglese M. Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice. Eur Radiol Exp 2020; 4:59. [PMID: 33089380 PMCID: PMC7578213 DOI: 10.1186/s41747-020-00186-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.
Collapse
Affiliation(s)
- Nicolo' Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
- Ospedale Policlinico San Martino, IRCCS, Largo Daneo 3, 16100, Genoa, Italy.
| |
Collapse
|
23
|
Sorensen PS, Sellebjerg F, Hartung HP, Montalban X, Comi G, Tintoré M. The apparently milder course of multiple sclerosis: changes in the diagnostic criteria, therapy and natural history. Brain 2020; 143:2637-2652. [DOI: 10.1093/brain/awaa145] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
In the past decade, changes have occurred in the spectrum of multiple sclerosis courses. The natural history of multiple sclerosis appears milder from the first sign of demyelinating disease to the progressive course, probably as a result of an interplay between several factors including changes in the diagnostic criteria, changes in the epidemiology of multiple sclerosis, impact of early and appropriate disease-modifying treatment and improvement of the general state of health in the population. It has been suggested to regard incidental findings of demyelinating lesions in MRI in individuals without any history of clinical symptoms consistent with neurological dysfunction, so-called radiological isolated syndrome, as the initial course of multiple sclerosis. New diagnostic criteria have enabled the multiple sclerosis diagnosis in many patients at the first clinical demyelinating event, clinically isolated syndrome. The remaining patients with clinically isolated syndrome have a more benign prognosis, and for relapsing-remitting multiple sclerosis, the prognosis has become more favourable. Reduced disease activity in patients with relapsing-remitting multiple sclerosis can partly be ascribed to more efficacious new disease-modifying therapies but decrease in disease activity has also be seen in placebo-treated patients in clinical trials. This may be explained by several factors: change in the diagnostic criteria, more explicit inclusion criteria, exclusion of high-risk patients e.g. patients with co-morbidities, and more rigorous definitions of relapses and disease worsening. However, these factors also make the disease course in patients treated with disease-modifying therapies seem more favourable. In addition, change in the therapeutic target to stable disease (no evidence of disease activity = no relapses, no disease worsening and no MRI activity) could by itself change the course in relapsing-remitting multiple sclerosis. The effectiveness of disease-modifying drugs has reduced the transition from relapsing-remitting to secondary progressive multiple sclerosis. The concept of progressive multiple sclerosis has also evolved from two very distinct categories (primary progressive and secondary progressive multiple sclerosis) to a unified category of progressive multiple sclerosis, which can then be split into the categories of active or inactive. Also, an increasing tendency to treat progressive multiple sclerosis with disease-modifying therapies may have contributed to change the course in progressive multiple sclerosis. In conclusion, during the past decade the entire course of multiple sclerosis from the first sign of a demyelinating disorder through the progressive course appears to be milder due to a complex interplay of several factors.
Collapse
Affiliation(s)
- Per Soelberg Sorensen
- Danish Multiple Sclerosis Center, Department of Neurology, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark
| | - Hans-Peter Hartung
- Department of Neurology, University Hospital, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Xavier Montalban
- Department of Neurology, Hospital General Universitari Vall D’Hebron, Cemcat, Barcelona, Spain
- Division of Neurology, University of Toronto, St. Michael’s Hospital, Toronto, Canada
| | - Giancarlo Comi
- Department of Neurology and Institute of Experimental Neurology, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D’Hebron, Cemcat, Barcelona, Spain
| |
Collapse
|
24
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
25
|
Riemer F, McHugh D, Zaccagna F, Lewis D, McLean MA, Graves MJ, Gilbert FJ, Parker GJ, Gallagher FA. Measuring tissue sodium concentration: Cross-vendor repeatability and reproducibility of 23 Na-MRI across two sites. J Magn Reson Imaging 2019; 50:1278-1284. [PMID: 30859655 PMCID: PMC6767101 DOI: 10.1002/jmri.26705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sodium MRI (23 Na-MRI)-derived biomarkers such as total sodium concentration (TSC) have the potential to provide information on tumor cellularity and the changes in tumor microstructure that occur following therapy. PURPOSE To evaluate the repeatability and reproducibility of TSC measurements in the brains of healthy volunteers, providing evidence for the technical validation of 23 Na-MRI-derived biomarkers. STUDY TYPE Prospective multicenter study. SUBJECTS Eleven volunteers (32 ± 6 years; eight males, three females) were scanned twice at each of two sites. FIELD STRENGTH/SEQUENCE Comparable 3D-cones 23 Na-MRI ultrashort echo time acquisitions at 3T. ASSESSMENT TSC values, quantified from calibration phantoms placed in the field of view, were obtained from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), based on automated segmentation of coregistered 1 H T1 -weighted images and hand-drawn regions of interest by two readers. STATISTICAL TESTS Coefficients of variation (CoVs) from mean TSC values were used to assess intrasite repeatability and intersite reproducibility. RESULTS Mean GM TSC concentrations (52.1 ± 7.1 mM) were ∼20% higher than for WM (41.8 ± 6.7 mM). Measurements were highly repeatable at both sites with mean scan-rescan CoVs between volunteers and regions of 2% and 4%, respectively. Mean intersite reproducibility CoVs were 3%, 3%, and 6% for WM, GM, and CSF, respectively. DATA CONCLUSION These results demonstrate technical validation of sodium MRI-derived biomarkers in healthy volunteers. We also show that comparable 23 Na imaging of the brain can be implemented across different sites and scanners with excellent repeatability and reproducibility. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1278-1284.
