1
|
Nugraha HK, Hariharan AR, Huser AJ, Feldman DS. Diagnosis and Management of Orthopaedic Conditions Associated With Hereditary Sensory Autonomic Neuropathies. J Am Acad Orthop Surg 2025; 33:e205-e219. [PMID: 39602626 DOI: 10.5435/jaaos-d-24-00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) encompass a diverse group of inherited neuropathies characterized by notable sensory and autonomic involvement that affects musculoskeletal structures and systemic function. There are 8 recognized types of HSAN. The orthopaedic manifestations of HSAN are complex and diverse, including spinal deformity, Charcot arthropathy, osteomyelitis, fractures, osteonecrosis, osteoporosis, and skeletal deformities. The sensory neuropathy with involvement of small nerve fibers can lead to unnoticed burns, fractures, and joint trauma. Spinal involvement includes progressive scoliosis/kyphosis and acute neurologic compromise. Diagnosis is dependent on clinical suspicion and confirmed with genetic analysis. Treatment is focused on the eradication of infection, stabilization of fractures, and prevention of joint instability in the spine and extremities. This review focuses on the orthopaedic manifestations to aid healthcare professionals in the recognition and treatment of these conditions.
Collapse
Affiliation(s)
- Hans Kristian Nugraha
- From the Paley Orthopedic and Spine Institute, West Palm Beach, FL (Nugraha, Hariharan, Huser, and Feldman), and Department of Surgery, Florida Atlantic University School of Medicine (Hariharan and Feldman), Boca Raton, FL
| | | | | | | |
Collapse
|
2
|
Yoshioka N, Kurose M, Sano H, Tran DM, Chiken S, Tainaka K, Yamamura K, Kobayashi K, Nambu A, Takebayashi H. Sensory-motor circuit is a therapeutic target for dystonia musculorum mice, a model of hereditary sensory and autonomic neuropathy 6. SCIENCE ADVANCES 2024; 10:eadj9335. [PMID: 39058787 PMCID: PMC11277474 DOI: 10.1126/sciadv.adj9335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Mutations in Dystonin (DST), which encodes cytoskeletal linker proteins, cause hereditary sensory and autonomic neuropathy 6 (HSAN-VI) in humans and the dystonia musculorum (dt) phenotype in mice; however, the neuronal circuit underlying the HSAN-VI and dt phenotype is unresolved. dt mice exhibit dystonic movements accompanied by the simultaneous contraction of agonist and antagonist muscles and postnatal lethality. Here, we identified the sensory-motor circuit as a major causative neural circuit using a gene trap system that enables neural circuit-selective inactivation and restoration of Dst by Cre-mediated recombination. Sensory neuron-selective Dst deletion led to motor impairment, degeneration of proprioceptive sensory neurons, and disruption of the sensory-motor circuit. Restoration of Dst expression in sensory neurons using Cre driver mice or a single postnatal injection of Cre-expressing adeno-associated virus ameliorated sensory degeneration and improved abnormal movements. These findings demonstrate that the sensory-motor circuit is involved in the movement disorders in dt mice and that the sensory circuit is a therapeutic target for HSAN-VI.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Transdisciplinary Research Programs, Niigata University, Niigata, Japan
| | - Masayuki Kurose
- Department of Physiology, School of Dentistry, Iwate Medical University, Yahaba, Japan
- Division of Oral Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiromi Sano
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Dang Minh Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Kantaputra P, Daroontum T, Kitiyamas K, Piyakhunakorn P, Kawasaki K, Sathienkijkanchai A, Wasant P, Vatanavicharn N, Yasanga T, Kaewgahya M, Tongsima S, Cox TC, Arold ST, Ohazama A, Ngamphiw C. Homozygosity for a Rare Plec Variant Suggests a Contributory Role in Congenital Insensitivity to Pain. Int J Mol Sci 2024; 25:6358. [PMID: 38928066 PMCID: PMC11203604 DOI: 10.3390/ijms25126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Congenital insensitivity to pain is a rare human condition in which affected individuals do not experience pain throughout their lives. This study aimed to identify the molecular etiology of congenital insensitivity to pain in two Thai patients. Clinical, radiographic, histopathologic, immunohistochemical, and molecular studies were performed. Patients were found to have congenital insensitivity to pain, self-mutilation, acro-osteolysis, cornea scars, reduced temperature sensation, tooth agenesis, root maldevelopment, and underdeveloped maxilla and mandible. The skin biopsies revealed fewer axons, decreased vimentin expression, and absent neurofilament expression, indicating lack of dermal nerves. Whole exome and Sanger sequencing identified a rare homozygous variant c.4039C>T; p.Arg1347Cys in the plakin domain of Plec, a cytolinker protein. This p.Arg1347Cys variant is in the spectrin repeat 9 region of the plakin domain, a region not previously found to harbor pathogenic missense variants in other plectinopathies. The substitution with a cysteine is expected to decrease the stability of the spectrin repeat 9 unit of the plakin domain. Whole mount in situ hybridization and an immunohistochemical study suggested that Plec is important for the development of maxilla and mandible, cornea, and distal phalanges. Additionally, the presence of dental anomalies in these patients further supports the potential involvement of Plec in tooth development. This is the first report showing the association between the Plec variant and congenital insensitivity to pain in humans.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kantapong Kitiyamas
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panat Piyakhunakorn
- Panare Hospital, Dental Public Health Division, Panare District, Surat Thani 94130, Thailand;
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan; (K.K.); (A.O.)
| | - Achara Sathienkijkanchai
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Pornswan Wasant
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.T.); (C.N.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan; (K.K.); (A.O.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.T.); (C.N.)
