1
|
Hu Y, Chen G, Liu Y, Zhang R, Chen J, Zhou J, Zhang Z, Hu J, Liu Q, Zhang G. Factors associated with seizure recurrence in patients undergoing repeat epilepsy surgery: a retrospective analysis. Neurol Res 2025:1-11. [PMID: 40290004 DOI: 10.1080/01616412.2025.2490090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Epilepsy surgery is a crucial intervention for cases of drug-resistant epilepsy, aiming to achieve seizure freedom. Despite significant success rates, some patients continue to experience seizures post-surgery, leading to the need for repeat interventions. METHODS This study employed a retrospective observational design, focusing on patients who underwent repeat epilepsy surgery at our hospital. All patients underwent standardized evaluations, including electroencephalography (EEG), magnetic resonance imaging (MRI), and, in select cases, positron emission tomography (PET) and invasive intracranial electrode monitoring. RESULTS In a retrospective analysis of 43 patients who underwent repeat epilepsy surgery, with an average follow-up of 43.95 months, 53.5% achieved favorable outcomes based on ILAE Class 1 or 2 criteria. Preoperative MRI indicating lesions was associated with a better prognosis, with an odds ratio (OR) of 0.049 (95% CI: 0.003 to 0.873, p = 0.040). Conversely, EEG showing multifocal epileptiform discharges predicted poorer outcomes, with an OR of 25.082 (95% CI: 1.726 to 364.533, p = 0.018). Surgical complications occurred in 30.2% of patients, with visual field defects, mild hemiparesis, and infections being the most common. CONCLUSIONS A thorough assessment involving imaging, EEG, and invasive evaluation indicates that repeat epilepsy surgery is a safe and selective option for patients who have not achieved seizure freedom after initial resective surgery.
Collapse
Affiliation(s)
- Yue Hu
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Yaoling Liu
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| | - Rui Zhang
- Senior Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianwei Chen
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| | - Junjian Zhou
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
| | - Zhaozhao Zhang
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| | - Jianfei Hu
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| | - Qiang Liu
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| | - Guangming Zhang
- Department of Neurosurgery, Aviation General Hospital, Beijing, China
- Center of Epilepsy, Aviation General Hospital, Beijing, China
| |
Collapse
|
2
|
Sainburg LE, Hoang J, Doss DJ, Berry V, Roche A, Lagrange AH, Peterson TE, Smith GT, Englot DJ, Morgan VL. Surgical targeting of lateralized 18F-fluorodeoxyglucose positron emission tomography hypometabolism relates to long-term epilepsy surgery outcomes. Epilepsia 2025. [PMID: 40202811 DOI: 10.1111/epi.18402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Surgical resection of the seizure onset zone can be an effective treatment for patients with drug-resistant focal epilepsy. Clinical, electrophysiological, and imaging data are all gathered prior to surgery to localize the seizure onset zone. However, only ~62% of patients become seizure-free after surgery, highlighting the need for improved methods to prospectively predict seizure recurrence after resection. 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is routinely acquired to guide epilepsy surgery; however, these scans are often assessed qualitatively in the clinic. Here, we quantified the surgical targeting of lateralized FDG-PET hypometabolism and assessed its relationship to surgical outcomes. METHODS We included 55 patients who underwent resective epilepsy surgery (46 with temporal lobe epilepsy). We calculated laterality of the patients' presurgical FDG-PET scans and used pre- and postsurgical magnetic resonance imaging to delineate the surgically resected regions. Surgical targeting of FDG-PET laterality was computed using the discriminability between resected and spared regions statistic. RESULTS We found that surgical targeting of FDG-PET laterality could distinguish temporal lobe epilepsy patients who achieve freedom from disabling seizures in the long term (3 years) from those who do not (area under the curve [AUC] = .83), outperforming the standard clinical assessment (AUC = .68). We additionally found that this method generalized to the nine patients with extratemporal lobe focal epilepsy. SIGNIFICANCE This study highlights the benefit of quantifying FDG-PET to guide epilepsy surgery. The presented quantitative FDG-PET method could be used prospectively in the clinic to aid in surgical guidance and patient counseling.
Collapse
Affiliation(s)
- Lucas E Sainburg
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph Hoang
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Virginia Berry
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Roche
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andre H Lagrange
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Todd E Peterson
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gary T Smith
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Vermeulen I, Mohren R, Neusinger M, Dancker TA, Vandenbosch M, Beckervordersandforth J, Balluff B, Van der Hel RP, Schijns OEMG, Hoogland G, Rijkers K, Cillero-Pastor B. Toward molecular phenotyping of temporal lobe epilepsy by spatial omics. Epilepsia 2025. [PMID: 40110881 DOI: 10.1111/epi.18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE In temporal lobe epilepsy (TLE), detection of the epileptogenic zone predicts a good surgical outcome. When submitted to 18F-fluorodeoxyglucose positron emission tomography (PET), some patients display lateralized, focal hypometabolism in the temporal lobe (PET+), whereas others appear normometabolic (PET-). However, the mechanism behind this metabolic difference remains unclear. This study aimed to identify differential molecular mechanisms in these patient subtypes. METHODS Neocortical and hippocampal biopsies of TLE patients (n = 3 PET+, n = 3 PET-) and nonepileptic postmortem controls (n = 3) were analyzed for lipid distribution using mass spectrometry imaging (MSI). Laser capture microdissection of the neocortical gray matter and hippocampal cornu ammonis and dentate gyrus was guided by MSI-derived lipid profiles and histological annotations. Dissected areas were then subjected to liquid chromatography- tandem mass spectrometry-based label-free quantitative proteomic analysis. RESULTS MSI showed distinct lipid profiles, namely, phosphatidylserines were more abundant in PET+ samples in both the neocortex and hippocampus. Proteomic analysis showed significant differences between TLE and nonepileptic postmortem controls involving pathways in neuron excitability and neurotransmitter transporters, which were upregulated in TLE. Compared to PET-, all PET+ specimens displayed significantly dysregulated calcium signaling. Additionally, the neocortex of PET+ patients showed a shift from mitochondrial to cytosolic (cytoplasm of the cell) processes, whereas the hippocampus was characterized by a disruption of glycosylation and polyamine metabolism. SIGNIFICANCE The applied spatial omics approach demonstrated localized molecular differences between metabolic subtypes of TLE patients. These findings may further specify these TLE subtypes and provide leads for targeted treatment.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Ronny Mohren
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Micca Neusinger
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Tobias A Dancker
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Michiel Vandenbosch
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Jan Beckervordersandforth
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Rianna P Van der Hel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Academic Center for Epileptology Maastricht UMC+, Maastricht, the Netherlands
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Academic Center for Epileptology Maastricht UMC+, Maastricht, the Netherlands
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Guo K, Hu J, Cui B, Wang Z, Hou Y, Yang H, Lu J. Simultaneous 18F-FDG PET/MRI predicting favourable surgical outcome in refractory epilepsy patients. Neuroradiology 2025; 67:89-97. [PMID: 39172166 DOI: 10.1007/s00234-024-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES To evaluate the (1) successful surgery proportion in patients with clear structural lesions on MRI and single abnormality on 18F-fluorodeoxyglucose positron emission tomography/Magnetic resonance imaging (18F-FDG PET/MRI); (2) predictive value of 18F-FDG PET/MRI for postsurgical outcome in refractory epilepsy patients. METHODS A retrospective study was conducted on 123 patients diagnosed with refractory epilepsy who underwent presurgical evaluation involving 18F-FDG PET/MRI and were followed for one-year post-surgery. Two neuroradiologists interpreted the PET/MRI images using visual analysis and an asymmetry index based on the standard uptake value. The Engel classification was used to assess surgical outcomes one-year post-surgery. Prognostic factors predicting post-surgical seizure outcomes were explored using univariate and binary logistic regression. RESULTS Definitely single lesion abnormality was observed in 35.0% (43/123) of the patients on the MRI portion of PET/MRI. The proportion increased to 74.0% (91/123) when 18 F-FDG PET portion was added. About 75% (69/91) of patients displaying a clear-cut lesion on 18 F-FDG PET/MRI were classified as Engel Class I one-year post-surgery. The proportion of Engel Class I patients was not significantly different when comparing MRI-single lesion patients with MRI-negative, PET-single lesion patients one year after surgery (81.4% vs. 70.0%, P = 0.24). Binary logistic regression analysis revealed that the detection of a clear single lesion on 18 F-FDG PET/MRI was a strong positive predictor of a favorable surgical outcome (OR 3.518, 95% CI 1.363-9.077, p = 0.009). CONCLUSION Single lesion detected on 18 F-FDG PET/MRI is useful to predict good surgical outcome for refractory epilepsy patients; Those patients should be considered as candidates for surgery.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Hu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
5
|
Tang Y, Zhu H, Xiao L, Li R, Han H, Tang W, Liu D, Zhou C, Liu D, Yang Z, Zhou L, Xiao B, Rominger A, Shi K, Hu S, Feng L. Individual cerebellar metabolic connectome in patients with MTLE and NTLE associated with surgical prognosis. Eur J Nucl Med Mol Imaging 2024; 51:3600-3616. [PMID: 38805089 DOI: 10.1007/s00259-024-06762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE This study aimed to comprehensively explore the different metabolic connectivity topological changes in MTLE and NTLE, as well as their association with surgical outcomes. METHODS This study enrolled a cohort of patients with intractable MTLE and NTLE. Each individual's metabolic connectome, as determined by Kullback-Leibler divergence similarity estimation for the [18F]FDG PET image, was employed to conduct a comprehensive analysis of the cerebral metabolic network. Alterations in network connectivity were assessed by extracting and evaluating the strength of edge and weighted connectivity. By utilizing these two connectivity strength metrics with the cerebellum, we explored the network properties of connectivity and its association with prognosis in surgical patients. RESULTS Both MTLE and NTLE patients exhibited substantial alterations in the connectivity of the metabolic network at the edge and nodal levels (p < 0.01, FDR corrected). The key disparity between MTLE and NTLE was observed in the cerebellum. In MTLE, there was a predominance of increased connectivity strength in the cerebellum. Whereas, a decrease in cerebellar connectivity was identified in NTLE. It was found that in MTLE, higher edge connectivity and weighted connectivity strength in the contralateral cerebellar hemisphere correlated with improved surgical outcomes. Conversely, in NTLE, a higher edge metabolic connectivity strength in the ipsilateral cerebellar hemisphere suggested a worse surgical prognosis. CONCLUSION The cerebellum exhibits distinct topological characteristics in the metabolic networks between MTLE and NTLE. The hyper- or hypo-metabolic connectivity in the cerebellum may be a prognostic biomarker of surgical prognosis, which might aid in therapeutic decision-making for TLE individuals.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, PR China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Honghao Han
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiting Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, PR China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunyao Zhou
- Department of Neurosurgery, Xiangya Hospital, Central Southern University, Changsha, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central Southern University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central Southern University, Changsha, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
- Department of Informatics, Technische Universität München, Munich, Germany
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Guo K, Quan Z, Li G, Li B, Kang F, Wang J. Decomposed FDG PET-based phenotypic heterogeneity predicting clinical prognosis and decision-making in temporal lobe epilepsy patients. Neurol Sci 2024; 45:3961-3969. [PMID: 38457084 DOI: 10.1007/s10072-024-07431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE This study utilized a data-driven Bayesian model to automatically identify distinct latent disease factors represented by overlapping glucose metabolism patterns from 18F-Fluorodeoxyglucose PET (18F-FDG PET) to analyze heterogeneity among patients with TLE. METHODS We employed unsupervised machine learning to estimate latent disease factors from 18F-FDG PET scans, representing whole-brain glucose metabolism patterns in seventy patients with TLE. We estimated the extent to which multiple distinct factors were expressed within each participant and analyzed their relevance to epilepsy burden, including seizure onset, duration, and frequency. Additionally, we established a predictive model for clinical prognosis and decision-making. RESULTS We identified three latent disease factors: hypometabolism in the unilateral temporal lobe and hippocampus (factor 1), hypometabolism in bilateral prefrontal lobes (factor 2), and hypometabolism in bilateral temporal lobes (factor 3), variably co-expressed within each patient. Factor 3 demonstrated the strongest negative correlation with the age of onset and duration (r = - 0.33, - 0.38 respectively, P < 0.05). The supervised classifier, trained on latent disease factors for predicting patient-specific antiepileptic drug (AED) responses, achieved an area under the curve (AUC) of 0.655. For post-surgical seizure outcomes, the AUC was 0.857, and for clinical decision-making, it was 0.965. CONCLUSIONS Decomposing 18F-FDG PET-based phenotypic heterogeneity facilitates individual-level predictions relevant to disease monitoring and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Kun Guo
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
7
|
Shanta T, Tomari YK, Higashi T, Madan B, Hosoyama H, Otsubo T, Yamahata H, Hanaya R. Hypometabolism in the Posteromedial Temporal and Medial Occipital Cortex on Preoperative 2-Deoxy-2-(18F) Fluoro-D-Glucose Positron Emission Tomography Suggests Exacerbation of Visual Field Defects After Surgery for Temporal Lobe Epilepsy: A Retrospective Long-Term Follow-Up Study. World Neurosurg 2024; 188:e223-e232. [PMID: 38777318 DOI: 10.1016/j.wneu.2024.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Surgery is a good treatment option for drug-resistant temporal lobe epilepsy (TLE). 2-deoxy-2-(18F) fluoro-D-glucose (FDG) positron emission tomography (PET) is used to detect epileptic foci as hypometabolic lesions in presurgical evaluation. Visual field defects (VFDs) in the contralateral homonymous upper quadrant are common postoperative complications in TLE. This study aimed to quantify VFDs using pattern deviation probability plots (PDPPs) and examine the effect of hypometabolism in FDG-PET on VFDs. METHODS This study included 40 patients. Both visual fields were assessed using the Humphrey field analyzer preoperatively and 3 months and 2 years postoperatively. PDPPs with <0.5% confidence level counted in the contralateral homonymous upper quadrant. FDG-PET results were compared between groups with (15 patients) and without (24 patients) hypometabolism in the optic radiation. RESULTS All 40 patients were evaluated by Humphrey field analyzer at 3 months postoperatively and 39 at 2 years postoperatively. The incidence of VFDs 3 months postoperatively was 35/40 (87.5%), and 17/40 (42.5%) patients had severe VFDs. In cases of surgery on the left temporal lobe, ipsilateral eyes appeared to be more significantly affected than contralateral eyes. VFDs were more severe in patients with FDG hypometabolism than in those without hypometabolism in posteromedial temporal and medial occipital cortex (P < 0.01); however, 85% of patients with FDG hypometabolism had a reduced VFD 2 years postoperatively. CONCLUSIONS PDPP counting is useful for quantifying VFDs. Preoperative dysfunction indicated by preoperative FDG-PET in the posteromedial temporal and medial occipital cortex could enhance VFDs early after TLE surgery.