Collapse
Affiliation(s)
- Frank Riemer
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Damien McHugh
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
| | - Fulvio Zaccagna
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Daniel Lewis
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Mary A. McLean
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | | | - Fiona J. Gilbert
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Geoff J.M. Parker
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
- Bioxydyn Ltd.ManchesterUK
| | - Ferdia A. Gallagher
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| |
Collapse
|
26
|
Brownlee WJ, Solanky B, Prados F, Yiannakas M, Da Mota P, Riemer F, Cardoso MJ, Ourselin S, Golay X, Gandini Wheeler-Kingshott C, Ciccarelli O. Cortical grey matter sodium accumulation is associated with disability and secondary progressive disease course in relapse-onset multiple sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:755-760. [PMID: 30948625 PMCID: PMC7611428 DOI: 10.1136/jnnp-2018-319634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/13/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sodium (23Na)-MRI is an emerging imaging technique to investigate in vivo changes in tissue viability, reflecting neuroaxonal integrity and metabolism. Using an optimised 23Na-MRI protocol with smaller voxel sizes and improved tissue contrast, we wanted to investigate whether brain total sodium concentration (TSC) is a biomarker for long-term disease outcomes in a cohort of patients with relapse-onset multiple sclerosis (MS), followed from disease onset. METHODS We performed a cross-sectional study in 96 patients followed up ~ 15 years after a clinically isolated syndrome (CIS) and 34 healthy controls. Disease course was classified as CIS, relapsing-remitting MS or secondary progressive MS (SPMS). We acquired 1H-MRI and 23Na-MRI and calculated the TSC in cortical grey matter (CGM), deep grey matter, normal-appearing white matter (WM) and WM lesions. Multivariable linear regression was used to identify independent associations of tissue-specific TSC with physical disability and cognition, with adjustment for tissue volumes. RESULTS TSC in all tissues was higher in patients with MS compared with healthy controls and patients who remained CIS, with differences driven by patients with SPMS. Higher CGM TSC was independently associated with Expanded Disability Status Scale (R2=0.26), timed 25-foot walk test (R2=0.23), 9-hole peg test (R2=0.23), Paced Auditory Serial Addition Test (R2=0.29), Symbol Digit Modalities Test (R2=0.31) and executive function (R2=0.36) test scores, independent of grey matter atrophy. CONCLUSIONS Sodium accumulation in CGM reflects underlying neuroaxonal metabolic abnormalities relevant to disease course heterogeneity and disability in relapse-onset MS. TSC and should be considered as an outcome measure in future neuroprotection trials.