| |
Collapse
|
4
|
Sharma S, Mahadevan A, Narayanappa G, Debnath M, Govindaraj P, Shivaram S, Seshagiri DV, Siram R, Shroti A, Bindu PS, Chickabasaviah YT, Taly AB, Nagappa M. Exploring the evidence for mitochondrial dysfunction and genetic abnormalities in the etiopathogenesis of tropical ataxic neuropathy. J Neurogenet 2024; 38:27-34. [PMID: 38975939 DOI: 10.1080/01677063.2024.2373363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sumanth Shivaram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Doniparthi V Seshagiri
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ramesh Siram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Akhilesh Shroti
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun B Taly
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
5
|
Yoshioka N. Roles of dystonin isoforms in the maintenance of neural, muscle, and cutaneous tissues. Anat Sci Int 2024; 99:7-16. [PMID: 37603210 DOI: 10.1007/s12565-023-00739-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Dystonin (DST), also known as bullous pemphigoid antigen 1 (BPAG1), encodes cytoskeletal linker proteins belonging to the plakin family. The DST gene produces several isoforms, including DST-a, DST-b, and DST-e, which are expressed in neural, muscle, and cutaneous tissues, respectively. Pathogenic DST mutations cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) and epidermolysis bullosa simplex (EBS); therefore, it is important to elucidate the roles of DST isoforms in multiple organs. Recently, we have used several Dst mutant mouse strains, in which the expression of Dst isoforms is disrupted in distinct patterns, to gain new insight into how DST functions in multiple tissues. This review provides an overview of the roles played by tissue-specific DST isoforms in neural, muscle, and cutaneous tissues.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
6
|
Geroldi A, Tozza S, Fiorillo C, Nolano M, Fossa P, Vitale F, Domi R, Gaudio A, Mammi A, Patrone S, Barbera AL, Origone P, Ponti C, Sanguineri F, Zara F, Cataldi M, Salpietro V, Venturi CB, Massucco S, Schenone A, Manganelli F, Mandich P, Bellone E, Gotta F. A novel de novo variant in POLR3B gene associated with a primary axonal involvement of the largest nerve fibers. J Peripher Nerv Syst 2023; 28:620-628. [PMID: 37897416 DOI: 10.1111/jns.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND AIMS POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.
Collapse
Affiliation(s)
- Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Stefano Tozza
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- Child Neuropsychiatric Unit, IRCCS Institute G. Gaslini, Genoa, Italy
| | - Maria Nolano
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Fossa
- Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Floriana Vitale
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Regi Domi
- Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Andrea Gaudio
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessia Mammi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
| | - Andrea La Barbera
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Origone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Clarissa Ponti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Sanguineri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- Medical Genetic Unit, IRCCS Institute G. Gaslini, Genoa, Italy
| | - Matteo Cataldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- Child Neuropsychiatric Unit, IRCCS Institute G. Gaslini, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- Medical Genetic Unit, IRCCS Institute G. Gaslini, Genoa, Italy
| | | | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Neurology Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Neurology Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emilia Bellone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genoa, Genoa, Italy
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Gotta
- OU Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
7
|
Capri Y, Bourmance L, Dupont C, Saint-Frison MH, Guimiot F, Grotto S, Chitrit Y, Laquerrière A, Melki J. DST variants are responsible for neurogenic arthrogryposis multiplex congenita enlarging the spectrum of type VI hereditary sensory autonomic neuropathy. Clin Genet 2023; 104:587-592. [PMID: 37431644 DOI: 10.1111/cge.14397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through whole-exome sequencing combined with arrayCGH from DNA of a fetus presenting with early onset AMC, we identified biallelic loss of function variants in Dystonin (DST): a stop gain variant (NM_001144769.5:c.12208G > T:p.(Glu4070Ter)) on the neuronal isoform and a 175 kb microdeletion including exons 25-96 of this isoform on the other allele [NC_000006.11:g.(56212278_56323554)_(56499398_56507586)del]. Transmission electron microscopy of the sciatic nerve revealed abnormal morphology of the peripheral nerve with severe hypomyelination associated with dramatic reduction of fiber density which highlights the critical role of DST in peripheral nerve axonogenesis during development in human. Variants in the neuronal isoforms of DST cause hereditary sensory and autonomic neuropathy which has been reported in several unrelated families with highly variable age of onset from fetal to adult onset. Our data enlarge the disease mechanisms of neurogenic AMC.
Collapse
Affiliation(s)
- Yline Capri
- Clinical Genetics Unit, AP-HP Nord, Hôpital Robert Debré, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Lucas Bourmance
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Céline Dupont
- Cytogenetics Unit, AP-HP Nord, Hôpital Robert Debré, Paris, France
| | | | - Fabien Guimiot
- Foetopathology Unit, AP-HP Nord, Hôpital Robert Debré, Paris, France
- INSERM UMR-1141, Université Paris Nord, Hôpital Robert Debré, Paris, France
| | - Sarah Grotto
- Maternité Port-Royal, AP-HP Centre, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Yvon Chitrit
- Obstetric Department, AP-HP Nord, Hôpital Robert Debré, Paris, France
| | - Annie Laquerrière
- Department of Pathology, Normandie Université, INSERM U1245, Rouen University Hospital, Rouen, France
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
8
|
Lalonde R, Strazielle C. The DST gene in neurobiology. J Neurogenet 2023; 37:131-138. [PMID: 38465459 DOI: 10.1080/01677063.2024.2319880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
DST is a gene whose alternative splicing yields epithelial, neuronal, and muscular isoforms. The autosomal recessive Dstdt (dystonia musculorum) spontaneous mouse mutation causes degeneration of spinocerebellar tracts as well as peripheral sensory nerves, dorsal root ganglia, and cranial nerve ganglia. In addition to Dstdt mutants, axonopathy and neurofilament accumulation in perikarya are features of two other murine lines with spontaneous Dst mutations, targeted Dst knockout mice, DstTg4 transgenic mice carrying two deleted Dst exons, DstGt mice with trapped actin-binding domain-containing isoforms, and conditional Schwann cell-specific Dst knockout mice. As a result of nerve damage, Dstdt mutants display dystonia and ataxia, as seen in several genetically modified models and their motor coordination deficits have been quantified along with the spontaneous Dst nonsense mutant, the conditional Schwann cell-specific Dst knockout, the conditional DstGt mutant, and the Dst-b isoform specific Dst mutant. Recent findings in humans have associated DST mutations of the Dst-b isoform with hereditary sensory and autonomic neuropathies type 6 (HSAN-VI). These data should further encourage the development of genetic techniques to treat or prevent ataxic and dystonic symptoms.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
9
|