Collapse
Affiliation(s)
- Thapa Shanta
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yumi Kashida Tomari
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuichiro Higashi
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bajagain Madan
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Hosoyama
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiaki Otsubo
- Department of Neurosurgery, Fujimoto General Hospital, Miyakonojo, Kagoshima, Japan
| | - Hitoshi Yamahata
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
8
|
Traub-Weidinger T, Arbizu J, Barthel H, Boellaard R, Borgwardt L, Brendel M, Cecchin D, Chassoux F, Fraioli F, Garibotto V, Guedj E, Hammers A, Law I, Morbelli S, Tolboom N, Van Weehaeghe D, Verger A, Van Paesschen W, von Oertzen TJ, Zucchetta P, Semah F. EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy. Eur J Nucl Med Mol Imaging 2024; 51:1891-1908. [PMID: 38393374 PMCID: PMC11139752 DOI: 10.1007/s00259-024-06656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.
Collapse
Affiliation(s)
- Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100, RigshospitaletCopenhagen, Denmark
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilian-University of Munich, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Francine Chassoux
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven and Department of Neurology, University Hospitals, Leuven, Belgium
| | - Tim J von Oertzen
- Depts of Neurology 1&2, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, CHU Lille, U1172-LilNCog-Lille, F-59000, Lille, France.
| |
Collapse
|
9
|
Lucas A, Vadali C, Mouchtaris S, Arnold TC, Gugger JJ, Kulick-Soper C, Josyula M, Petillo N, Das S, Dubroff J, Detre JA, Stein JM, Davis KA. Enhancing the Diagnostic Utility of ASL Imaging in Temporal Lobe Epilepsy through FlowGAN: An ASL to PET Image Translation Framework. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24308027. [PMID: 38853910 PMCID: PMC11160820 DOI: 10.1101/2024.05.28.24308027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Significance Positron Emission Tomography (PET) using fluorodeoxyglucose (FDG-PET) is a standard imaging modality for detecting areas of hypometabolism associated with the seizure onset zone (SOZ) in temporal lobe epilepsy (TLE). However, FDG-PET is costly and involves the use of a radioactive tracer. Arterial Spin Labeling (ASL) offers an MRI-based quantification of cerebral blood flow (CBF) that could also help localize the SOZ, but its performance in doing so, relative to FDG-PET, is limited. In this study, we seek to improve ASL's diagnostic performance by developing a deep learning framework for synthesizing FDG-PET-like images from ASL and structural MRI inputs. Methods We included 68 epilepsy patients, out of which 36 had well lateralized TLE. We compared the coupling between FDG-PET and ASL CBF values in different brain regions, as well as the asymmetry of these values across the brain. We additionally assessed each modality's ability to lateralize the SOZ across brain regions. Using our paired PET-ASL data, we developed FlowGAN, a generative adversarial neural network (GAN) that synthesizes PET-like images from ASL and T1-weighted MRI inputs. We tested our synthetic PET images against the actual PET images of subjects to assess their ability to reproduce clinically meaningful hypometabolism and asymmetries in TLE. Results We found variable coupling between PET and ASL CBF values across brain regions. PET and ASL had high coupling in neocortical temporal and frontal brain regions (Spearman's r > 0.30, p < 0.05) but low coupling in mesial temporal structures (Spearman's r < 0.30, p > 0.05). Both whole brain PET and ASL CBF asymmetry values provided good separability between left and right TLE subjects, but PET (AUC = 0.96, 95% CI: [0.88, 1.00]) outperformed ASL (AUC = 0.81; 95% CI: [0.65, 0.96]). FlowGAN-generated images demonstrated high structural similarity to actual PET images (SSIM = 0.85). Globally, asymmetry values were better correlated between synthetic PET and original PET than between ASL CBF and original PET, with a mean correlation increase of 0.15 (95% CI: [0.07, 0.24], p<0.001, Cohen's d = 0.91). Furthermore, regions that had poor ASL-PET correlation (e.g. mesial temporal structures) showed the greatest improvement with synthetic PET images. Conclusions FlowGAN improves ASL's diagnostic performance, generating synthetic PET images that closely mimic actual FDG-PET in depicting hypometabolism associated with TLE. This approach could improve non-invasive SOZ localization, offering a promising tool for epilepsy presurgical assessment. It potentially broadens the applicability of ASL in clinical practice and could reduce reliance on FDG-PET for epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | - Chetan Vadali
- Department of Bioengineering, University of Pennsylvania
| | | | | | | | | | | | - Nina Petillo
- Department of Neurology, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
10
|
Tang Y, Xiao L, Deng C, Zhu H, Gao X, Li J, Yang Z, Liu D, Feng L, Hu S. [ 18F]FDG PET metabolic patterns in mesial temporal lobe epilepsy with different pathological types. Eur Radiol 2024; 34:887-898. [PMID: 37581655 DOI: 10.1007/s00330-023-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To investigate [18F]FDG PET patterns of mesial temporal lobe epilepsy (MTLE) patients with distinct pathologic types and provide possible guidance for predicting long-term prognoses of patients undergoing epilepsy surgery. METHODS This was a retrospective review of MTLE patients who underwent anterior temporal lobectomy between 2016 and 2021. Patients were classified as having chronic inflammation and gliosis (gliosis, n = 44), hippocampal sclerosis (HS, n = 43), or focal cortical dysplasia plus HS (FCD-HS, n = 13) based on the postoperative pathological diagnosis. Metabolic patterns and the severity of metabolic abnormalities were investigated among MTLE patients and healthy controls (HCs). The standardized uptake value (SUV), SUV ratio (SUVr), and asymmetry index (AI) of regions of interest were applied to evaluate the severity of metabolic abnormalities. Imaging processing was performed with statistical parametric mapping (SPM12). RESULTS With a mean follow-up of 2.8 years, the seizure freedom (Engel class IA) rates of gliosis, HS, and FCD-HS were 54.55%, 62.79%, and 69.23%, respectively. The patients in the gliosis group presented a metabolic pattern with a larger involvement of extratemporal areas, including the ipsilateral insula. SUV, SUVr, and AI in ROIs were decreased for patients in all three MTLE groups compared with those of HCs, but the differences among all three MTLE groups were not significant. CONCLUSIONS MTLE patients with isolated gliosis had the worst prognosis and hypometabolism in the insula, but the degree of metabolic decrease did not differ from the other two groups. Hypometabolic regions should be prioritized for [18F]FDG PET presurgical evaluation rather than [18F]FDG uptake values. CLINICAL RELEVANCE STATEMENT This study proposes guidance for optimizing the operation scheme in patients with refractory MTLE and emphasizes the potential of molecular neuroimaging with PET using selected tracers to predict the postsurgical histology of patients with refractory MTLE epilepsy. KEY POINTS • MTLE patients with gliosis had poor surgical outcomes and showed a distinct pattern of decreased metabolism in the ipsilateral insula. • In the preoperative assessment of MTLE, it is recommended to prioritize the evaluation of glucose hypometabolism areas over [18F]FDG uptake values. • The degree of glucose hypometabolism in the epileptogenic focus was not associated with the surgical outcomes of MTLE.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, Jiangxi, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Strýček O, Říha P, Kojan M, Řehák Z, Brázdil M. Metabolic connectivity as a predictor of surgical outcome in mesial temporal lobe epilepsy. Epilepsia Open 2024; 9:187-199. [PMID: 37881152 PMCID: PMC10839369 DOI: 10.1002/epi4.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE The study investigated metabolic connectivity (MC) differences between patients with unilateral drug-resistant mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS) and healthy controls (HCs), based on [18 F]-fluorodeoxyglucose (FDG)-PET data. We focused on the MC changes dependent on the lateralization of the epileptogenic lobe and on correlations with postoperative outcomes. METHODS FDG-PET scans of 47 patients with unilateral MTLE with histopathologically proven HS and 25 HC were included in the study. All the patients underwent a standard anterior temporal lobectomy and were more than 2 years after the surgery. MC changes were compared between the two HS groups (left HS, right HS) and HC. Differences between the metabolic network of seizure-free and non-seizure-free patients after surgery were depicted afterward. Network changes were correlated with clinical characteristics. RESULTS The study showed widespread metabolic network changes in the HS patients as compared to HC. The changes were more extensive in the right HS than in the left HS. Unfavorable surgical outcomes were found in patients with decreased MC within the network including both the lesional and contralesional hippocampus, ipsilesional frontal operculum, and contralesional insula. Favorable outcomes correlated with decreased MC within the network involving both orbitofrontal cortices and the ipsilesional temporal lobe. SIGNIFICANCE There are major differences in the metabolic networks of left and right HS, with more extensive changes in right HS. The changes within the metabolic network could help predict surgical outcomes in patients with HS. MC may identify patients with potentially unfavorable outcomes and direct them to a more detailed presurgical evaluation. PLAIN LANGUAGE SUMMARY Metabolic connectivity is a promising method for metabolic network mapping. Metabolic networks in mesial temporal lobe epilepsy are dependent on lateralization of the epileptogenic lobe and could predict surgical outcomes.
Collapse
Affiliation(s)
- Ondřej Strýček
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of MedicineMasaryk University, Member of ERN‐EpiCAREBrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Pavel Říha
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of MedicineMasaryk University, Member of ERN‐EpiCAREBrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Martin Kojan
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of MedicineMasaryk University, Member of ERN‐EpiCAREBrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Zdeněk Řehák
- Department of Nuclear MedicineMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of MedicineMasaryk University, Member of ERN‐EpiCAREBrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
12
|
Kim JR, Jo H, Park B, Park YH, Chung YH, Shon YM, Seo DW, Hong SB, Hong SC, Seo SW, Joo EY. Identifying important factors for successful surgery in patients with lateral temporal lobe epilepsy. PLoS One 2023; 18:e0288054. [PMID: 37384651 PMCID: PMC10310033 DOI: 10.1371/journal.pone.0288054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE Lateral temporal lobe epilepsy (LTLE) has been diagnosed in only a small number of patients; therefore, its surgical outcome is not as well-known as that of mesial temporal lobe epilepsy. We aimed to evaluate the long-term (5 years) and short-term (2 years) surgical outcomes and identify possible prognostic factors in patients with LTLE. METHODS This retrospective cohort study was conducted between January 1995 and December 2018 among patients who underwent resective surgery in a university-affiliated hospital. Patients were classified as LTLE if ictal onset zone was in lateral temporal area. Surgical outcomes were evaluated at 2 and 5 years. We subdivided based on outcomes and compared clinical and neuroimaging data including cortical thickness between two groups. RESULTS Sixty-four patients were included in the study. The mean follow-up duration after the surgery was 8.4 years. Five years after surgery, 45 of the 63 (71.4%) patients achieved seizure freedom. Clinically and statistically significant prognostic factors for postsurgical outcomes were the duration of epilepsy before surgery and focal cortical dysplasia on postoperative histopathology at the 5-year follow-up. Optimal cut-off point for epilepsy duration was eight years after the seizure onset (odds ratio 4.375, p-value = 0.0214). Furthermore, we propose a model for predicting seizure outcomes 5 years after surgery using the receiver operating characteristic curve and nomogram (area under the curve = 0.733; 95% confidence interval, 0.588-0.879). Cortical thinning was observed in ipsilateral cingulate gyrus and contralateral parietal lobe in poor surgical group compared to good surgical group (p-value < 0.01, uncorrected). CONCLUSIONS The identified predictors of unfavorable surgical outcomes may help in selecting optimal candidates and identifying the optimal timing for surgery among patients with LTLE. Additionally, cortical thinning was more extensive in the poor surgical group.