Collapse
Affiliation(s)
- Wallace J Brownlee
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom
| | - Bhavana Solanky
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Marios Yiannakas
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom
| | - Patricia Da Mota
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom
| | - Frank Riemer
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Manuel Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Sebastian Ourselin
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom
| | - Claudia Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom.,BrainMRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy.,Departmentof Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, United Kingdom.,National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
27
|
Grapperon AM, Ridley B, Verschueren A, Maarouf A, Confort-Gouny S, Fortanier E, Schad L, Guye M, Ranjeva JP, Attarian S, Zaaraoui W. Quantitative Brain Sodium MRI Depicts Corticospinal Impairment in Amyotrophic Lateral Sclerosis. Radiology 2019; 292:422-428. [PMID: 31184559 DOI: 10.1148/radiol.2019182276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects the upper and lower motor neurons. Recent sodium (23Na) MRI studies have shown that abnormal sodium concentration is related to neuronal suffering in neurodegenerative conditions. Purpose To use 23Na MRI to investigate abnormal sodium concentrations and map their distribution in the brains of study participants with ALS as compared with healthy control subjects. Materials and Methods Twenty-seven participants with ALS (mean age, 54 years ± 10 [standard deviation], eight women) and 30 healthy control subjects (mean age, 50 years ± 10; 16 women) were prospectively recruited between September 2015 and October 2017 and were examined by using conventional proton MRI and sodium MRI at 3 T. Voxel-based statistical mapping was used to compare quantitative whole-brain total sodium concentration (TSC) maps in participants with ALS with those in control subjects and to localize regions of abnormal elevated TSC. Potential overlap of abnormal elevated TSC with regions of atrophy as detected with 1H MRI also was investigated. Results Voxel-based statistical mapping analyses revealed higher sodium concentration in motor regions (bilateral precentral gyri, corticospinal tracts, and the corpus callosum) of participants with ALS (two-sample t test, P < .005; age and sex as covariates). In these regions, mean TSC was higher in participants with ALS (mean, 45.6 mmol/L wet tissue ± 3.2) than in control subjects (mean, 41.8 mmol/L wet tissue ± 2.7; P < .001; Cohen d = 1.28). Brain regions showing higher TSC represented a volume of 15.4 cm3 that did not overlap with gray matter atrophy occupying a volume of 16.9 cm3. Elevated TSC correlated moderately with corticospinal conduction failure assessed with transcranial magnetic stimulation in the right upper limb (Spearman ρ = -0.57; 95% confidence interval: -0.78, -0.16; P = .005; n = 23). Conclusion Quantitative 23Na MRI is sensitive to alterations of brain sodium homeostasis within disease-relevant regions in patients with amyotrophic lateral sclerosis (ALS). This supports further investigation of abnormal sodium concentration as a potential marker of neurodegenerative processes in patients with ALS that could be used as a secondary endpoint in clinical trials. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Ben Ridley
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Annie Verschueren
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Adil Maarouf
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Sylviane Confort-Gouny
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Etienne Fortanier
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Lothar Schad
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Maxime Guye
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Jean-Philippe Ranjeva
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Shahram Attarian
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Wafaa Zaaraoui
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| |
Collapse
|
28
|
Jakimovski D, Guan Y, Ramanathan M, Weinstock-Guttman B, Zivadinov R. Lifestyle-based modifiable risk factors in multiple sclerosis: review of experimental and clinical findings. Neurodegener Dis Manag 2019; 9:149-172. [PMID: 31116081 DOI: 10.2217/nmt-2018-0046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a lifelong inflammatory and neurodegenerative disease influenced by multiple lifestyle-based factors. We provide a narrative review of the effects of modifiable risk factors that are identified as being associated with risk to develop MS and/or influencing the future clinical disease outcomes. The emerging data regarding the beneficial effects of diet modifications and exercise are further reviewed. In contrast, obesity and comorbid cardiovascular diseases are associated with increased MS susceptibility and worse disease progression. In addition, the potential influence of smoking, coffee and alcohol consumption on MS onset and disability development are discussed. Successful management of the modifiable risk factors may lead to better long-term outcomes and improve patients' quality of life. MS specialists should participate in educating and facilitating lifestyle-based modifications as part of their neurological consults.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Clinical MRI is of paramount importance for multiple sclerosis diagnosis but lacks the specificity to investigate the pathogenic mechanisms underlying disease onset and progression. The application of advanced MR sequences allows the characterization of diverse and complex pathological mechanisms, granting insights into multiple sclerosis natural history and response to treatment. RECENT FINDINGS This review provides an update on the most recent international guidelines for optimal standard imaging of multiple sclerosis and discusses advantages and limitations of advanced imaging approaches for investigating inflammation, demyelination and neurodegeneration. An overview is provided for methods devoted to imaging leptomeningeal enhancement, microglial activation, demyelination, neuronal metabolic damage and neuronal loss. SUMMARY The application of magnetic resonance (MR) guidelines to standard-of-care MR protocols, although still limited, would substantially contribute to the optimization of multiple sclerosis management. From an academic perspective, different mechanism-specific imaging techniques are available and offer a powerful tool to elucidate multiple sclerosis pathogenesis, monitor disease progression and guide therapeutic choices.