Zeidler M, Kummer KK, Kress M. Towards bridging the translational gap by improved modeling of human nociception in health and disease. Pflugers Arch 2022; 474:965-978. [PMID: 35655042 PMCID: PMC9393146 DOI: 10.1007/s00424-022-02707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Yoshioka N, Kurose M, Yano M, Tran DM, Okuda S, Mori-Ochiai Y, Horie M, Nagai T, Nishino I, Shibata S, Takebayashi H. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. eLife 2022; 11:78419. [PMID: 35942699 PMCID: PMC9365387 DOI: 10.7554/elife.78419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Dystonin (DST), which encodes cytoskeletal linker proteins, expresses three tissue-selective isoforms: neural DST-a, muscular DST-b, and epithelial DST-e. DST mutations cause different disorders, including hereditary sensory and autonomic neuropathy 6 (HSAN-VI) and epidermolysis bullosa simplex; however, etiology of the muscle phenotype in DST-related diseases has been unclear. Because DST-b contains all of the DST-a-encoding exons, known HSAN-VI mutations could affect both DST-a and DST-b isoforms. To investigate the specific function of DST-b in striated muscles, we generated a Dst-b-specific mutant mouse model harboring a nonsense mutation. Dst-b mutant mice exhibited late-onset protein aggregate myopathy and cardiomyopathy without neuropathy. We observed desmin aggregation, focal myofibrillar dissolution, and mitochondrial accumulation in striated muscles, which are common characteristics of myofibrillar myopathy. We also found nuclear inclusions containing p62, ubiquitin, and SUMO proteins with nuclear envelope invaginations as a unique pathological hallmark in Dst-b mutation-induced cardiomyopathy. RNA-sequencing analysis revealed changes in expression of genes responsible for cardiovascular functions. In silico analysis identified DST-b alleles with nonsense mutations in populations worldwide, suggesting that some unidentified hereditary myopathy and cardiomyopathy are caused by DST-b mutations. Here, we demonstrate that the Dst-b isoform is essential for long-term maintenance of striated muscles.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Transdisciplinary Research Programs, Niigata University, Niigata, Japan
| | - Masayuki Kurose
- Department of Physiology, School of Dentistry, Iwate Medical University, Iwate, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dang Minh Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Yukiko Mori-Ochiai
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University, Tokyo, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
11
|
Cascella M, Muzio MR, Monaco F, Nocerino D, Ottaiano A, Perri F, Innamorato MA. Pathophysiology of Nociception and Rare Genetic Disorders with Increased Pain Threshold or Pain Insensitivity. PATHOPHYSIOLOGY 2022; 29:435-452. [PMID: 35997391 PMCID: PMC9397076 DOI: 10.3390/pathophysiology29030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pain and nociception are different phenomena. Nociception is the result of complex activity in sensory pathways. On the other hand, pain is the effect of interactions between nociceptive processes, and cognition, emotions, as well as the social context of the individual. Alterations in the nociceptive route can have different genesis and affect the entire sensorial process. Genetic problems in nociception, clinically characterized by reduced or absent pain sensitivity, compose an important chapter within pain medicine. This chapter encompasses a wide range of very rare diseases. Several genes have been identified. These genes encode the Nav channels 1.7 and 1.9 (SCN9A, and SCN11A genes, respectively), NGFβ and its receptor tyrosine receptor kinase A, as well as the transcription factor PRDM12, and autophagy controllers (TECPR2). Monogenic disorders provoke hereditary sensory and autonomic neuropathies. Their clinical pictures are extremely variable, and a precise classification has yet to be established. Additionally, pain insensitivity is described in diverse numerical and structural chromosomal abnormalities, such as Angelman syndrome, Prader Willy syndrome, Chromosome 15q duplication syndrome, and Chromosome 4 interstitial deletion. Studying these conditions could be a practical strategy to better understand the mechanisms of nociception and investigate potential therapeutic targets against pain.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia, Istituto Nazionale Tumori IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (F.M.); (D.N.)
| | - Maria Rosaria Muzio
- Division of Infantile Neuropsychiatry, UOMI-Maternal and Infant Health, ASL NA3/Sud, 80059 Naples, Italy;
| | - Federica Monaco
- Division of Anesthesia, Istituto Nazionale Tumori IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (F.M.); (D.N.)
| | - Davide Nocerino
- Division of Anesthesia, Istituto Nazionale Tumori IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (F.M.); (D.N.)
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS—Fondazione G. Pascale, 80130 Naples, Italy;
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Massimo Antonio Innamorato
- Department of Neuroscience, Pain Unit, Santa Maria delle Croci Hospital, AUSL Romagna, Viale Vincenzo Randi 5, 48121 Ravenna, Italy;
| |
Collapse
|
12
|
Willems M, Wells CF, Coubes C, Pequignot M, Kuony A, Michon F. Hypolacrimia and Alacrimia as Diagnostic Features for Genetic or Congenital Conditions. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35925585 PMCID: PMC9363675 DOI: 10.1167/iovs.63.9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As part of the lacrimal apparatus, the lacrimal gland participates in the maintenance of a healthy eye surface by producing the aqueous part of the tear film. Alacrimia and hypolacrimia, which are relatively rare during childhood or young adulthood, have their origin in a number of mechanisms which include agenesia, aplasia, hypoplasia, or incorrect maturation of the gland. Moreover, impaired innervation of the gland and/or the cornea and alterations of protein secretion pathways can lead to a defective tear film. In most conditions leading to alacrimia or hypolacrimia, however, the altered tear film is only one of numerous defects that arise and therefore is commonly disregarded. Here, we have systematically reviewed all of those genetic conditions or congenital disorders that have alacrimia or hypolacrimia as a feature. Where it is known, we describe the mechanism of the defect in question. It has been possible to clearly establish the physiopathology of only a minority of these conditions. As hypolacrimia and alacrimia are rare features, this review could be used as a tool in clinical genetics to perform a quick diagnosis, necessary for appropriate care and counseling.
Collapse
Affiliation(s)
- Marjolaine Willems
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Constance F Wells
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Christine Coubes
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Marie Pequignot
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
13
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
14
|
Sakaria RP, Fonville MP, Peravali S, Zaveri PG, Mroczkowski HJ, Caron E, Weems MF. A novel variant in the dystonin gene causing hereditary sensory autonomic neuropathy type VI in a male infant: Case report and literature review. Am J Med Genet A 2021; 188:1245-1250. [PMID: 34897952 DOI: 10.1002/ajmg.a.62609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/05/2022]
Abstract
The DST gene is located on chromosome 6p and encodes for a large protein. Alternative splicing of this protein produces the neuronal (a1-a3), muscular (b1-b3), and epithelial (e) isoforms. Hereditary sensory and autonomic neuropathy (HSAN) type VI is a rare autosomal recessive disorder due to mutations affecting the a2 isoform. We present a case of HSAN-VI in a male neonate born to consanguineous parents. Genome sequencing revealed a novel homozygous variant (DST_c.1118C > T; p.Pro373Leu) inherited from both parents. This case further expands the phenotype and genotype of this rare syndrome.