Collapse
Affiliation(s)
- Jae Rim Kim
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyunjin Jo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yu Hyun Park
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Yeon Hak Chung
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young-Min Shon
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Dae-Won Seo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Bong Hong
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung-Chyul Hong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Mangalore S, Peer S, Khokhar SK, Bharath RD, Kulanthaivelu K, Saini J, Sinha S, Kishore VK, Mundlamuri RC, Asranna A, Lakshminarayanapuram Gopal V, Kenchaiah R, Arimappamagan A, Sadashiva N, Rao MB, Mahadevan A, Rajeswaran J, Kumar K, Thennarasu K. Resting-State Functional MRI/PET Profile as a Potential Alternative to Tri-Modality EEG-MR/PET Imaging: An Exploratory Study in Drug-Refractory Epilepsy. Asian J Neurosurg 2023; 18:53-61. [PMID: 37056888 PMCID: PMC10089745 DOI: 10.1055/s-0043-1760852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Abstract
Objective The study explores whether the epileptic networks associate with predetermined seizure onset zone (SOZ) identified from other modalities such as electroencephalogram/video electroencephalogram/structural MRI (EEG/VEEG/sMRI) and with the degree of resting-state functional MRI/positron emission tomography (RS-fMRI/PET) coupling. Here, we have analyzed the subgroup of patients who reported having a seizure on the day of scan as postictal cases and compared the findings with interictal cases (seizure-free interval).
Methods We performed independent component analysis (ICA) on RS-fMRI and 20 ICA were hand-labeled as large scale, noise, downstream, and epilepsy networks (Epinets) based on their profile in spatial, time series, and power spectrum domains. We had a total of 43 cases, with 4 cases in the postictal group (100%). Of 39 cases, 14 cases did not yield any Epinet and 25 cases (61%) were analyzed for the final study. The analysis was done patient-wise and correlated with predetermined SOZ.
Results The yield of finding Epinets on RS-fMRI is more during the postictal period than in the interictal period, although PET and RS-fMRI spatial, time series, and power spectral patterns were similar in both these subgroups. Overlaps between large-scale and downstream networks were noted, indicating that epilepsy propagation can involve large-scale cognition networks. Lateralization to SOZ was noted as blood oxygen level–dependent activation and correlated with sMRI/PET findings. Postoperative surgical failure cases showed residual Epinet profile.
Conclusion RS-fMRI may be a viable option for trimodality imaging to obtain simultaneous physiological information at the functional network and metabolic level.
Collapse
|
14
|
Wang X, Lin D, Zhao C, Li H, Fu L, Huang Z, Xu S. Abnormal metabolic connectivity in default mode network of right temporal lobe epilepsy. Front Neurosci 2023; 17:1011283. [PMID: 37034164 PMCID: PMC10076532 DOI: 10.3389/fnins.2023.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aims Temporal lobe epilepsy (TLE) is a common neurological disorder associated with the dysfunction of the default mode network (DMN). Metabolic connectivity measured by 18F-fluorodeoxyglucose Positron Emission Computed Tomography (18F-FDG PET) has been widely used to assess cumulative energy consumption and provide valuable insights into the pathophysiology of TLE. However, the metabolic connectivity mechanism of DMN in TLE is far from fully elucidated. The present study investigated the metabolic connectivity mechanism of DMN in TLE using 18F-FDG PET. Method Participants included 40 TLE patients and 41 health controls (HC) who were age- and gender-matched. A weighted undirected metabolic network of each group was constructed based on 14 primary volumes of interest (VOIs) in the DMN, in which Pearson's correlation coefficients between each pair-wise of the VOIs were calculated in an inter-subject manner. Graph theoretic analysis was then performed to analyze both global (global efficiency and the characteristic path length) and regional (nodal efficiency and degree centrality) network properties. Results Metabolic connectivity in DMN showed that regionally networks changed in the TLE group, including bilateral posterior cingulate gyrus, right inferior parietal gyrus, right angular gyrus, and left precuneus. Besides, significantly decreased (P < 0.05, FDR corrected) metabolic connections of DMN in the TLE group were revealed, containing bilateral hippocampus, bilateral posterior cingulate gyrus, bilateral angular gyrus, right medial of superior frontal gyrus, and left inferior parietal gyrus. Conclusion Taken together, the present study demonstrated the abnormal metabolic connectivity in DMN of TLE, which might provide further insights into the understanding the dysfunction mechanism and promote the treatment for TLE patients.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Dandan Lin
- Department of Clinical Medicine, Fujian Health College, Fuzhou, Fujian, China
| | - Chunlei Zhao
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Hui Li
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Liyuan Fu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Zhifeng Huang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shangwen Xu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Zhao B, McGonigal A, Hu W, Zhang C, Wang X, Mo J, Zhao X, Ai L, Shao X, Zhang K, Zhang J. Interictal HFO and FDG-PET correlation predicts surgical outcome following SEEG. Epilepsia 2023; 64:667-677. [PMID: 36510851 DOI: 10.1111/epi.17485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the quantitative relationship between interictal 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) and interictal high-frequency oscillations (HFOs) from stereo-electroencephalography (SEEG) recordings in patients with refractory epilepsy. METHODS We retrospectively included 32 patients. FDG-PET data were quantified through statistical parametric mapping (SPM) t test modeling with normal controls. Interictal SEEG segments with four, 10-min segments were selected randomly. HFO detection and classification procedures were automatically performed. Channel-based HFOs separating ripple (80-250 Hz) and fast ripple (FR; 250-500 Hz) counts were correlated with the surrounding metabolism T score at the individual and group level, respectively. The association was further validated across anatomic seizure origins and sleep vs wake states. We built a joint feature FR × T reflecting the FR and hypometabolism concordance to predict surgical outcomes in 28 patients who underwent surgery. RESULTS We found a negative correlation between interictal FDG-PET and HFOs through the linear mixed-effects model (R2 = .346 and .457 for ripples and FRs, respectively, p < .001); these correlations were generalizable to different epileptogenic-zone lobar localizations and vigilance states. The FR × T inside the resection volume could be used as a predictor for surgical outcomes with an area under the curve of 0.81. SIGNIFICANCE The degree of hypometabolism is associated with HFO generation rate, especially for FRs. This relationship would be meaningful for selection of SEEG candidates and for optimizing SEEG scheme planning. The concordance between FRs and hypometabolism inside the resection volume could provide prognostic information regarding surgical outcome.
Collapse
Affiliation(s)
- Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aileen McGonigal
- Epilepsy Unit, Neurosciences Centre, Mater Hospital and Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
16
|
Expression of fructose-1,6-bisphosphatase 1 is associated with [ 18F]FDG uptake and prognosis in patients with mesial temporal lobe epilepsy. Eur Radiol 2023; 33:3396-3406. [PMID: 36692596 DOI: 10.1007/s00330-023-09422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To determine whether fructose-1,6-bisphosphatase 1 (FBP1) expression is associated with [18F]FDG PET uptake and postsurgical outcomes in patients with mesial temporal lobe epilepsy (mTLE) and to investigate whether the molecular mechanism involving gamma-aminobutyric acid type A receptor (GABAAR), glucose transporter-3 (GLUT-3), and hexokinase-II (HK-II). METHODS Forty-three patients with mTLE underwent [18F]FDG PET/CT. Patients were divided into Ia (Engel class Ia) and non-Ia (Engel class Ib-IV) groups according to more than 1 year of follow-up after surgery. The maximum standard uptake value (SUVmax) and asymmetry index (AI) of hippocampus were measured. The relationship among the SUVmax, AI, prognosis, and FBP1 expression was analyzed. A lithium-pilocarpine acute mTLE rat model was subjected to [18F]FDG micro-PET/CT. Hippocampal SUVmax and FBP1, GABAAR, GLUT-3, and HK-II expression were analyzed. RESULTS SUVmax was higher in the Ia group than in the non-Ia group (7.31 ± 0.97 vs. 6.56 ± 0.96, p < 0.05) and FBP1 expression was lower in the Ia group (0.24 ± 0.03 vs. 0.27 ± 0.03, p < 0.01). FBP1 expression was negatively associated with SUVmax and AI (p < 0.01). In mTLE rats, the hippocampal FBP1 increased (0.26 ± 0.00 vs. 0.17 ± 0.00, p < 0.0001), and SUVmax, GLUT-3 and GABAAR levels decreased significantly (0.73 ± 0.12 vs. 1.46 ± 0.23, 0.20 ± 0.01 vs. 0.32 ± 0.05, 0.26 ± 0.02 vs. 0.35 ± 0.02, p < 0.05); no significant difference in HK-II levels was observed. In mTLE patients and rats, FBP1 negatively correlated with SUVmax and GLUT-3 and GABAAR levels (p < 0.05). CONCLUSION FBP1 expression was inversely associated with SUVmax in mTLE, which might inhibit [18F]FDG uptake by regulating GLUT-3 expression. High FBP1 expression was indicative of low GABAAR expression and poor prognosis. KEY POINTS • It is of paramount importance to explore the deep pathophysiological mechanisms underlying the pathogenesis of mesial temporal lobe epilepsy and find potential therapeutic targets. • [18F]FDG PET has demonstrated low metabolism in epileptic regions during the interictal period, and hypometabolism may be associated with prognosis, but the pathomechanism of this association remains uncertain. • Our results support the possibility that FBP1 might be simultaneously involved in the regulation of glucose metabolism levels and the excitability of neurons and suggest that targeting FBP1 may be a viable strategy in the diagnosis and treatment of mesial temporal lobe epilepsy.
Collapse
|
17
|
Feng T, Yang Y, Wei P, Wang C, Fan X, Wang K, Zhang H, Shan Y, Zhao G. The role of the orbitofrontal cortex and insula for prognosis of mesial temporal lobe epilepsy. Epilepsy Behav 2023; 138:109003. [PMID: 36470059 DOI: 10.1016/j.yebeh.2022.109003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE We investigated the network between the medial temporal lobe (MTL) and extratemporal structures in patients with mesial temporal lobe epilepsy (MTLE) in order to explain the recurrence of MTLE after surgery. This study contributes to our current understanding of MTLE with stereotactic electroencephalography (SEEG). METHODS We conducted a retrospective study of SEEG in 20 patients with MTLE in order to observe and analyze the intensity of interictal high-frequency oscillations (HFOs), as well as the dynamic course of coherence connectivity values of the MTL and extratemporal structures during the initial phase of the seizure. The results correlated with the patient prognosis. RESULTS First, the presence of HFOs was observed during the interictal period in all 20 patients; these were localized to the MTL in 17 patients and the orbitofrontal cortex in seven patients and the insula in six patients. The better the prognosis, the greater the localization of the HFOs concentration in the MTL structures (p < 0.05). Second, significantly enhanced connectivity of MTL structures with the orbitofrontal cortex and insula was observed in most patients with MTLE, before and after the seizure onset (p < 0.05). Finally, the connectivity between extratemporal structures, such as the orbitofrontal cortex and insula, and MTL structures was significantly stronger in patients who had a worse prognosis than in other patients, before and after seizure onset (p < 0.05). INTERPRETATION The epileptogenic network in recurrent MTLE is not limited to MTL structures but is also associated with the orbitofrontal cortex and insula. This can be used as a potential indicator for predicting the prognosis of patients after surgery, providing an important avenue for future clinical evaluation.
Collapse
Affiliation(s)
- Tao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (CHINA-INI), Beijing, China; Institute for Brain Disorder, Beijing, China.
| |
Collapse
|
18
|
Doyen M, Chawki MB, Heyer S, Guedj E, Roch V, Marie PY, Tyvaert L, Maillard L, Verger A. Metabolic connectivity is associated with seizure outcome in surgically treated temporal lobe epilepsies: A 18F-FDG PET seed correlation analysis. Neuroimage Clin 2022; 36:103210. [PMID: 36208546 PMCID: PMC9668618 DOI: 10.1016/j.nicl.2022.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
18F-FDG PET provides high sensitivity for the pre-surgical assessment of drug-resistant temporal lobe epilepsy (TLE). However, little is known about the metabolic connectivity of epileptogenic networks involved. This study therefore aimed to evaluate the association between metabolic connectivity and seizure outcome in surgically treated TLE. METHODS The study included 107 right-handed patients that had undergone a presurgical interictal 18F-FDG PET assessment followed by an anterior temporal lobectomy and were classified according to seizure outcome 2 years after surgery. Metabolic connectivity was evaluated by seed correlation analysis in left and right epilepsy patients with a Class Engel IA or > IA outcome and compared to age-, sex- and handedness-matched healthy controls. RESULTS Increased metabolic connectivity was observed in the >IA compared to the IA group within the operated temporal lobe (respective clusters of 7.5 vs 3.3 cm3 and 2.6 cm3 vs 2.2 cm3 in left and right TLE), and to a lower extent with the contralateral temporal lobe (1.2 vs 0.7 cm3 and 1.7 cm3 vs 0.7 cm3 in left and right TLE). Seed correlations provided added value for the estimated individual performance of seizure outcome over the group comparisons in left TLE (AUC of 0.74 vs 0.67). CONCLUSION Metabolic connectivity is associated with outcome in surgically treated TLE with a strengthened epileptogenic connectome in patients with non-free-seizure outcomes. The added value of seed correlation analysis in left TLE underlines the importance of evaluating metabolic connectivity in network related diseases.