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To summarize recent findings from the application of MRI in the diagnostic work-up of patients with suspected multiple sclerosis (MS), and to review the insights into disease pathophysiology and the utility of MRI for monitoring treatment response. RECENT FINDINGS New evidence from the application of MRI in patients with clinically isolated syndromes has guided the 2017 revision of the McDonald criteria for MS diagnosis, which has simplified their clinical use while preserving accuracy. Other MRI measures (e.g., cortical lesions and central vein signs) may improve diagnostic specificity, but their assessment still needs to be standardized, and their reliability confirmed. Novel MRI techniques are providing fundamental insights into the pathological substrates of the disease and are helping to give a better understanding of its clinical manifestations. Combined clinical-MRI measures of disease activity and progression, together with the use of clinically relevant MRI measures (e.g., brain atrophy) might improve treatment monitoring, but these are still not ready for the clinical setting. SUMMARY Advances in MRI technology are improving the diagnostic work-up and monitoring of MS, even in the earliest phases of the disease, and are providing MRI measures that are more specific and sensitive to disease pathological substrates.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
31
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S. Tissue sodium concentration and sodium T 1 mapping of the human brain at 3 T using a Variable Flip Angle method. Magn Reson Imaging 2019; 58:116-124. [PMID: 30695720 DOI: 10.1016/j.mri.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The state-of-the-art method to quantify sodium concentrations in vivo consists in a fully relaxed 3D spin-density (SD) weighted acquisition. Nevertheless, most sodium MRI clinical studies use short-TR SD acquisitions to reduce acquisition durations. We present a clinically viable implementation of the Variable Flip Angle (VFA) method for robust and clinically viable quantification of total sodium concentration (TSC) and longitudinal relaxation rates in vivo in human brain at 3 T. METHODS Two non-Cartesian steady-state spoiled ultrashort echo time (UTE) scans, performed at optimized flip angles, repetition time and pulse length determined under specific absorption rate constraints, are used to simultaneously compute T1 and total sodium concentration (TSC) maps using the VFA method. Images are reconstructed using the non-uniform Fast Fourier Transform algorithm and TSC maps are corrected for possible inhomogeneity of coil transmission and reception profiles. Fractioned acquisitions are used to correct for potential patient motion. TSC quantifications obtained using the VFA method are validated at first in comparison with a fully-relaxed SD acquisition in a calibration phantom. The robustness of similar VFA acquisitions are compared to the short-TR SD approach in vivo on seven healthy volunteers. RESULTS The VFA method resulted in consistent TSC and T1 estimates across our cohort of healthy subjects, with mean TSC of 38.1 ± 5.0 mmol/L and T1 of 39.2 ± 4.4 ms. These results are in agreement with previously reported values in literature TSC estimations and with the predictions of a 2-compartment model. However, the short-TR SD acquisition systematically underestimated the sodium concentration with a mean TSC of 31 ± 4.5 mmol/L. CONCLUSION The VFA method can be applied successfully to image sodium at 3 T in about 20 min and provides robust and intrinsically T1-corrected TSC maps.
Collapse
Affiliation(s)
- Arthur Coste
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Denis Le Bihan
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | |
Collapse
|
33
|
Bydder M, Zaaraoui W, Ridley B, Soubrier M, Bertinetti M, Confort-Gouny S, Schad L, Guye M, Ranjeva JP. Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function. Neuroimage 2018; 184:771-780. [PMID: 30292814 DOI: 10.1016/j.neuroimage.2018.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
Collapse
Affiliation(s)
- Mark Bydder
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Manon Soubrier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Marie Bertinetti
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France.
| |
Collapse
|
34
|
Blunck Y, Moffat BA, Kolbe SC, Ordidge RJ, Cleary JO, Johnston LA. Zero-gradient-excitation ramped hybrid encoding (zG RF -RHE) sodium MRI. Magn Reson Med 2018; 81:1172-1180. [PMID: 30252156 DOI: 10.1002/mrm.27484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Fast bi-exponential transverse signal decay compounds sodium image quality. This work aims at enhancing image characteristics using a special case of ramped hybrid encoding (RHE). Zero-gradient-excitation (zGRF )-RHE provides (1) gradient-free excitation for high flip angle, artifact-free excitation profiles and (2) gradient ramping during dead-time for the optimization of encoding time (tenc ) to reduce T2 * signal decay influence during acquisition. METHODS Radial zGRF -RHE and standard radial UTE were investigated over a range of receiver bandwidths in simulations, phantom and in vivo brain experiments. Central k-space in zGRF -RHE was acquired through single point measurements at the minimum achievable TE. T2 * blurring artifacts and image SNR and CNR were assessed. RESULTS zGRF -RHE enabled 90° flip angle artifact-free excitation, whereas gradient pre-ramping provided greater tenc efficiency for any readout bandwidths. Experiments confirmed simulation results, revealing sharper edge characteristics particularly at short readout durations (TRO ). Significant SNR improvements of up to 4.8% were observed for longer TRO . CONCLUSION zGRF -RHE allows for artifact-free high flip angle excitation with time-efficient encoding improving on image characteristics. This hybrid encoding concept with gradient pre-ramping is trajectory independent and can be introduced in any center-out UTE trajectory design.