Collapse
Affiliation(s)
- Rishika P Sakaria
- Division of Neonatology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Megan P Fonville
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Silpa Peravali
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Parul G Zaveri
- Division of Neonatology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA.,Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Elena Caron
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA.,Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mark F Weems
- Division of Neonatology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Palma JA, Yadav R, Gao D, Norcliffe-Kaufmann L, Slaugenhaupt S, Kaufmann H. Expanding the Genotypic Spectrum of Congenital Sensory and Autonomic Neuropathies Using Whole-Exome Sequencing. NEUROLOGY-GENETICS 2021; 7:e568. [PMID: 33884296 PMCID: PMC8054964 DOI: 10.1212/nxg.0000000000000568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 01/29/2023]
Abstract
Objective To test the hypothesis that many patients presenting with congenital insensitivity to pain have lesser known or unidentified mutations not captured by conventional genetic panels, we performed whole-exome sequencing in a cohort of well-characterized patients with a clinical diagnosis of congenital hereditary sensory and autonomic neuropathy with unrevealing conventional genetic testing. Methods We performed whole-exome sequencing (WES) in 13 patients with congenital impaired or absent sensation to pain and temperature with no identified molecular diagnosis from a conventional genetic panel. Patients underwent a comprehensive phenotypic assessment including autonomic function testing, and neurologic and ophthalmologic examinations. Results We identified known or likely pathogenic genetic causes of congenital insensitivity to pain in all 13 patients, spanning 9 genes, the vast majority of which were inherited in an autosomal recessive manner. These included known pathogenic variants (3 patients harboring mutations in TECPR2 and SCN11A), suspected pathogenic variants in genes described to cause congenital sensory and autonomic syndromes (7 patients harboring variants in NGF, LIFR, SCN9A, and PRDM12), and likely pathogenic variants in novel genes (4 patients harboring variants in SMPDL3A, PLEKHN1, and SCN10A). Conclusions Our results expand the genetic landscape of congenital sensory and autonomic neuropathies. Further validation of some identified variants should confirm their pathogenicity. WES should be clinically considered to expedite diagnosis, reduce laboratory investigations, and guide enrollment in future gene therapy trials.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Rachita Yadav
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Dadi Gao
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Lucy Norcliffe-Kaufmann
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Susan Slaugenhaupt
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Horacio Kaufmann
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| |
Collapse
|
16
|
Wiche G, Castañón MJ. Cytoskeleton | Intermediate Filament Linker Proteins: Plectin and BPAG1. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021:200-219. [DOI: 10.1016/b978-0-12-819460-7.00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Lynch-Godrei A, Repentigny YD, Ferrier A, Gagnon S, Kothary R. Dystonin loss-of-function leads to impaired autophagosome-endolysosome pathway dynamics. Biochem Cell Biol 2020; 99:364-373. [PMID: 33347391 DOI: 10.1139/bcb-2020-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuronal dystonin protein (DST-a) is a large cytoskeletal linker important for integrating the various components of the cytoskeleton. Recessive Dst mutations lead to a sensory neuropathy in mice, known as dystonia musculorum (Dstdt). The disease is characterized by ataxia, autonomic disturbances, and ultimately, death, which are associated with massive degeneration of the sensory neurons in the dorsal root ganglion (DRG). Recent investigation of Dstdt sensory neurons revealed an accumulation of autophagosomes and a disruption in autophagic flux, which was believed to be due to insufficient availability of motor protein. Motor protein levels and the endolysosomal pathway were assessed in pre-symptomatic (postnatal day 5; P5) and symptomatic (P15) stage wild-type and Dstdt DRGs. Levels of mRNA encoding molecular motors were reduced, although no significant reduction in the protein level was detected. An increase in lysosomal marker LAMP1 in medium-large size Dstdt-27J sensory neurons was observed, along with an accumulation of electron-light single-membraned vesicles in Dstdt-27J DRG tissue at the late stages of disease. These vesicles are likely to have been autolysosomes, and their presence in only late-stage Dstdt-27J sensory neurons is suggestive of a pathological defect in autophagy. Further investigation is necessary to confirm vesicle identity, and to determine the role of Dst-a in normal autophagic flux.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Andrew Ferrier
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Centre for Neuromuscular Disease, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
18
|
Contribution of Skin Biopsy in Peripheral Neuropathies. Brain Sci 2020; 10:brainsci10120989. [PMID: 33333929 PMCID: PMC7765344 DOI: 10.3390/brainsci10120989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
In the last three decades the study of cutaneous innervation through 3 mm-punch-biopsy has provided an important contribution to the knowledge of small fiber somatic and autonomic neuropathies but also of large fiber neuropathies. Skin biopsy is a minimally invasive technique with the advantage, compared to sural nerve biopsy, of being suitable to be applied to any site in our body, of being repeatable over time, of allowing the identification of each population of nerve fiber through its target. In patients with symptoms and signs of small fiber neuropathy the assessment of IntraEpidermal Nerve Fiber density is the gold standard to confirm the diagnosis while the quantification of sudomotor, pilomotor, and vasomotor nerve fibers allows to evaluate and characterize the autonomic involvement. All these parameters can be re-evaluated over time to monitor the disease process and to evaluate the effectiveness of the treatments. Myelinated fibers and their receptors can also be evaluated to detect a “dying back” neuropathy early when nerve conduction study is still normal. Furthermore, the morphometry of dermal myelinated fibers has provided new insight into pathophysiological mechanisms of different types of inherited and acquired large fibers neuropathies. In genetic neuropathies skin biopsy has become a surrogate for sural nerve biopsy, no longer necessary in the diagnostic process, to study genotype–phenotype correlations.