Collapse
Affiliation(s)
- Matthieu Doyen
- Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, F-54000 Nancy, France,Université de Lorraine, IADI, INSERM U1254, F-54000 Nancy, France,Corresponding author at: Université de Lorraine, IADI - INSERM U1254, Department of Nuclear Medicine and Nancyclotep Imaging Platform, F-54000 Nancy, France.
| | - Mohammad B. Chawki
- Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, F-54000 Nancy, France
| | - Sébastien Heyer
- Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, F-54000 Nancy, France
| | - Eric Guedj
- Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, F-13000 Marseille, France
| | - Véronique Roch
- Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, F-54000 Nancy, France
| | - Pierre-Yves Marie
- Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, F-54000 Nancy, France,Université de Lorraine, INSERM, DCAC, Nancy, France
| | - Louise Tyvaert
- Université de Lorraine, CRAN UMR 7039, Nancy, France,Department of Neurology, CHRU Nancy, National Reference Center for Rare Epilepsies, F-54000 Nancy, France
| | - Louis Maillard
- Université de Lorraine, CRAN UMR 7039, Nancy, France,Department of Neurology, CHRU Nancy, National Reference Center for Rare Epilepsies, F-54000 Nancy, France
| | - Antoine Verger
- Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, F-54000 Nancy, France,Université de Lorraine, IADI, INSERM U1254, F-54000 Nancy, France
| |
Collapse
|
19
|
Functional Connectivity Alterations Based on Hypometabolic Region May Predict Clinical Prognosis of Temporal Lobe Epilepsy: A Simultaneous 18F-FDG PET/fMRI Study. BIOLOGY 2022; 11:biology11081178. [PMID: 36009805 PMCID: PMC9404714 DOI: 10.3390/biology11081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Accurate localization of the epileptogenic zone and understanding the related functional connectivity (FC) alterations are critical for the prediction of clinical prognosis in patients with temporal lobe epilepsy (TLE). We aim to localize the hypometabolic region in TLE patients, compare the differences in FC alterations based on hypometabolic region and structural lesion, respectively, and explore their relationships with clinical prognosis. (2) Methods: Thirty-two TLE patients and 26 controls were recruited. Patients underwent 18F-FDG PET/MR scan, surgical treatment, and a 2−3-year follow-up. Visual assessment and voxel-wise analyses were performed to identify hypometabolic regions. ROI-based FC analyses were performed. Relationships between clinical prognosis and FC values were performed by using Pearson correlation analyses and receiver operating characteristic (ROC) analysis. (3) Results: Hypometabolic regions in TLE patients were found in the ipsilateral hippocampus, parahippocampal gyrus, and temporal lobe (p < 0.001). Functional alterations based on hypometabolic regions showed a more extensive whole-brain FC reduction. FC values of these regions negatively correlated with epilepsy duration (p < 0.05), and the ROC curve of them showed significant accuracy in predicting postsurgical outcome. (4) Conclusions: In TLE patients, FC related with hypometabolic region obtained by PET/fMRI may provide value in the prediction of disease progression and seizure-free outcome.
Collapse
|
20
|
Zhao Z, Li H, Wang S, Chen C, He C, Hu L, Zheng Z, Zhu J, Ding M, Wang S, Ding Y. Patterns of hypometabolism in frontal lobe epilepsy originating in different frontal regions. Ann Clin Transl Neurol 2022; 9:1336-1344. [PMID: 35836348 PMCID: PMC9463953 DOI: 10.1002/acn3.51630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Analysis of FDG‐PET imaging commonly shows that hypometabolism extends into extra‐epileptogenic zones (extra‐EZ). This study investigates the distribution patterns of hypometabolism in frontal lobe epilepsy (FLE) originating in different frontal regions. Methods Sixty‐four patients with FLE were grouped by EZ localization according to Brodmann areas (BAs): Group 1 (the frontal motor and premotor area), BAs 4, 6, and 8; Group 2 (the inferior frontal gyrus and opercular area), BAs 44, 45, and 47; Group 3 (the dorsal prefrontal area), BAs 9, 10, 11, and 46; and Group 4 (the medial frontal and anterior cingulate gyrus), BAs 32 and 24. Regions of extra‐EZ hypometabolism were statistically analyzed between FLE groups and healthy controls. Correlation analysis was performed to identify relationships between the intensity of hypometabolism and clinical characteristics. Results Significant hypometabolism in the ipsilateral (Groups 1 and 4) or bilateral (Groups 2 and 3) anterior insulae was found. Groups 1 and 4 presented with limited distribution of extra‐EZ hypometabolism, whereas Groups 2 and 3 showed widely distributed extra‐EZ hypometabolism in the rectus gyrus, cingulate gyrus, and other regions. Additionally, the intensity of hypometabolism was correlated with epilepsy duration in Groups 2 and 3. Conclusions All FLE groups showed hypometabolism in the anterior insula. In addition, distinct patterns of extra‐EZ hypometabolism were identified for each FLE group. This quantitative FDG‐PET analysis expanded our understanding of the topography of epileptic networks and can guide EZ localization in the future.
Collapse
Affiliation(s)
- Zexian Zhao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Hong Li
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shan Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenmin He
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingli Hu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Combined [ 18F]FDG-PET with MRI structural patterns in predicting post-surgical seizure outcomes in temporal lobe epilepsy patients. Eur Radiol 2022; 32:8423-8431. [PMID: 35713664 DOI: 10.1007/s00330-022-08912-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To integrate the glucose metabolism measured using [18F]FDG PET/CT and anatomical features measured using MRI to forecast the post-surgical seizure outcomes of intractable temporal lobe epilepsy. METHODS This retrospective study enrolled 63 patients with drug-resistant temporal lobe epilepsy. Z-transform of the patients' PET images based on comparison with a database of healthy controls, cortical thickness, and quantitative anisotropy (QA) of the diffusion spectrum imaging concordant/non-concordant with cortical resection was adopted to quantify their predictive values for the post-surgical seizure outcomes. RESULTS The PET hypometabolism region was concordant with the surgical field in 47 of the 63 patients. Forty-two patients were seizure-free post-surgery. The sensitivity and specificity of PET in predicting seizure freedom were 89.4% and 68.8%, respectively. Complete resection of foci with overlapped PET, cortical thickness, and QA abnormalities resulted in Engel I in 27 patients, which was a good predictor of seizure freedom with an odds ratio (OR) of 19.57 (95% CI 2.38-161.25, p = 0.006). Hypometabolism involved in multiple lobes (OR = 7.18, 95% CI 1.02-50.75, p = 0.048) and foci of hypometabolism with QA/cortical thickness abnormalities outside surgical field (OR = 14.72, 95% CI 2.13-101.56, p = 0.006) were two major predictors of Engel III/IV outcomes. ORs of QA to predict Engel I and seizure recurrence were 14.64 (95% CI 2.90-73.80, p = 0.001) and 12.01 (95% CI 2.91-49.65, p = 0.001), respectively. CONCLUSION Combined PET and structural pattern is helpful to predict the post-surgical seizure outcomes and worse outcomes of Engel III/IV. This might decrease unnecessary surgical injuries to patients who are potentially not amenable to surgery. KEY POINTS • A combined metabolic and structural pattern is helpful to predict the post-surgical seizure outcomes. • Favorable post-surgical seizure outcome was most likely reached in patients whose hypometabolism overlapped with the structural changes. • Hypometabolism in multiple lobes and QA or cortical thickness abnormalities outside the surgical field were predictors of worse seizure outcomes of Engel III/IV.
Collapse
|
22
|
Gattás D, Neto FSL, Freitas-Lima P, Bonfim-Silva R, de Almeida SM, de Assis Cirino ML, Tiezzi DG, Tirapelli LF, Velasco TR, Sakamoto AC, Matias CM, Jr CGC, Tirapelli DPDC. MicroRNAs miR-629-3p, miR-1202 and miR-1225-5p as potential diagnostic and surgery outcome biomarkers for mesial temporal lobe epilepsy with hippocampal sclerosis. Neurochirurgie 2022; 68:583-588. [PMID: 35700789 DOI: 10.1016/j.neuchi.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mesial temporal lobe epilepsy (MTLE) is a symptomatic epilepsy syndrome clinically characterized by high prevalence, pharmacoresistance, good surgical prognosis and hippocampal sclerosis (HS); however, no singular criteria can be considered sufficient for the MTLE-HS diagnosis. MicroRNAs (miRNAs) are small non-coding molecules that act as important gene-expression regulators at post-transcriptional level. Evidences on the involvement of miRNAs in epilepsy pathogenesis as well as their potential to be employed as biomarkers claim for investigations on miRNAs' applicability as epilepsy diagnosis and prognosis biomarkers. Consequently, the present study aimed to evaluate the applicability of three specific miRNAs as biomarkers of diagnosis and surgical outcomes in adult patients with MTLE-HS. METHOD Hippocampus, amygdala and blood samples from 20 patients with MTLE-HS were analyzed, 10 with favorable surgical prognosis (Engel I) and 10 with unfavorable surgical prognosis (Engel III-IV). For the control groups, hippocampus and amygdala from necropsy and blood samples from healthy individuals were adopted. The miRNAs expression analysis was performed using Real-Time Quantitative Polymerase Chain Reaction for miRNAs highlighted from microarray as being involved in GABAergic neurotransmission. RESULTS The miRNAs miR-629-3p, miR-1202 and miR-1225-5p were found to be hyperexpressed in MTLE-HS patients' blood. CONCLUSIONS Our data suggest the existence of three circulating miRNAs (miR-629-3p, miR-1202 and miR-1225-5p) that could possibly act as additional tools in the set of factors that contribute to MTLE-HS diagnose.
Collapse
Affiliation(s)
- Daniela Gattás
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Fermino Sanches Lizarte Neto
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Priscila Freitas-Lima
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil; Barão de Maua University Center, Ribeirao Preto-SP, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Serguey Malaquias de Almeida
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Mucio Luiz de Assis Cirino
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Daniel Guimarães Tiezzi
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Luis Fernando Tirapelli
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Tonicarlo Rodrigues Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Americo Ceiki Sakamoto
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Caio Marconato Matias
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | - Carlos Gilberto Carlotti Jr
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto-SP, Brazil
| | | |
Collapse
|
23
|
Mo J, Wang Y, Zhang J, Cai L, Liu Q, Hu W, Sang L, Zhang C, Wang X, Shao X, Zhang K. Metabolic phenotyping of hand automatisms in mesial temporal lobe epilepsy. EJNMMI Res 2022; 12:32. [PMID: 35657491 PMCID: PMC9166918 DOI: 10.1186/s13550-022-00902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Hand automatisms (HA) are common clinical manifestations in mesial temporal lobe epilepsy. However, the location of the symptomatogenic zone (EZ) in HA as well as the networks involved, are still unclear. To have a better understanding of HA underlying mechanisms, we analyzed images from interictal [18F] fluorodeoxyglucose-positron emission tomography (FDG-PET) in patients with mesial temporal lobe epilepsy (mTLE). Methods We retrospectively recruited 79 mTLE patients and 18 healthy people that substituted the control group for the analysis. All patients underwent anterior temporal lobectomy and were seizure-free. Based on the semiology of the HA occurrence, the patients were divided into three subgroups: patients with unilateral HA (Uni-HA), with bilateral HA (Bil-HA) and without HA (None-HA). We performed the intergroup comparison analysis of the interictal FDG-PET images and compared the functional connectivity within metabolic communities. Results Our analysis showed that the metabolic patterns varied among the different groups. The Uni-HA subgroup had significant differences in the extratemporal lobe brain areas, mostly in the ipsilateral supplementary motor area (SMA) and middle cingulate cortex (MCC) when compared to the healthy control group. The Bil-HA subgroup demonstrated that the bilateral SMA and MCC areas were differentially affected, whereas in the None-HA subgroup the differences were evident in limited brain areas. The metabolic network involving HA showed a constrained network embedding the SMA and MCC brain regions. Furthermore, the increased metabolic synchronization between SMA and MCC was significantly correlated with HA. Conclusion The metabolic pattern of HA was most conspicuous in SMA and MCC brain regions. Increased metabolic synchronization within SMA and MCC was considered as the major EZ of HA. Metabolic pattern analysis allowed allocation of the symptomatogenic zone (EZ) and brain network of hand automatisms (HA) in mesial temporal lobe epilepsy (mTLE). The involved network of bilateral HA was larger than the unilateral one, probably due to the occurrence of contralateral dystonic posturing. Increased metabolic synchronization within supplementary motor area (SMA) and middle cingulate cortex (MCC) regions were engaged in the representation and modulation of HA, suggesting these regions as the EZ for HA.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yao Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Peking University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Peking University, Beijing, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Peking University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin Sang
- Epilepsy Center, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Lapalme-Remis S, Nguyen DK. Neuroimaging of Epilepsy. Continuum (Minneap Minn) 2022; 28:306-338. [PMID: 35393961 DOI: 10.1212/con.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article provides an overview of imaging modalities, important imaging pathologies, and the role each imaging modality can play in the diagnosis, evaluation, and treatment of epilepsy, including epilepsy surgery. RECENT FINDINGS The Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS-MRI) protocol was proposed to standardize MRI imaging for all patients with seizures. The role of 7-Tesla MRI in finding previously occult epileptogenic lesions is under investigation, and the technique is increasingly used. Developing MRI postprocessing techniques can increase the sensitivity of MRI. Improvements in functional imaging techniques such as EEG-functional MRI (fMRI) and magnetic source imaging provide complementary methods of identifying seizure foci. New epileptogenic pathologies such as multinodular and vacuolating neuronal tumors (MVNT) are being discovered, and the importance of others, such as encephaloceles, is better appreciated. SUMMARY Brain imaging is a critical component of the diagnosis and evaluation of patients with epilepsy. Structural imaging modalities such as MRI and CT allow for the identification of a wide variety of potentially epileptogenic lesions. For patients with drug-resistant epilepsy under consideration for resective surgery, both structural and functional neuroimaging may be needed for focus identification and surgical planning for preservation of neurologic function.