Collapse
Affiliation(s)
- Yasmin Blunck
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - Bradford A Moffat
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Roger J Ordidge
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Jon O Cleary
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Leigh A Johnston
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| |
Collapse
|
35
|
Conventional and advanced MRI in multiple sclerosis. Rev Neurol (Paris) 2018; 174:391-397. [DOI: 10.1016/j.neurol.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/28/2022]
|
36
|
Inglese M, Fleysher L, Oesingmann N, Petracca M. Clinical applications of ultra-high field magnetic resonance imaging in multiple sclerosis. Expert Rev Neurother 2018; 18:221-230. [PMID: 29369733 PMCID: PMC6300152 DOI: 10.1080/14737175.2018.1433033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is of paramount importance for the early diagnosis of multiple sclerosis (MS) and MRI findings are part of the MS diagnostic criteria. There is a growing interest in the use of ultra-high-field strength -7 Tesla- (7T) MRI to investigate, in vivo, the pathological substrate of the disease. Areas covered: An overview of 7T MRI applications in MS focusing on increased sensitivity for lesion detection, specificity of the central vein sign and better understanding of MS pathophysiology. Implications for disease diagnosis, monitoring and treatment planning are discussed. Expert commentary: 7T MRI provides increased signal-to-noise and contrast-to-noise-ratio that allow higher spatial resolution and better detection of anatomical and pathological features. The high spatial resolution reachable at 7T has been a game changer for neuroimaging applications not only in MS but also in epilepsy, brain tumors, dementia, and neuro-psychiatric disorders. Furthermore, the first 7T device has recently been cleared for clinical use by the food and drug administration.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Icahn School of Medicine, Mount
Sinai, New York
- Radiology, Icahn School of Medicine, Mount Sinai, New
York
- Neuroscience, Icahn School of Medicine, Mount Sinai, New
York
| | - Lazar Fleysher
- Radiology, Icahn School of Medicine, Mount Sinai, New
York
| | | | - Maria Petracca
- Department of Neurology, Icahn School of Medicine, Mount
Sinai, New York
- Department of Neuroscience, Federico II University, Naples,
Italy
| |
Collapse
|
37
|
Donadieu M, Le Fur Y, Maarouf A, Gherib S, Ridley B, Pini L, Rapacchi S, Confort-Gouny S, Guye M, Schad LR, Maudsley AA, Pelletier J, Audoin B, Zaaraoui W, Ranjeva JP. Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain 23Na-MRI and fast 1H-MRSI study. Mult Scler 2017; 25:39-47. [DOI: 10.1177/1352458517736146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. Objective: To determine in vivo the metabolic counterpart of brain sodium accumulation. Materials/methods: Whole brain 23Na-MR imaging and 3D-1H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T2 lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. Results: MS patients showed significant 23Na accumulations with lower choline and glutamate–glutamine (Glx) levels in GM; 23Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher 23Na, m-Ins levels with lower NAA in WM T2 lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T2 lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T2 lesions. GM Glx levels were associated with clinical scores. Conclusion: Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.
Collapse
Affiliation(s)
- Maxime Donadieu
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/Siemens Healthineers, Saint-Denis, France
| | - Yann Le Fur
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Adil Maarouf
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Soraya Gherib
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Lauriane Pini
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Stanislas Rapacchi
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Jean Pelletier
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| |
Collapse
|
38
|
Blunck Y, Josan S, Taqdees SW, Moffat BA, Ordidge RJ, Cleary JO, Johnston LA. 3D‐multi‐echo radial imaging of
23
Na (3D‐MERINA) for time‐efficient multi‐parameter tissue compartment mapping. Magn Reson Med 2017; 79:1950-1961. [DOI: 10.1002/mrm.26848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Yasmin Blunck
- Biomedical Engineering, University of Melbourne, Parkville, Australia.,Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | | | - Syeda Warda Taqdees
- Biomedical Engineering, University of Melbourne, Parkville, Australia.,Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Roger J Ordidge
- Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Jon O Cleary
- Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Leigh A Johnston
- Biomedical Engineering, University of Melbourne, Parkville, Australia.,Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| |
Collapse
|