Collapse
|
19
|
Motley WW, Züchner S, Scherer SS. Isoform-specific loss of dystonin causes hereditary motor and sensory neuropathy. NEUROLOGY-GENETICS 2020; 6:e496. [PMID: 32802955 PMCID: PMC7413632 DOI: 10.1212/nxg.0000000000000496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022]
Abstract
Objective To determine the genetic cause of axonal Charcot-Marie-Tooth disease in a small family with 2 affected siblings, one of whom had cerebellar features on examination. Methods Whole-exome sequencing of genomic DNA and analysis for recessively inherited mutations; PCR-based messenger RNA/complementary DNA analysis of transcripts to characterize the effects of variants identified by exome sequencing. Results We identified compound heterozygous mutations in dystonin (DST), which is alternatively spliced to create many plakin family linker proteins (named the bullous pemphigoid antigen 1 [BPAG1] proteins) that function to bridge cytoskeletal filament networks. One mutation (c.250C>T) is predicted to cause a nonsense mutation (p.R84X) that only affects isoform 2 variants, which have an N-terminal transmembrane domain; the other (c.8283+1G>A) mutates a consensus splice donor site and results in a 22 amino acid in-frame deletion in the spectrin repeat domain of all BPAG1a and BPAG1b isoforms. Conclusions These findings introduce a novel human phenotype, axonal Charcot-Marie-Tooth, of recessive DST mutations, and provide further evidence that BPAG1 plays an essential role in axonal health.
Collapse
Affiliation(s)
- William W Motley
- Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Human Genetics (S.Z.), Hussman Institute for Human Genomics, University of Miami, FL
| | - Stephan Züchner
- Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Human Genetics (S.Z.), Hussman Institute for Human Genomics, University of Miami, FL
| | - Steven S Scherer
- Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Human Genetics (S.Z.), Hussman Institute for Human Genomics, University of Miami, FL
| |
Collapse
|
20
|
Nolano M, Provitera V. Vascular bed and nerve vessels in the skin biopsy: Beyond intraepidermal nerve fibers. Muscle Nerve 2020; 62:427-429. [PMID: 32657423 DOI: 10.1002/mus.27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Nolano
- Scientific Institute for Research and Health Care - IRCCS, Maugeri Scientific Clinical Institutes, Pavia, Italy.,Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Provitera
- Scientific Institute for Research and Health Care - IRCCS, Maugeri Scientific Clinical Institutes, Pavia, Italy
| |
Collapse
|
21
|
Jin JY, Wu PF, He JQ, Fan LL, Yuan ZZ, Pang XY, Tang JY, Zhang LY. Novel Compound Heterozygous DST Variants Causing Hereditary Sensory and Autonomic Neuropathies VI in Twins of a Chinese Family. Front Genet 2020; 11:492. [PMID: 32528525 PMCID: PMC7262964 DOI: 10.3389/fgene.2020.00492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/20/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Hereditary sensory and autonomic neuropathies (HSANs) are a rare and severe group of sensory axonal neuropathies. HSANs have been classified into eight groups based on mode of inheritance, clinical features, and the involved genes. HSAN-VI, perhaps the most notable type, is an autosomal recessive disease, which manifests as the severely impaired pain sensitivity, autonomic disturbances, distal myopathy, spontaneous or surgical amputations, and sometimes early death. Mutations in DST have been identified as the cause of HSAN-VI. DST encodes dystonin, a member of the plakin protein family that is involved in cytoskeletal filament networks. Dystonin has seven major isoforms in nerve, muscle, and epithelium. Material and Methods: The present study investigated a Chinese family with HSAN and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatics analysis and prediction of variant pathogenicity. Co-segregation analysis was subsequently conducted. Results: We identified compound heterozygous variants of DST (c.3304G>A, p.V1102I and c.13796G>A, p.R4599H) in two patients. Conclusion: We reported on a Chinese family with HSAN-VI family and detected the disease-causing variants. Our description expands the spectrum of known DST variants and contributes to the clinical diagnosis of HSAN-VI.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Pan-Feng Wu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ji-Qiang He
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Liang-Liang Fan
- School of Life Sciences, Central South University, Changsha, China.,Human Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | | | - Xiao-Yang Pang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ju-Yu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
22
|
Horie M, Yoshioka N, Kusumi S, Sano H, Kurose M, Watanabe‐Iida I, Hossain I, Chiken S, Abe M, Yamamura K, Sakimura K, Nambu A, Shibata M, Takebayashi H. Disruption of
dystonin
in Schwann cells results in late‐onset neuropathy and sensory ataxia. Glia 2020; 68:2330-2344. [DOI: 10.1002/glia.23843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Masao Horie
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Department of Morphological SciencesKagoshima University Kagoshima Japan
- Department of NursingNiigata College of Nursing Niigata Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Satoshi Kusumi
- Department of Morphological SciencesKagoshima University Kagoshima Japan
| | - Hiromi Sano
- Division of System NeurophysiologyNational Institute for Physiological Sciences Okazaki Japan
- Department of Physiological SciencesSOKENDAI Okazaki Japan
| | - Masayuki Kurose
- Division of Oral PhysiologyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Department of Physiology, School of Dentistry, Iwate Medical University Morioka Japan
| | - Izumi Watanabe‐Iida
- Department of Cellular NeurobiologyBrain Research Institute, Niigata University Niigata Japan
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Ibrahim Hossain
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Department of Biochemistry and Molecular BiologyJahangirnagar University Savar Dhaka Bangladesh
| | - Satomi Chiken
- Division of System NeurophysiologyNational Institute for Physiological Sciences Okazaki Japan
- Department of Physiological SciencesSOKENDAI Okazaki Japan
| | - Manabu Abe
- Department of Cellular NeurobiologyBrain Research Institute, Niigata University Niigata Japan
- Department of Animal Model DevelopmentBrain Research Institute, Niigata University Niigata Japan
| | - Kensuke Yamamura
- Division of Oral PhysiologyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Kenji Sakimura
- Department of Cellular NeurobiologyBrain Research Institute, Niigata University Niigata Japan
- Department of Animal Model DevelopmentBrain Research Institute, Niigata University Niigata Japan
| | - Atsushi Nambu
- Division of System NeurophysiologyNational Institute for Physiological Sciences Okazaki Japan
- Department of Physiological SciencesSOKENDAI Okazaki Japan
| | - Masahiro Shibata
- Department of Morphological SciencesKagoshima University Kagoshima Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Center for Coordination of Research FacilitiesNiigata University Niigata Japan
| |
Collapse
|
23
|
Yoshioka N, Kabata Y, Kuriyama M, Bizen N, Zhou L, Tran DM, Yano M, Yoshiki A, Ushiki T, Sproule TJ, Abe R, Takebayashi H. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Dis Model Mech 2020; 13:dmm041608. [PMID: 32482619 PMCID: PMC7325434 DOI: 10.1242/dmm.041608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/11/2020] [Indexed: 02/02/2023] Open
Abstract