Collapse
|
25
|
Shih YC, Lee TH, Yu HY, Chou CC, Lee CC, Lin PT, Peng SJ. Machine Learning Quantitative Analysis of FDG PET Images of Medial Temporal Lobe Epilepsy Patients. Clin Nucl Med 2022; 47:287-293. [PMID: 35085166 PMCID: PMC8884180 DOI: 10.1097/rlu.0000000000004072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/20/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE 18F-FDG PET is widely used in epilepsy surgery. We established a robust quantitative algorithm for the lateralization of epileptogenic foci and examined the value of machine learning of 18F-FDG PET data in medial temporal lobe epilepsy (MTLE) patients. PATIENTS AND METHODS We retrospectively reviewed patients who underwent surgery for MTLE. Three clinicians identified the side of MTLE epileptogenesis by visual inspection. The surgical side was set as the epileptogenic side. Two parcellation paradigms and corresponding atlases (Automated Anatomical Labeling and FreeSurfer aparc + aseg) were used to extract the normalized PET uptake of the regions of interest (ROIs). The lateralization index of the MTLE-associated regions in either hemisphere was calculated. The lateralization indices of each ROI were subjected for machine learning to establish the model for classifying the side of MTLE epileptogenesis. RESULT Ninety-three patients were enrolled for training and validation, and another 11 patients were used for testing. The hit rate of lateralization by visual analysis was 75.3%. Among the 23 patients whose MTLE side of epileptogenesis was incorrectly determined or for whom no conclusion was reached by visual analysis, the Automated Anatomical Labeling and aparc + aseg parcellated the associated ROIs on the correctly lateralized MTLE side in 100.0% and 82.6%. In the testing set, lateralization accuracy was 100% in the 2 paradigms. CONCLUSIONS Visual analysis of 18F-FDG PET to lateralize MTLE epileptogenesis showed a lower hit rate compared with machine-assisted interpretation. While reviewing 18F-FDG PET images of MTLE patients, considering the regions associated with MTLE resulted in better performance than limiting analysis to hippocampal regions.
Collapse
Affiliation(s)
- Yen-Cheng Shih
- From the Department of Neurology, Neurological Institute, Taipei Veterans General Hospital
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine
- Brain Research Center, National Yang Ming Chiao Tung University
| | - Tse-Hao Lee
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine
- Departments of Nuclear Medicine
| | - Hsiang-Yu Yu
- From the Department of Neurology, Neurological Institute, Taipei Veterans General Hospital
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine
- Brain Research Center, National Yang Ming Chiao Tung University
| | - Chien-Chen Chou
- From the Department of Neurology, Neurological Institute, Taipei Veterans General Hospital
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine
- Brain Research Center, National Yang Ming Chiao Tung University
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine
- Brain Research Center, National Yang Ming Chiao Tung University
- Neurosurgery, Neurological Institute, Taipei Veterans General Hospital
| | - Po-Tso Lin
- From the Department of Neurology, Neurological Institute, Taipei Veterans General Hospital
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine
- Brain Research Center, National Yang Ming Chiao Tung University
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Hou J, Zhu H, Xiao L, Zhao CW, Liao G, Tang Y, Feng L. Alterations in Cortical-Subcortical Metabolism in Temporal Lobe Epilepsy With Impaired Awareness Seizures. Front Aging Neurosci 2022; 14:849774. [PMID: 35360210 PMCID: PMC8961434 DOI: 10.3389/fnagi.2022.849774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe features of cerebral metabolism associated with loss of consciousness in patients with temporal lobe epilepsy (TLE) have not been fully elucidated. We aim to investigate the alterations in cortical-subcortical metabolism in temporal lobe epilepsy with impaired awareness seizures (IAS).MethodsRegional cerebral metabolism was measured using fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in patients with TLE-IAS and healthy controls. All patients had a comprehensive evaluation to confirm their seizure origin and lateralization. Videos of all seizures were viewed and rated by at least two epileptologists to identify the state of consciousness when a seizure occurred. By synthesizing the seizure history, semeiology, and video EEG of all patients, as long as the patients had one seizure with impaired awareness, she/he will be included. 76 patients with TLE-IAS and 60 age-matched healthy controls were enrolled in this study. Regional cerebral metabolic patterns were analyzed for TLE-IAS and healthy control groups using statistical parametric mapping. Besides, we compared the MRI-negative patients and MRI-positive patients with healthy controls, respectively.ResultsThere were no significant differences in the age and sex of TLE-IAS patients and healthy control. TLE-IAS patients showed extensive bilateral hypermetabolism in the frontoparietal regions, cingulate gyrus, corpus callosum, occipital lobes, basal ganglia, thalamus, brainstem, and cerebellum. The region of metabolic change was more extensive in right TLE-IAS than that of the left, including extensive hypometabolism in the ipsilateral temporal, frontal, parietal, and insular lobes. And contralateral temporal lobe, bilateral frontoparietal regions, occipital lobes, the anterior and posterior regions of the cingulate gyrus, bilateral thalamus, bilateral basal ganglia, brainstem, and bilateral cerebellum showed hypermetabolism. The TLE patients with impaired awareness seizure showed hypermetabolism in the cortical-subcortical network including the arousal system. Additionally, 48 MRI-positive and 28 MRI-negative TLE-IAS patients were included in our study. TLE-IAS patients with MRI-negative and MRI-positive were both showed hypermetabolism in the cingulate gyrus. Hypometabolism in the bilateral temporal lobe was showed in the TLE-IAS with MRI-positive.ConclusionThese findings suggested that the repetitive consciousness impairing ictal events may have an accumulative effect on brain metabolism, resulting in abnormal interictal cortical-subcortical metabolic disturbance in TLE patients with impaired awareness seizure. Understanding these metabolic mechanisms may guide future clinical treatments to prevent seizure-related awareness deficits and improve quality of life in people with TLE.
Collapse
Affiliation(s)
- Jiale Hou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | | | - Guang Liao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongxiang Tang,
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
- Li Feng,
| |
Collapse
|
27
|
Jean Talairach (1911–2007). An untold story of the pioneer of stereotactic and functional neurosurgery. Neurochirurgie 2022; 68:398-408. [DOI: 10.1016/j.neuchi.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
|
28
|
Barba C, Rheims S, Minotti L, Grisotto L, Chabardès S, Guenot M, Isnard J, Pellacani S, Hermier M, Ryvlin P, Kahane P. Surgical outcome of temporal plus epilepsy is improved by multilobar resection. Epilepsia 2022; 63:769-776. [PMID: 35165888 DOI: 10.1111/epi.17185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Temporal plus epilepsy (TPE) represents a rare type of epilepsy characterized by a complex epileptogenic zone including the temporal lobe and the close neighboring structures. We investigated whether the complete resection of temporal plus epileptogenic zone as defined through stereoelectroencephalography (SEEG) might improve seizure outcome in 38 patients with TPE. METHODS Inclusion criteria were as follows: epilepsy surgery performed between January 1990 and December 2001, SEEG defining a temporal plus epileptogenic zone, unilobar temporal operations ("temporal lobe epilepsy [TLE] surgery") or multilobar interventions including the temporal lobe ("TPE surgery"), magnetic resonance imaging either normal or showing signs of hippocampal sclerosis, and postoperative follow-up of at least 12 months. For each assessment of postoperative seizure outcome, at 1, 2, 5, and 10 years, we carried out descriptive analysis and classical tests of hypothesis, namely, Pearson χ2 test or Fisher exact test of independence on tables of frequency for each categorical variable of interest and Student t-test for each continuous variable of interest, when appropriate. RESULTS Twenty-one patients underwent TPE surgery and 17 underwent TLE surgery with a follow-up of 12.4 ± 8.16 years. In the multivariate models, there was a significant effect of the time from surgery on Engel Class IA versus IB-IV outcome, with a steadily worsening trend from 5-year follow-up onward. TPE surgery was associated with better results than TLE surgery. SIGNIFICANCE This study suggests that surgical outcome in patients with TPE can be improved by a tailored, multilobar resection and confirms that SEEG is mandatory when a TPE is suspected.
Collapse
Affiliation(s)
- Carmen Barba
- Neuroscience Department, Meyer Children's Hospital-University of Florence, member of the ERN EpiCARE, Florence, Italy
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon, France.,Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, member of the ERN EpiCARE, Lyon, France.,Lyon 1 University, Lyon, France
| | - Lorella Minotti
- CHU Grenoble Alpes, Univ. Grenoble-Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Laura Grisotto
- Department of Statistics, Computer Science, G. Parenti Application, University of Florence, Florence, Italy
| | - Stéphan Chabardès
- CHU Grenoble Alpes, Univ. Grenoble-Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Marc Guenot
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, member of the ERN EpiCARE, Lyon, France.,Department of Functional Neurosurgery, Hospices Civils de Lyon, Lyon, France
| | - Jean Isnard
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon, France.,Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, member of the ERN EpiCARE, Lyon, France
| | - Simona Pellacani
- Neuroscience Department, Meyer Children's Hospital-University of Florence, member of the ERN EpiCARE, Florence, Italy
| | - Marc Hermier
- Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaudois University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Philippe Kahane
- CHU Grenoble Alpes, Univ. Grenoble-Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
29
|
Tang Y, Li W, Tao L, Li J, Long T, Li Y, Chen D, Hu S. Machine Learning-Derived Multimodal Neuroimaging of Presurgical Target Area to Predict Individual's Seizure Outcomes After Epilepsy Surgery. Front Cell Dev Biol 2022; 9:669795. [PMID: 35127691 PMCID: PMC8814443 DOI: 10.3389/fcell.2021.669795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Half of the patients who have tailored resection of the suspected epileptogenic zone for drug-resistant epilepsy have recurrent postoperative seizures. Although neuroimaging has become an indispensable part of delineating the epileptogenic zone, no validated method uses neuroimaging of presurgical target area to predict an individual's post-surgery seizure outcome. We aimed to develop and validate a machine learning-powered approach incorporating multimodal neuroimaging of a presurgical target area to predict an individual's post-surgery seizure outcome in patients with drug-resistant focal epilepsy. Materials and Methods: One hundred and forty-one patients with drug-resistant focal epilepsy were classified either as having seizure-free (Engel class I) or seizure-recurrence (Engel class II through IV) at least 1 year after surgery. The presurgical magnetic resonance imaging, positron emission tomography, computed tomography, and postsurgical magnetic resonance imaging were co-registered for surgical target volume of interest (VOI) segmentation; all VOIs were decomposed into nine fixed views, then were inputted into the deep residual network (DRN) that was pretrained on Tiny-ImageNet dataset to extract and transfer deep features. A multi-kernel support vector machine (MKSVM) was used to integrate multiple views of feature sets and to predict seizure outcomes of the targeted VOIs. Leave-one-out validation was applied to develop a model for verifying the prediction. In the end, performance using this approach was assessed by calculating accuracy, sensitivity, and specificity. Receiver operating characteristic curves were generated, and the optimal area under the receiver operating characteristic curve (AUC) was calculated as a metric for classifying outcomes. Results: Application of DRN-MKSVM model based on presurgical target area neuroimaging demonstrated good performance in predicting seizure outcomes. The AUC ranged from 0.799 to 0.952. Importantly, the classification performance DRN-MKSVM model using data from multiple neuroimaging showed an accuracy of 91.5%, a sensitivity of 96.2%, a specificity of 85.5%, and AUCs of 0.95, which were significantly better than any other single-modal neuroimaging (all p ˂ 0.05). Conclusion: DRN-MKSVM, using multimodal compared with unimodal neuroimaging from the surgical target area, accurately predicted postsurgical outcomes. The preoperative individualized prediction of seizure outcomes in patients who have been judged eligible for epilepsy surgery could be conveniently facilitated. This may aid epileptologists in presurgical evaluation by providing a tool to explore various surgical options, offering complementary information to existing clinical techniques.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Weikai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Lue Tao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
30
|
Insular Involvement in Cases of Epilepsy Surgery Failure. Brain Sci 2022; 12:brainsci12020125. [PMID: 35203889 PMCID: PMC8870364 DOI: 10.3390/brainsci12020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Epilepsy surgery failure is not uncommon, with several explanations having been proposed. In this series, we detail cases of epilepsy surgery failure subsequently attributed to insular involvement. Methods: We retrospectively identified patients investigated at the epilepsy monitoring units of two Canadian tertiary care centers (2004–2020). Included patients were adults who had undergone epilepsy surgeries with recurrence of seizures post-operatively and who were subsequently determined to have an insular epileptogenic focus. Clinical, electrophysiological, neuroimaging, and surgical data were synthesized. Results: We present 14 patients who demonstrated insular epileptic activity post-surgery-failure as detected by intracranial EEG, MEG, or seizure improvement after insular resection. Seven patients had manifestations evoking possible insular involvement prior to their first surgery. Most patients (8/14) had initial surgeries targeting the temporal lobe. Seizure recurrence ranged from the immediate post-operative period to one year. The main modality used to determine insular involvement was MEG (8/14). Nine patients underwent re-operations that included insular resection; seven achieved a favorable post-operative outcome (Engel I or II). Conclusions: Our series suggests that lowering the threshold for suspecting insular epilepsy may be necessary to improve epilepsy surgery outcomes. Detecting insular epilepsy post-surgery-failure may allow for re-operations which may lead to good outcomes.