Loss-of-function mutations in dystonin (DST) can cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) or epidermolysis bullosa simplex (EBS). Recently, DST-related diseases were recognized to be more complex than previously thought because a patient exhibited both neurological and skin manifestations, whereas others display only one or the other. A single DST locus produces at least three major DST isoforms: DST-a (neuronal isoform), DST-b (muscular isoform) and DST-e (epithelial isoform). Dystonia musculorum (dt) mice, which have mutations in Dst, were originally identified as spontaneous mutants displaying neurological phenotypes. To reveal the mechanisms underlying the phenotypic heterogeneity of DST-related diseases, we investigated two mutant strains with different mutations: a spontaneous Dst mutant (Dstdt-23Rbrc mice) and a gene-trap mutant (DstGt mice). The Dstdt-23Rbrc allele possesses a nonsense mutation in an exon shared by all Dst isoforms. The DstGt allele is predicted to inactivate Dst-a and Dst-b isoforms but not Dst-e There was a decrease in the levels of Dst-a mRNA in the neural tissue of both Dstdt-23Rbrc and DstGt homozygotes. Loss of sensory and autonomic nerve ends in the skin was observed in both Dstdt-23Rbrc and DstGt mice at postnatal stages. In contrast, Dst-e mRNA expression was reduced in the skin of Dstdt-23Rbrc mice but not in DstGt mice. Expression levels of Dst proteins in neural and cutaneous tissues correlated with Dst mRNAs. Because Dst-e encodes a structural protein in hemidesmosomes (HDs), we performed transmission electron microscopy. Lack of inner plaques and loss of keratin filament invasions underneath the HDs were observed in the basal keratinocytes of Dstdt-23Rbrc mice but not in those of DstGt mice; thus, the distinct phenotype of the skin of Dstdt-23Rbrc mice could be because of failure of Dst-e expression. These results indicate that distinct mutations within the Dst locus can cause different loss-of-function patterns among Dst isoforms, which accounts for the heterogeneous neural and skin phenotypes in dt mice and DST-related diseases.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Transdiciplinary Research Programs, Niigata University, Niigata 950-2181, Japan
| | - Yudai Kabata
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Momona Kuriyama
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Li Zhou
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| | - Dang M Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | - Riichiro Abe
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
24
|
Lynch-Godrei A, De Repentigny Y, Yaworski RA, Gagnon S, Butcher J, Manoogian J, Stintzi A, Kothary R. Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterol Motil 2020; 32:e13773. [PMID: 31814231 DOI: 10.1111/nmo.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dystonia musculorum (Dstdt ) is a murine disease caused by recessive mutations in the dystonin (Dst) gene. Loss of dorsal root ganglion (DRG) sensory neurons, ataxia, and dystonic postures before death by postnatal day 18 (P18) is a hallmark feature. Recently we observed gas accumulation and discoloration in the small intestine and cecum in Dstdt mice by P15. The human disease resulting from dystonin loss-of-function, known as hereditary sensory and autonomic neuropathy type VI (HSAN-VI), has also been associated with gastrointestinal (GI) symptoms including chronic diarrhea and abdominal pain. As neuronal dystonin isoforms are expressed in the GI tract, we hypothesized that dystonin loss-of-function in Dstdt-27J enteric nervous system (ENS) neurons resulted in neurodegeneration associated with the GI abnormalities. METHODS We characterized the nature of the GI abnormalities observed in Dstdt mice through histological analysis of the gut, assessing the ENS for signs of neurodegeneration, evaluation of GI motility and absorption, and by profiling the microbiome. KEY RESULTS Though gut histology, ENS viability, and GI absorption were normal, slowed GI motility, thinning of the colon mucous layer, and reduced microbial richness/evenness were apparent in Dstdt-27J mice by P15. Parasympathetic GI input showed signs of neurodegeneration, while sympathetic did not. CONCLUSIONS & INFERENCES Dstdt-27J GI defects are not linked to ENS neurodegeneration, but are likely a result of an imbalance in autonomic control over the gut. Further characterization of HSAN-VI patient GI symptoms is necessary to determine potential treatments targeting symptom relief.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca A Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Juliana Manoogian
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
26
|
Lynch-Godrei A, Kothary R. HSAN-VI: A spectrum disorder based on dystonin isoform expression. NEUROLOGY-GENETICS 2020; 6:e389. [PMID: 32042917 PMCID: PMC6975176 DOI: 10.1212/nxg.0000000000000389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
Hereditary sensory and autonomic neuropathy (HSAN-VI) is a recessive genetic disorder that arises because of mutations in the human dystonin gene (DST, previously known as bullous pemphigoid antigen 1). Although initial characterization of HSAN-VI reported it as a sensory neuropathy that was lethal in infancy, we now know of a number of heterozygous mutations in DST that result in milder forms of the disease. Akin to what we observe in the mouse model dystonia musculorum (Dstdt), we believe that the heterogeneity of HSAN-VI can be attributed to a number of dystonin isoforms that the mutation affects. Lack of neuronal isoform dystonin-a2 is likely the universal determinant of HSAN-VI because all reported human cases are null for this isoform, as are all Dstdt mouse alleles. Compensatory mechanisms by intact dystonin-a isoforms also likely play a role in regulating disease severity, although we have yet to determine what specific effect dystonin-a1 and dystonin-a3 have on the pathogenesis of HSAN-VI.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program (A.L.-G., R.K.), Ottawa Hospital Research Institute; Department of Cellular and Molecular Medicine (A.L.-G., R.K.) and Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Department of Medicine (R.K.), University of Ottawa; and Centre for Neuromuscular Disease (R.K.), University of Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program (A.L.-G., R.K.), Ottawa Hospital Research Institute; Department of Cellular and Molecular Medicine (A.L.-G., R.K.) and Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Department of Medicine (R.K.), University of Ottawa; and Centre for Neuromuscular Disease (R.K.), University of Ottawa, Canada
| |
Collapse
|
27
|
Manganelli F, Parisi S, Nolano M, Miceli F, Tozza S, Pisciotta C, Iodice R, Provitera V, Cicatiello R, Zuchner S, Taglialatela M, Russo T, Santoro L. Insights into the pathogenesis of
ATP1A1
‐related CMT disease using patient‐specific iPSCs. J Peripher Nerv Syst 2019; 24:330-339. [DOI: 10.1111/jns.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Silvia Parisi
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples “Federico II” Naples Italy
| | - Maria Nolano
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
- Department of NeurologyIstituti Clinici Scientifici Maugeri IRCCS, SpA SB Pavia Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Stefano Tozza
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Chiara Pisciotta
- Rare Neurodegenerative and Neurometabolic Disease UnitFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Vincenzo Provitera
- Department of NeurologyIstituti Clinici Scientifici Maugeri IRCCS, SpA SB Pavia Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples “Federico II” Naples Italy
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of Medicine Miami Florida
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| | - Tommaso Russo
- Department of Molecular Medicine and Medical BiotechnologiesUniversity of Naples “Federico II” Naples Italy
| | - Lucio Santoro
- Department of Neuroscience, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II” Naples Italy
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Hereditary sensory and autonomic neuropathies (HSANs) are a clinically heterogeneous group of inherited neuropathies featuring prominent sensory and autonomic involvement. Classification of HSAN is based on mode of inheritance, genetic mutation, and phenotype. In this review, we discuss the recent additions to this classification and the important updates on management with a special focus on the recently investigated disease-modifying agents. RECENT FINDINGS In this past decade, three more HSAN types were added to the classification creating even more diversity in the genotype-phenotype. Clinical trials are underway for disease-modifying and symptomatic therapeutics, targeting mainly HSAN type III. Obtaining genetic testing leads to accurate diagnosis and guides focused management in the setting of such a diverse and continuously growing phenotype. It also increases the wealth of knowledge on HSAN pathophysiologies which paves the way toward development of targeted genetic treatments in the era of precision medicine.
Collapse
|
29
|
Lynch-Godrei A, De Repentigny Y, Gagnon S, Trung MT, Kothary R. Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Hum Mol Genet 2019; 27:3598-3611. [PMID: 29982604 DOI: 10.1093/hmg/ddy250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type VI (HSAN-VI) is a recessive human disease that arises from mutations in the dystonin gene (DST; also known as Bullous pemphigoid antigen 1 gene). A milder form of HSAN-VI was recently described, resulting from loss of a single dystonin isoform (DST-A2). Similarly, mutations in the mouse dystonin gene (Dst) result in severe sensory neuropathy, dystonia musculorum (Dstdt). Two Dstdt alleles, Dstdt-Tg4 and Dstdt-27J, differ in the severity of disease. The less severe Dstdt-Tg4 mice have disrupted expression of Dst-A1 and -A2 isoforms, while the more severe Dstdt-27J allele affects Dst-A1, -A2 and -A3 isoforms. As dystonin is a cytoskeletal-linker protein, we evaluated microtubule network integrity within sensory neurons from Dstdt-Tg4 and Dstdt-27J mice. There is a significant reduction in tubulin acetylation in Dstdt-27J indicative of microtubule instability and severe microtubule disorganization within sensory axons. However, Dstdt-Tg4 mice have no change in tubulin acetylation, and microtubule organization was only mildly impaired. Thus, microtubule instability is not central to initiation of Dstdt pathogenesis, though it may contribute to disease severity. Maintenance of microtubule stability in Dstdt-Tg4 dorsal root ganglia could be attributed to an upregulation in Dst-A3 expression as a compensation for the absence of Dst-A1 and -A2 in Dstdt-Tg4 sensory neurons. Indeed, knockdown of Dst-A3 in these neurons resulted in a decrease in tubulin acetylation. These findings shed light on the possible compensatory role of dystonin isoforms within HSAN-VI, which might explain the heterogeneity in symptoms within the reported forms of the disease.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - My Tran Trung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada
| |
Collapse
|
30
|
Saito-Diaz K, Zeltner N. Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review. Clin Auton Res 2019; 29:367-384. [PMID: 30631982 DOI: 10.1007/s10286-018-00587-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The autonomic nervous system (ANS) regulates all organs in the body independent of consciousness, and is thus essential for maintaining homeostasis of the entire organism. Diseases of the ANS can arise due to environmental insults such as injury, toxins/drugs and infections or due to genetic lesions. Human studies and animal models have been instrumental to understanding connectivity and regulation of the ANS and its disorders. However, research into cellular pathologies and molecular mechanisms of ANS disorders has been hampered by the difficulties in accessing human patient-derived ANS cells in large numbers to conduct meaningful research, mainly because patient neurons cannot be easily biopsied and primary human neuronal cultures cannot be expanded.Human-induced pluripotent stem cell (hiPSC) technology can elegantly bridge these issues, allowing unlimited access of patient-derived ANS cell types for cellular, molecular and biochemical analysis, facilitating the discovery of novel therapeutic targets, and eventually leading to drug discovery. Additionally, such cells may provide a source for cell replacement therapy to replenish lost or injured ANS tissue in patients.Here, we first review the anatomy and embryonic development of the ANS, as this knowledge is crucial for understanding disease modeling approaches. We then review the current advances in human stem cell technology for modeling diseases of the ANS, recent strides toward cell replacement therapy and drug discovery initiatives.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. .,Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
31
|
Fortugno P, Angelucci F, Cestra G, Camerota L, Ferraro AS, Cordisco S, Uccioli L, Castiglia D, De Angelis B, Kurth I, Kornak U, Brancati F. Recessive mutations in the neuronal isoforms of DST
, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum Mutat 2018; 40:106-114. [DOI: 10.1002/humu.23678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Fortugno
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - Francesco Angelucci
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | - Gianluca Cestra
- IBPM; Istituto di Biologia e Patologia Molecolari; CNR; Rome Italy
- Deptartment of Biology and Biotechnology; University of Rome “Sapienza,”; Rome Italy
| | - Letizia Camerota
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | | | - Sonia Cordisco
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| | - Luigi Uccioli
- Department of Systems Medicine; University of Rome Tor Vergata; Rome Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
| | - Barbara De Angelis
- Department of Plastic and Reconstructive Surgery; University of Rome “Tor Vergata,”; Rome Italy
| | - Ingo Kurth
- Institute of Human Genetics; Medical Faculty; RWTH Aachen University; Aachen Germany
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik and Berlin-Brandenburg Center for Regenerative Therapies; Charité; Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Germany
- FG Development and Disease; Max-Planck-Institut fuer Molekulare Genetik; Berlin Germany
| | - Francesco Brancati
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IDI-IRCCS; Rome Italy
- Department of Life; Health and Environmental Sciences; University of L'Aquila; L'Aquila Italy
| |
Collapse
|
32
|
Mitchell SB, Iwabuchi S, Kawano H, Yuen TMT, Koh JY, Ho KWD, Harata NC. Structure of the Golgi apparatus is not influenced by a GAG deletion mutation in the dystonia-associated gene Tor1a. PLoS One 2018; 13:e0206123. [PMID: 30403723 PMCID: PMC6221310 DOI: 10.1371/journal.pone.0206123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant, early-onset DYT1 dystonia is associated with an in-frame deletion of a glutamic acid codon (ΔE) in the TOR1A gene. The gene product, torsinA, is an evolutionarily conserved AAA+ ATPase. The fact that constitutive secretion from patient fibroblasts is suppressed indicates that the ΔE-torsinA protein influences the cellular secretory machinery. However, which component is affected remains unclear. Prompted by recent reports that abnormal protein trafficking through the Golgi apparatus, the major protein-sorting center of the secretory pathway, is sometimes associated with a morphological change in the Golgi, we evaluated the influence of ΔE-torsinA on this organelle. Specifically, we examined its structure by confocal microscopy, in cultures of striatal, cerebral cortical and hippocampal neurons obtained from wild-type, heterozygous and homozygous ΔE-torsinA knock-in mice. In live neurons, the Golgi was assessed following uptake of a fluorescent ceramide analog, and in fixed neurons it was analyzed by immuno-fluorescence staining for the Golgi-marker GM130. Neither staining method indicated genotype-specific differences in the size, staining intensity, shape or localization of the Golgi. Moreover, no genotype-specific difference was observed as the neurons matured in vitro. These results were supported by a lack of genotype-specific differences in GM130 expression levels, as assessed by Western blotting. The Golgi was also disrupted by treatment with brefeldin A, but no genotype-specific differences were found in the immuno-fluorescence staining intensity of GM130. Overall, our results demonstrate that the ΔE-torsinA protein does not drastically influence Golgi morphology in neurons, irrespective of genotype, brain region (among those tested), or maturation stage in culture. While it remains possible that functional changes in the Golgi exist, our findings imply that any such changes are not severe enough to influence its morphology to a degree detectable by light microscopy.