Collapse
|
31
|
Zhu Z, Zhang Z, Gao X, Feng L, Chen D, Yang Z, Hu S. Individual Brain Metabolic Connectome Indicator Based on Jensen-Shannon Divergence Similarity Estimation Predicts Seizure Outcomes of Temporal Lobe Epilepsy. Front Cell Dev Biol 2022; 9:803800. [PMID: 35310541 PMCID: PMC8926031 DOI: 10.3389/fcell.2021.803800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: We aimed to use an individual metabolic connectome method, the Jensen-Shannon Divergence Similarity Estimation (JSSE), to characterize the aberrant connectivity patterns and topological alterations of the individual-level brain metabolic connectome and predict the long-term surgical outcomes in temporal lobe epilepsy (TLE). Methods: A total of 128 patients with TLE (63 females, 65 males; 25.07 ± 12.01 years) who underwent Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) imaging were enrolled. Patients were classified either as experiencing seizure recurrence (SZR) or seizure free (SZF) at least 1 year after surgery. Each individual's metabolic brain network was ascertained using the proposed JSSE method. We compared the similarity and difference in the JSSE network and its topological measurements between the two groups. The two groups were then classified by combining the information from connection and topological metrics, which was conducted by the multiple kernel support vector machine. The validation was performed using the nested leave-one-out cross-validation strategy to confirm the performance of the methods. Results: With a median follow-up of 33 months, 50% of patients achieved SZF. No relevant differences in clinical features were found between the two groups except age at onset. The proposed JSSE method showed marked degree reductions in IFGoperc.R, ROL. R, IPL. R, and SMG. R; and betweenness reductions in ORBsup.R and IOG. R; meanwhile, it found increases in the degree analysis of CAL. L and PCL. L, and in the betweenness analysis of PreCG.R, IOG. R, PoCG.R, PCL. L and PCL.R. Exploring consensus significant metabolic connections, we observed that the most involved metabolic motor networks were the INS-TPOmid.L, MTG. R-SMG. R, and MTG. R-IPL.R pathways between the two groups, and yielded another detailed individual pathological connectivity in the PHG. R-CAU.L, PHG. R-HIP.L, TPOmid.L-LING.R, TPOmid.L-DCG.R, MOG. R-MTG.R, MOG. R-ANG.R, and IPL. R-IFGoperc.L pathways. These aberrant functional network measures exhibited ideal classification performance in predicting SZF individuals from SZR ones at a sensitivity of 75.00%, a specificity of 92.79%, and an accuracy of 83.59%. Conclusion: The JSSE method indicator can identify abnormal brain networks in predicting an individual's long-term surgical outcome of TLE, thus potentially constituting a clinically applicable imaging biomarker. The results highlight the biological meaning of the estimated individual brain metabolic connectome.
Collapse
Affiliation(s)
- Zehua Zhu
- Department of Nuclear Medicine, XiangYa Hospital, Changsha, China
| | - Zhimin Zhang
- Department of Blood Transfusion, XiangYa Hospital, Changsha, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, XiangYa Hospital, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, XiangYa Hospital, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
33
|
Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment? Eur J Nucl Med Mol Imaging 2021; 49:221-233. [PMID: 34120191 DOI: 10.1007/s00259-021-05449-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1-2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.
Collapse
Affiliation(s)
- Viviane Bouilleret
- Unité de Neurophysiologie et d'Epileptologie (UNCE), Université Paris-Saclay APHP, 78, Rue du Général Leclerc, 94275, Le Kremlin Bicêtre, France.
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay, France.
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, Early Solutions, UCB Pharma, Braine-l'Alleud, Belgium
- Experimental Laboratory of Haematology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
34
|
Ren S, Huang Q, Bao W, Jiang D, Xiao J, Li J, Xie F, Guan Y, Feng R, Hua F. Metabolic Brain Network and Surgical Outcome in Temporal Lobe Epilepsy: A Graph Theoretical Study Based on 18F-fluorodeoxyglucose PET. Neuroscience 2021; 478:39-48. [PMID: 34687794 DOI: 10.1016/j.neuroscience.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Drug-resistant temporal lobe epilepsy (TLE) is a potential candidate for surgery; however, nearly one-third subjects had a poor surgical prognosis. We studied the underlying neuromechanism related to the surgical prognosis using graph theory based on metabolic brain network. Sixty-four unilateral TLE subjects with preoperative 18F-fluorodeoxyglucose (FDG) PET scanning were retrospectively enrolled and divided into Ia (Engel class Ia, n = 32) and non-Ia (Engel class Ib-IV, n = 32) groups according to more than 3-year follow-up after unilateral anterior temporal lobectomy (ATL). The metabolic brain network was constructed and the changed metabolic connectivity of Ia and non-Ia was detected compared with 15 matched healthy controls (HCs). Further, the network properties, including small-worldness and global efficiency, were calculated and hub nodes were also identified for the 3 groups respectively. Non-Ia group exhibited increased connectivity between contralateral fusiform gyrus and contralateral lingual gyrus; while Ia showed decreased connectivity mainly among bilateral frontal, temporal and parietal cortex. Graph theoretical analysis revealed that non-Ia group showed increased small-worldness (35%<s < 55%, P ≤ 0.05) compared to HCs; and elevated global efficiency (P = 0.05) and decreased Lp (P = 0.05) compared to Ia group. Ia group showed reduced Cp (55%<s < 63%, P < 0.05) and increased small-worldness (35%<s < 37%, P < 0.05) compared to HCs; Furthermore, disrupted hub nodes distribution pattern with the midcingulate gyrus disappeared, was also found in non-Ia group compared with the Ia group. All those results revealed that elevated network integration and metabolic connectivity, redistributed hub nodes pattern is associated with ongoing postoperative seizures in subjects with intractable TLE.
Collapse
Affiliation(s)
- Shuhua Ren
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China.
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Fengchun Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China; Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
35
|
Cho KH, Park KM, Lee HJ, Cho H, Lee DA, Heo K, Kim SE. Metabolic network is related to surgical outcome in temporal lobe epilepsy with hippocampal sclerosis: A brain FDG-PET study. J Neuroimaging 2021; 32:300-313. [PMID: 34679233 DOI: 10.1111/jon.12941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate differences in metabolic networks based on preoperative fluorodeoxyglucose (FDG)-positron emission tomography (PET) in temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) between patients with complete seizure-free (SF) and those with noncomplete seizure-free (non-SF) after anterior temporal lobectomy. METHODS This study was retrospectively performed at a tertiary hospital. We recruited pathologically confirmed 75 TLE patients with HS who underwent preoperative FDG-PET. All patients underwent a standard anterior temporal lobectomy. The surgical outcome was evaluated at least 12 months after surgery, and we divided the subjects into patients with SF (International League Against Epilepsy [ILAE] class I) and those with non-SF (ILAE class II-VI). We evaluated the metabolic network using graph theoretical analysis based on FDG-PET. We investigated the differences in network measures between the two groups. RESULTS Of the 75 TLE patients with HS, 32 patients (42.6%) had SF, whereas 43 patients (57.3%) had non-SF. There were significant differences in global metabolic networks according to surgical outcomes. The patients with SF had a lower assortative coefficient than those with non-SF (-0.020 vs. -0.009, p = .044). We also found widespread regional differences in local metabolic networks according to surgical outcomes. CONCLUSION Our study demonstrates significant differences in preoperative metabolic networks based on FDG-PET in TLE patients with HS according to surgical outcomes. This work introduces a metabolic network based on FDG-PET and can be used as a potential tool for predicting surgical outcome in TLE patients with HS.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
36
|
Zhao B, Zhang C, Wang X, Wang Y, Mo J, Zheng Z, Ai L, Zhang K, Zhang J, Shao XQ, Hu W. Orbitofrontal epilepsy: distinct neuronal networks underlying electroclinical subtypes and surgical outcomes. J Neurosurg 2021; 135:255-265. [PMID: 32823264 DOI: 10.3171/2020.5.jns20477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to characterize the clinical and electrophysiological findings of epilepsy originating from the orbitofrontal cortex (OFC) as well as its surgical outcomes. METHODS The authors retrospectively reviewed 27 consecutive cases of patients with drug-resistant orbitofrontal epilepsy (OFE) who underwent tailored resective surgery after a detailed presurgical workup. Demographic features, seizure semiology, imaging characteristics, resection site, pathological results, and surgical outcomes were analyzed. Patients were categorized according to semiology. The underlying neural network was further explored through quantitative FDG-PET and ictal stereo-electroencephalography (SEEG) analysis at the group level. FDG-PET studies between the semiology group and the control group were compared using a voxel-based independent t-test. Ictal SEEG was quantified by calculating the energy ratio (ER) of high- and low-frequency bands. An ER comparison between the anterior cingulate cortex (ACC) and the amygdala was performed to differentiate seizure spreading patterns in groups with different semiology. RESULTS Scalp electroencephalography (EEG) and MRI were inconclusive to a large extent. Patients were categorized into the following 3 semiology groups: the frontal group (n = 14), which included patients with hyperactive automatisms with agitated movements; the temporal group (n = 11), which included patients with oroalimentary or manual automatisms; and the other group (n = 2), which included patients with none of the abovementioned or indistinguishable manifestations. Patients in the frontal and temporal groups (n = 23) or in the frontal group only (n = 14) demonstrated significant hypometabolism mainly across the ipsilateral OFC, ACC, and anterior insula (AI), while patients in the temporal group (n = 9) had hypometabolism only in the OFC and AI. The ER results (n = 15) suggested distinct propagation pathways that allowed us to differentiate between the frontal and temporal groups. Pathologies included focal cortical dysplasia, dysembryoplastic neuroepithelial tumor, cavernous malformation, glial scar, and nonspecific findings. At a minimum follow-up of 12 months, 19 patients (70.4%) were seizure free, and Engel class II, III, and IV outcomes were observed in 4 patients (14.8%), 3 patients (11.1%), and 1 patient (3.7%), respectively. CONCLUSIONS The diagnosis of OFE requires careful presurgical evaluation. Based on their electrophysiological and metabolic evidence, the authors propose that varied semiological patterns could be explained by the extent of involvement of a network that includes at least the OFC, ACC, AI, and temporal lobe. Tailored resections for OFE may lead to a good overall outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Zheng
- 2Department of Neurosurgery, Beijing Fengtai Hospital, Beijing
| | - Lin Ai
- 3Imaging and Nuclear Medicine, and
| | - Kai Zhang
- Departments of1Neurosurgery
- 4Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing; and
- 5Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Departments of1Neurosurgery
- 4Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing; and
- 5Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Qiu Shao
- 6Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing
| | - Wenhan Hu
- Departments of1Neurosurgery
- 4Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing; and
- 5Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
37
|
Seizure Freedom in Temporal Plus Epilepsy Surgery Following Stereo-Electroencephalography. Can J Neurol Sci 2021; 47:374-381. [PMID: 32036799 DOI: 10.1017/cjn.2020.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND "Temporal plus" epilepsy (TPE) is a term that is used when the epileptogenic zone (EZ) extends beyond the boundaries of the temporal lobe. Stereotactic electroencephalography (SEEG) has been essential to identify additional EZs in adjacent structures that might be part of the temporal lobe/limbic network. OBJECTIVE We present a small case series of temporal plus cases successfully identified by SEEG who were seizure-free after resective surgery. METHODS We conducted a retrospective analysis of 156 patients who underwent SEEG in 5 years. Six cases had TPE and underwent anterior temporal lobectomy (ATL) with additional extra-temporal resections. RESULTS Five cases had a focus on the right hemisphere and one on the left. Three cases were non-lesional and three were lesional. Mean follow-up time since surgery was 2.9 years (SD ± 1.8). Three patients had subdural electrodes investigation prior or in addition to SEEG. All patients underwent standard ATL and additional extra-temporal resections during the same procedure or at a later date. All patients were seizure-free at their last follow-up appointment (Engel Ia = 3; Engel Ib = 2; Engel Ic = 1). Pathology was nonspecific/gliosis for all six cases. CONCLUSION TPE might explain some of the failures in temporal lobe epilepsy surgery. We present a small case series of six patients in whom SEEG successfully identified this phenomenon and surgery proved effective.
Collapse
|
38
|
Association of hypometabolic extension of 18F-FDG PET with diffusion tensor imaging indices in mesial temporal lobe epilepsy with hippocampal sclerosis. Seizure 2021; 88:130-137. [PMID: 33878604 DOI: 10.1016/j.seizure.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To assess the association between hypometabolic extension of 18F-fluorodeoxyglucose positron emission tomography and diffusion tensor imaging indices, including mean diffusivity (MD) and fractional anisotropy (FA), in hippocampal sclerosis (HS). METHODS Thirty-six unilateral HS were retrospectively selected and stratified into two groups: broad and localized hypometabolic groups (hypometabolism beyond [n = 26] and within the temporal lobe [n = 10]). Forty-one pairs of gray matter (GM) regions of interest (ROIs) were segmented using FreeSurfer software. The GM ROIs were applied to MD maps, and median MD values within each ROI were compared between hemispheres ipsilateral and contralateral to HS using a mixed effect model. Tract-Based Spatial Statistics (TBSS) was used to evaluate FA of white matter (WM) tracts between hemispheres ipsilateral and contralateral to HS. Disease laterality was controlled for. RESULTS The MD values in the thalamus, caudate, hippocampus, amygdala, superior frontal gyrus, middle and inferior temporal gyrus, temporal pole, and isthmus cingulate gyrus were significantly higher in the HS side than the contralateral side for the broad hypometabolic group. Those in the amygdala and superior temporal sulcus were significantly higher in the HS side than the contralateral side for the localized group. The TBSS analyses showed significantly decreased FA in the WM tracts of the temporal and frontal lobes for the broad hypometabolic group, while no tracts showed significant differences for the localized group. CONCLUSION The hypometabolic extension for HS was associated with the abnormalities of MD and FA in GM and WM, respectively, with more widespread microstructural alterations for broad hypometabolic HS.
Collapse
|
39
|
Consales A, Casciato S, Asioli S, Barba C, Caulo M, Colicchio G, Cossu M, de Palma L, Morano A, Vatti G, Villani F, Zamponi N, Tassi L, Di Gennaro G, Marras CE. The surgical treatment of epilepsy. Neurol Sci 2021; 42:2249-2260. [PMID: 33797619 DOI: 10.1007/s10072-021-05198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
In 2009, the Commission for Epilepsy Surgery of the Italian League Against Epilepsy (LICE) conducted an overview about the techniques used for the pre-surgical evaluation and the surgical treatment of epilepsies. The recognition that, in selected cases, surgery can be considered the first-line approach, suggested that the experience gained by the main Italian referral centers should be pooled in order to provide a handy source of reference. In light of the progress made over these past years, some parts of that first report have accordingly been updated. The present revision aims to harmonize the general principles regulating the patient selection and the pre-surgical work-up, as well as to expand the use of epilepsy surgery, that still represents an underutilized resource, regrettably. The objective of this contribution is drawing up a methodological framework within which to integrate the experiences of each group in this complex and dynamic sector of the neurosciences.
Collapse
Affiliation(s)
- Alessandro Consales
- Division of Neurosurgery, IRCCS Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Sara Casciato
- Epilepsy Surgery Centre, IRCCS Neuromed, Via Atinense, 18, 86170, Pozzilli, IS, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology "M. Malpighi", Bellaria Hospital, Bologna, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chieti, Italy
| | | | - Massimo Cossu
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Luca de Palma
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital, Rome, Italy
| | - Alessandra Morano
- Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Giampaolo Vatti
- Department of Neurological and Sensorial Sciences, University of Siena, Siena, Italy
| | - Flavio Villani
- Division of Neurophysiology and Epilepsy Centre, IRCCS San Martino Policlinic Hospital, Genoa, Italy
| | - Nelia Zamponi
- Child Neuropsychiatric Unit, University of Ancona, Ancona, Italy
| | - Laura Tassi
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Giancarlo Di Gennaro
- Epilepsy Surgery Centre, IRCCS Neuromed, Via Atinense, 18, 86170, Pozzilli, IS, Italy.
| | - Carlo Efisio Marras
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital, Rome, Italy
| |
Collapse
|
40
|
Bonilha L. Artificial intelligence to enhance the evaluation of refractory epilepsies. Epilepsy Behav 2021; 116:107776. [PMID: 33582012 DOI: 10.1016/j.yebeh.2021.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, United States.
| |
Collapse
|
41
|
Quantitative [18]FDG PET asymmetry features predict long-term seizure recurrence in refractory epilepsy. Epilepsy Behav 2021; 116:107714. [PMID: 33485794 PMCID: PMC8344068 DOI: 10.1016/j.yebeh.2020.107714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Fluorodeoxyglucose-positron emission tomography (FDG-PET) is an established, independent, strong predictor of surgical outcome in refractory epilepsy. In this study, we explored the added value of quantitative [18F]FDG-PET features combined with clinical variables, including electroencephalography (EEG), [18F]FDG-PET, and magnetic resonance imaging (MRI) qualitative interpretations, to predict long-term seizure recurrence (mean post-op follow-up of 5.85 ± 3.77 years). METHODS Machine learning predictive models of surgical outcome were created using a random forest classifier trained on quantitative features in 89 patients with drug-refractory temporal lobe epilepsy evaluated at the Hospital of the University of Pennsylvania epilepsy surgery program (2003-2016). Quantitative features were calculated from asymmetry features derived from image processing using Advanced Normalization Tools (ANTs). RESULTS The best-performing model used quantification and had an out-of-bag accuracy of 0.71 in identifying patients with seizure recurrence (Engel IB or worse) which outperformed that using qualitative clinical data by 10%. This model is shared through open-source software for research use. In addition, several asymmetry features in temporal and extratemporal regions that were significantly associated with seizure freedom are identified for future study. SIGNIFICANCE Complex quantitative [18F]FDG-PET imaging features can predict seizure recurrence in patients with refractory temporal lobe epilepsy. These initial retrospective results in a cohort with long-term follow-up suggest that using quantitative imaging features from regions in the epileptogenic network can inform the clinical decision-making process.
Collapse
|
42
|
18 F-FDG-PET hypometabolic pattern reveals multifocal epileptic foci despite limited unique stereotyped seizures. Epilepsy Res 2021; 172:106589. [PMID: 33640665 DOI: 10.1016/j.eplepsyres.2021.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Interictal positron emission tomography (PET) with 18F-FDG has largely proved its utility in presurgical evaluation of drug-resistant epilepsies (DRE) and in the surgical outcomes. Interictal hypometabolism topography is related to the neuronal networks involved in the seizure onset zone (SOZ) and spread pathways. 18F-FDG PET has a good prognostic value for post-surgical outcome, especially in cases with unique focal ictal semiology and a limited extent of hypometabolism. Surprisingly few patients have similar limited ictal features but extended hypometabolism. The objective of this study is to show that stereoelectro encephalography (SEEG) provides an explanation for this large hypometabolism, which impacts the surgical strategy. METHODS A cohort of 248 patients underwent 18F-FDG PET and SEEG to explore for refractory epilepsy in two close tertiary epilepsy centers between January 2009 and December 2017. From this cohort, a subset of patients was selected with extended PET metabolism despite showing unique and limited ictal features in scalp EEG. The surgical outcome of this subset of patients has been analysed with respect to their FDG-PET and SEEG to understand the relationship between PET/SEEG/ presentation and surgical outcome. RESULTS We report a series of seven patients with DRE and unique stereotyped ictal semiology but extensive 18F-FDG-PET hypometabolism revealing unexpected multifocal SOZ using SEEG. All SOZ were encompassed by the hypometabolic area. CONCLUSION Our results demonstrate the necessity of accounting for the discrepancy between limited symptoms and widespread hypometabolism which can reveal multifocal SOZ. In those patients, surgical possibilities should be considered carefully.
Collapse
|
43
|
Tang Y, Liao G, Li J, Long T, Li Y, Feng L, Chen D, Tang B, Hu S. FDG-PET Profiles of Extratemporal Metabolism as a Predictor of Surgical Failure in Temporal Lobe Epilepsy. Front Med (Lausanne) 2020; 7:605002. [PMID: 33425950 PMCID: PMC7793721 DOI: 10.3389/fmed.2020.605002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Objective: Metabolic abnormality in the extratemporal area on fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is not an uncommon finding in drug-resistant temporal lobe epilepsy (TLE), however the correlation between extratemporal metabolic abnormalities and surgical long-term prognosis has not been fully elucidated. We aim to investigate FDG-PET extratemporal metabolic profiles predictive of failure in surgery for TLE patients. Methods: Eighty-two patients with unilateral TLE (48 female, 34 male; 25.6 ± 10.6 years old; 37 left TLE, 45 right TLE) and 30 healthy age-matched controls were enrolled. Patients were classified either as experiencing seizure-recurrence (SZR, Engel class II through IV) or seizure-free (SZF, Engel class I) at least 1 year after surgery. Regional cerebral metabolism was evaluated by FDG-PET with statistical parametric mapping (SPM12). Abnormal metabolic profiles and patterns on FDG-PET in SZR group were evaluated and compared with those of healthy control and SZF subjects on SPM12. Volume and intensity as well as special brain areas of abnormal metabolism in temporal and extratemporal regions were quantified and visualized. Results: With a median follow-up of 1.5 years, 60% of patients achieved Engel class I (SZF). SZR was associated with left TLE and widespread hypometabolism in FDG-PET visual assessment (both p < 0.05). All patients had hypometabolism in the ipsilateral temporal lobe but SZR was not correlated with volume or intensity of temporal hypometabolism (median, 1,456 vs. 1,040 mm3; p > 0.05). SZR was correlated with extratemporal metabolic abnormalities that differed according to lateralization: in right TLE, SZR exhibited larger volume in extratemporal areas compared to SZF (median, 11,060 vs. 2,112 mm3; p < 0.05). Surgical failure was characterized by Cingulum_Ant_R/L, Frontal_Inf_Orb_R abnormal metabolism in extratemporal regions. In left TLE, SZR presented a larger involvement of extratemporal areas similar to right TLE but with no significant (median, 5,873 vs. 3,464 mm3; p > 0.05), Cingulum_Ant_ R/L, Parietal_Inf_L, Postcentral_L, and Precuneus_R involved metabolic abnormalities were correlated with SZR. Conclusions: Extratemporal metabolic profiles detected by FDG-PET may indicate a prominent cause of TLE surgery failure and should be considered in predictive models for epilepsy surgery. Seizure control after surgery might be improved by investigating extratemporal areas as candidates for resection or neuromodulation.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Liao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Lee EJ, Oh JS, Moon H, Kim MJ, Kim MS, Chung SJ, Kim JS, Jeon SR. Parkinson Disease-Related Pattern of Glucose Metabolism Associated With the Potential for Motor Improvement After Deep Brain Stimulation. Neurosurgery 2020; 86:492-499. [PMID: 31215629 DOI: 10.1093/neuros/nyz206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Motor dysfunctions in Parkinson disease (PD) patients are not completely normalized by deep brain stimulation (DBS), and there is an obvious difference in the degree of symptom improvement after DBS for each patient. OBJECTIVE To test our hypothesis that each patient has their own restoration capacity for motor improvement after DBS, and to investigate whether regional cerebral glucose metabolism in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans is associated with the capacity for off-medication motor improvement (MIoff) after DBS. METHODS The MIoff (%) was calculated using the Unified Parkinson's Disease Rating Scale part III in 27 PD patients undergoing DBS in the globus pallidus interna. The standardized uptake value ratios (SUVRs) on FDG-PET were quantitatively measured, and the areas where the SUVR correlated with the MIoff (%) were identified. Also, the areas where the SUVR was significantly different between the 2 MIoff groups (≥60% vs <60%) were determined. RESULTS Ten patients achieved MIoff > 60% at 12 mo after DBS. In general, the MIoff (%) was positively correlated with preoperative SUVR in the temporo-parieto-occipital lobes, while it was inversely correlated with the metabolism in the primary motor cortex. The patients in the MIoff < 60% group showed a significant decrease in SUVR in the parieto-occipital lobes, while parieto-occipital metabolism in those with MIoff ≥ 60% was relatively preserved (Mann-Whitney U test, P = .03). CONCLUSION Our findings suggest that the parieto-occipital lobes may be implicated more generally in the prognosis of motor improvement after DBS in advanced PD than other regions.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojeong Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,System Medical Device Team, Advanced Technology Department, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Min-Ju Kim
- Department of Clinical Epidemiology and Biostatics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Sun Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
Zhang M, Liu W, Huang P, Lin X, Huang X, Meng H, Wang J, Hu K, Li J, Lin M, Sun B, Zhan S, Li B. Utility of hybrid PET/MRI multiparametric imaging in navigating SEEG placement in refractory epilepsy. Seizure 2020; 81:295-303. [PMID: 32932134 DOI: 10.1016/j.seizure.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Stereo-electroencephalography (SEEG) implantation before epilepsy surgery is critical for precise localization and complete resection of the seizure onset zone (SOZ). Combined metabolic and morphological imaging using hybrid PET/MRI may provide supportive information for the optimization of the SEEG coverage of brain structures. In this study, we originally imported PET/MRI images into the SEEG positioning system to evaluate the application of PET/MRI in guiding SEEG implantation in refractory epilepsy patients. MATERIALS Forty-two patients undergoing simultaneous PET/MRI examinations were recruited. All the patients underwent SEEG implantation guided by hybrid PET/MRI and surgical resection or ablation of epileptic lesion. Surgery outcome was assessed using a modified Engel classification one year (13.60 ± 2.49 months) after surgery. Areas of SOZ were identified using hybrid PET/MRI and concordance with SEEG was evaluated. Logistic regression analysis was used to predict the presence of a favorable outcome with the coherence of concordance of PET/MRI and SEEG. RESULTS Hybrid PET/MRI (including visual PET, MRI, plus MI Neuro) identified SOZ lesions in 38 epilepsy patients (90.47 %). PET/MRI showed the same SOZ localization with SEEG in 29 patients (69.05 %), which was considered to be concordant. The concordance between the PET/MRI and SEEG findings was significantly predictive of a successful surgery outcome (odds ratio = 20.41; 95 % CI = 2.75-151.4, P = 0.003**). CONCLUSION Hybrid PET/MRI combined visual PET, multiple sequences MRI and SPM PET helps identify epilepsy lesions particularly in subtle hypometabolic areas. Patients with concordant epileptic lesion localization on PET/MRI and SEEG demonstrated a more favorable outcome than those with inconsistent localization between modalities.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Liu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Huang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongping Meng
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kejia Hu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Li
- Clinical Research Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mu Lin
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
46
|
Seong MJ, Hong SB, Seo DW, Joo EY, Hong SC, Lee SH, Shon YM. Correlations between interictal extratemporal spikes and clinical features, imaging characteristics, and surgical outcomes in patients with mesial temporal lobe epilepsy. Seizure 2020; 82:12-16. [PMID: 32957031 DOI: 10.1016/j.seizure.2020.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The significance of interictal epileptiform discharges (IEDs) observed in the extratemporal lobe has not been fully evaluated in patients with mesial temporal lobe epilepsy (MTLE). This study aimed to evaluate the surgical outcomes, clinical features, and functional neuroimaging characteristics of patients in relation to the presence or absence of extratemporal IED in MTLE with hippocampal sclerosis (HS). METHODS A total of 165 patients with HS-induced MTLE who had undergone anterior temporal lobectomy were enrolled and stratified into the extratemporal interictal epileptiform discharges (ETD) and the temporal lobe discharges (TD) groups. We analyzed the differentiating features of pre- and postsurgical evaluation data between the two groups. For outcome assessment, only patients with a follow-up of at least 2 years were enrolled, and the outcomes were classified based on Engel classification. RESULTS The ETD group showed extensive glucose hypometabolism involving the temporal lobe and extratemporal regions (p < 0.001), and IEDs were observed bilaterally or contralateral to the ictal focus (p = 0.02). However, there was no difference in the surgical outcomes between the two groups. On multivariate analysis, statistically significant variables related to ETD occurrence including seizure onset age were not identified nevertheless. CONCLUSION Our results indicate that ETD had a surgical outcome comparable to that of TD. Therefore, a surgical intervention need not be delayed even if extratemporal IED may be found in presurgical long-term scalp EEG monitoring.