Collapse
Affiliation(s)
- Sara B. Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Hiroyuki Kawano
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Tsun Ming Tom Yuen
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Chemical and Biochemical Engineering, University of Iowa College of Engineering, Iowa City, Iowa, United States of America
| | - Jin-Young Koh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - K. W. David Ho
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - N. Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
33
|
Parisi S, Polishchuk EV, Allocca S, Ciano M, Musto A, Gallo M, Perone L, Ranucci G, Iorio R, Polishchuk RS, Bonatti S. Characterization of the most frequent ATP7B mutation causing Wilson disease in hepatocytes from patient induced pluripotent stem cells. Sci Rep 2018; 8:6247. [PMID: 29674751 PMCID: PMC5908878 DOI: 10.1038/s41598-018-24717-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022] Open
Abstract
H1069Q substitution represents the most frequent mutation of the copper transporter ATP7B causing Wilson disease in Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes but moves in response to copper overload to the endo-lysosomal compartment to support copper excretion via bile canaliculi. In heterologous or hepatoma-derived cell lines, overexpressed ATP7B-H1069Q is strongly retained in the ER and fails to move to the post-Golgi sites, resulting in toxic copper accumulation. However, this pathogenic mechanism has never been tested in patients' hepatocytes, while animal models recapitulating this form of WD are still lacking. To reach this goal, we have reprogrammed skin fibroblasts of homozygous ATP7B-H1069Q patients into induced pluripotent stem cells and differentiated them into hepatocyte-like cells. Surprisingly, in HLCs we found one third of ATP7B-H1069Q localized in the Golgi complex and able to move to the endo-lysosomal compartment upon copper stimulation. However, despite normal mRNA levels, the expression of the mutant protein was only 20% compared to the control because of endoplasmic reticulum-associated degradation. These results pinpoint rapid degradation as the major cause for loss of ATP7B function in H1069Q patients, and thus as the primary target for designing therapeutic strategies to rescue ATP7B-H1069Q function.
Collapse
Affiliation(s)
- Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | | | - Simona Allocca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michela Ciano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Musto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucia Perone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giusy Ranucci
- Department of Translational Medical Science, Section of Pediatric, University of Naples Federico II, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medical Science, Section of Pediatric, University of Naples Federico II, Naples, Italy
| | | | - Stefano Bonatti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
34
|
Hossain MI, Horie M, Yoshioka N, Kurose M, Yamamura K, Takebayashi H. Motoneuron degeneration in the trigeminal motor nucleus innervating the masseter muscle in Dystonia musculorum mice. Neurochem Int 2017; 119:159-170. [PMID: 29061384 DOI: 10.1016/j.neuint.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
Dystonia musculorum (dt) mice, which have a mutation in the Dystonin (Dst) gene, are used as animal models to investigate the human disease known as hereditary sensory and autonomic neuropathy type VI. Massive neuronal cell death is observed, mainly in the peripheral nervous system (PNS) of dt mice. We and others have recently reported a histopathological feature of these mice that neurofilament (NF) accumulates in various areas of the central nervous system (CNS), including motor pathways. Although dt mice show motor disorder and growth retardation, the causes for these are still unknown. Here we performed histopathological analyses on motor units of the trigeminal motor nucleus (Mo5 nucleus), because they are a good system to understand neuronal responses in the mutant CNS, and abnormalities in this system may lead to problems in mastication, with subsequent growth retardation. We report that motoneurons with NF accumulation in the Mo5 nuclei of DstGt homozygous mice express the stress-induced genes CHOP, ATF3, and lipocalin 2 (Lcn2). We also show a reduced number of Mo5 motoneurons and a reduced size of Mo5 nuclei in DstGt homozygous mice, possibly due to apoptosis, given the presence of cleaved caspase 3-positive Mo5 motoneurons. In the mandibular (V3) branches of the trigeminal nerve, which contains axons of Mo5 motoneurons and trigeminal sensory neurons, there was infiltration of Iba1-positive macrophages. Finally, we report atrophy of the masseter muscles in DstGt homozygous mice, which showed abnormal nuclear localization of myofibrils and increased expression of atrogin-1 mRNA, a muscle atrophy-related gene and weaker masseter muscle strength with uncontrolled muscle activity by electromyography (EMG). Taken together, our findings strongly suggest that mastication in dt mice is affected due to abnormalities of Mo5 motoneurons and masseter muscles, leading to growth retardation at the post-weaning stages.
Collapse
Affiliation(s)
- M Ibrahim Hossain
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Transdisciplinary Research Program, Niigata University, Niigata 951-8510, Japan
| | - Masayuki Kurose
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|