Collapse
Affiliation(s)
- Min Jae Seong
- Department of Neurology, Myongji Hospital, Goyang, Republic of Korea
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Sunkyunkwan University, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Sunkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Lamberink HJ, Otte WM, Blümcke I, Braun KPJ. Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. Lancet Neurol 2020; 19:748-757. [PMID: 32822635 DOI: 10.1016/s1474-4422(20)30220-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Surgery is a widely accepted treatment option for drug-resistant focal epilepsy. A detailed analysis of longitudinal postoperative seizure outcomes and use of antiepileptic drugs for different brain lesions causing epilepsy is not available. We aimed to analyse the association between histopathology and seizure outcome and drug freedom up to 5 years after epilepsy surgery, to improve presurgical decision making and counselling. METHODS In this retrospective, multicentre, longitudinal, cohort study, patients who had epilepsy surgery between Jan 1, 2000, and Dec 31, 2012, at 37 collaborating tertiary referral centres across 18 European countries of the European Epilepsy Brain Bank consortium were assessed. We included patients of all ages with histopathology available after epilepsy surgery. Histopathological diagnoses and a minimal dataset of clinical variables were collected from existing local databases and patient records. The primary outcomes were freedom from disabling seizures (Engel class 1) and drug freedom at 1, 2, and 5 years after surgery. Proportions of individuals who were Engel class 1 and drug-free were reported for the 11 main categories of histopathological diagnosis. We analysed the association between histopathology, duration of epilepsy, and age at surgery, and the primary outcomes using random effects multivariable logistic regression to control for confounding. FINDINGS 9147 patients were included, of whom seizure outcomes were available for 8191 (89·5%) participants at 2 years, and for 5577 (61·0%) at 5 years. The diagnoses of low-grade epilepsy associated neuroepithelial tumour (LEAT), vascular malformation, and hippocampal sclerosis had the best seizure outcome at 2 years after surgery, with 77·5% (1027 of 1325) of patients free from disabling seizures for LEAT, 74·0% (328 of 443) for vascular malformation, and 71·5% (2108 of 2948) for hippocampal sclerosis. The worst seizure outcomes at 2 years were seen for patients with focal cortical dysplasia type I or mild malformation of cortical development (50·0%, 213 of 426 free from disabling seizures), those with malformation of cortical development-other (52·3%, 212 of 405 free from disabling seizures), and for those with no histopathological lesion (53·5%, 396 of 740 free from disabling seizures). The proportion of patients being both Engel class 1 and drug-free was 0-14% at 1 year and increased to 14-51% at 5 years. Children were more often drug-free; temporal lobe surgeries had the best seizure outcomes; and a longer duration of epilepsy was associated with reduced chance of favourable seizure outcomes and drug freedom. This effect of duration was evident for all lesions, except for hippocampal sclerosis. INTERPRETATION Histopathological diagnosis, age at surgery, and duration of epilepsy are important prognostic factors for outcomes of epilepsy surgery. In every patient with refractory focal epilepsy presumed to be lesional, evaluation for surgery should be considered. FUNDING None.
Collapse
Affiliation(s)
- Herm J Lamberink
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Willem M Otte
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Ingmar Blümcke
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany.
| | - Kees P J Braun
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | | | | |
Collapse
|
48
|
Wang J, Shan Y, Dai J, Cui B, Shang K, Yang H, Chen Z, Shan B, Zhao G, Lu J. Altered coupling between resting-state glucose metabolism and functional activity in epilepsy. Ann Clin Transl Neurol 2020; 7:1831-1842. [PMID: 32860354 PMCID: PMC7545617 DOI: 10.1002/acn3.51168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Altered functional activities and hypometabolism have been found in medial temporal lobe epilepsy patients with hippocampal sclerosis (mTLE-HS). Hybrid PET/MR scanners provide opportunities to explore the relationship between resting-state energy consumption and functional activities, but whether repeated seizures disturb the bioenergetic coupling and its relationship with seizure outcomes remain unknown. METHODS 18 F-FDG PET and resting-state functional MRI (rs-fMRI) scans were performed with hybrid PET/MR in 26 patients with mTLE-HS and in healthy controls. Energy consumption was quantified by 18 F-FDG standardized uptake value ratio(SUVR) relative to cerebellum. Spontaneous neural activities were estimated using regional homogeneity (ReHo), fractional amplitude of low frequency fluctuations (fALFF) from rs-fMRI. Between-group differences in SUVR and rs-fMRI derived metrics were evaluated by two-sample t test. Voxel-wise spatial correlations were explored between SUVR and ReHo, fALFF across gray matter and compared between groups. Furthermore, the relationships between altered fALFF/SUVR and ReHo/SUVR coupling and surgical outcomes were evaluated. RESULTS Both the patients and healthy controls showed significant positive correlations between SUVR and rs-fMRI metrics. Spatial correlations between SUVR and fMRI-derived metrics across gray matter were significantly higher in patients with mTLE-HS compared with healthy controls (fALFF/SUVR, P < 0.001; ReHo/SUVR, P = 0.022). Higher fALFF/SUVR couplings were found in patients who had Engel class IA after surgery than all other (P = 0.025), while altered ReHo/SUVR couplings (P = 0.097) were not. CONCLUSION These findings demonstrated altered bioenergetic coupling across gray matter and its relationship with seizure outcomes, which may provide novel insights into pathogenesis of mTLE-HS and potential biomarkers for epilepsy surgery planning.
Collapse
Affiliation(s)
- Jingjuan Wang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Yi Shan
- Department of RadiologyXuanwu Hospital Capital Medical UniversityBeijingChina
- Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jindong Dai
- Department of NeurosurgeryBeijing Haidian Section of Peking University Third HospitalBeijingChina
- Department of Functional NeurosurgeryXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Bixiao Cui
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Kun Shang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Hongwei Yang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | | | - Baoci Shan
- Division of Nuclear Technology and ApplicationsInstitute of High Energy PhysicsChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentBeijingChina
- CAS Centre for Excellence in Brain Science and Intelligent TechnologyShanghaiChina
| | - Guoguang Zhao
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
- Department of RadiologyXuanwu Hospital Capital Medical UniversityBeijingChina
- Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
49
|
Zhao B, Yang B, Tan Z, Hu W, Sang L, Zhang C, Wang X, Wang Y, Liu C, Mo J, Shao X, Zhang J, Zhang K. Intrinsic brain activity changes in temporal lobe epilepsy patients revealed by regional homogeneity analysis. Seizure 2020; 81:117-122. [PMID: 32781401 DOI: 10.1016/j.seizure.2020.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Temporal lobe epilepsy is increasingly being recognized as a disorder associated with brain networks extending outside the seizure onset zone. In the current study, we aim to clarify regional functional changes using a regional homogeneity method. METHODS We retrospectively included resting-state fMRI data from 14 left and 18 right temporal lobe epilepsy patients. Data from the control group were acquired from an open dataset. Regional homogeneity was calculated, and a two-sample t-test was performed to compare the left and right temporal lobe epilepsy groups with the control group. RESULTS Compared with the healthy control group, the left temporal lobe epilepsy group showed increased regional homogeneity in the left anterior and middle cingulate cortex, and putamen; right inferior frontal gyrus; bilateral temporal lobe and precentral gyrus and decreased regional homogeneity in the left superior parietal gyrus, cuneus and inferior occipital gyrus; right inferior parietal lobule and bilateral rectus. The right temporal lobe epilepsy group showed increased regional homogeneity in the left middle cingulate cortex, precuneus, precentral and postcentral gyrus; right insula and bilateral temporal lobe and decreased regional homogeneity in the left cuneus and superior occipital gyrus; right supramarginal gyrus, fusiform gyrus, lingual gyrus, inferior occipital gyrus and putamen; and the bilateral rectus. CONCLUSION Regional homogeneity measurements provide evidence supporting that temporal lobe epilepsy is a complex network disease. Functional disruption of temporal lobe epilepsy at the brain region level was revealed, which may provide novel insights for any potential diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
50
|
Akdemir ÜÖ, Çapraz I, Gülbahar Ateş S, Şeker K, Aydos U, Kurt G, Karabacak N, Atay LÖ, Bilir E. Evaluation of brain FDG PET images in temporal lobe epilepsy for lateralization of epileptogenic focus using data mining methods. Turk J Med Sci 2020; 50:738-748. [PMID: 32151114 PMCID: PMC7379449 DOI: 10.3906/sag-1911-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/05/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim In temporal lobe epilepsy (TLE), brain positron emission tomography (PET) performed with F-18 fluorodeoxyglucose (FDG) is commonly used for lateralization of the epileptogenic temporal lobe. In this study, we aimed to evaluate the success of quantitative analysis of brain FDG PET images using data mining methods in the lateralization of the epileptogenic temporal lobe. Materials and methods Presurgical interictal brain FDG PET images of 49 adult mesial TLE patients with a minimum of 2 years of postsurgical follow-up and Engel I outcomes were retrospectively analyzed. Asymmetry indices were calculated from PET images from the mesial temporal lobe and its contiguous structures. The J48 and the logistic model tree (LMT) data mining algorithms were used to find classification rules for the lateralization of the epileptogenic temporal lobe. The classification results obtained by these rules were compared with the physicians’ visual readings and the findings of single-patient statistical parametric mapping (SPM) analyses in a test set of 18 patients. An additional 5-fold cross-validation was applied to the data to overcome the limitation of a relatively small sample size. Results In the lateralization of 18 patients in the test set, J48 and LMT methods were successful in 16 (89%) and 17 (94%) patients, respectively. The visual consensus readings were correct in all patients and SPM results were correct in 16 patients. The 5-fold cross- validation method resulted in a mean correct lateralization ratio of 96% (47/49) for the LMT algorithm. This ratio was 88% (43 / 49) for the J48 algorithm. Conclusion Lateralization of the epileptogenic temporal lobe with data mining methods using regional metabolic asymmetry values obtained from interictal brain FDG PET images in mesial TLE patients is highly accurate. The application of data mining can contribute to the reader in the process of visual evaluation of FDG PET images of the brain.
Collapse
Affiliation(s)
- Ümit Özgür Akdemir
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Irem Çapraz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Seda Gülbahar Ateş
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Kerim Şeker
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Uğuray Aydos
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gökhan Kurt
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Neşe Karabacak
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Lütfiye Özlem Atay
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Erhan Bilir
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|