1
|
Aibar-Durán JÁ, González N, Mirapeix RM, Sánchez-Mateos NM, Arsequell CR, Pichot MB, Belvís Nieto R, Fenoy GP, de Quintana Schmidt C, Hernandez FM, Fernández FS, Rodríguez Rodríguez R. Deep brain stimulation for chronic refractory cluster headache: A case series about long-term outcomes and connectivity analysis. Headache 2025; 65:473-483. [PMID: 39601224 DOI: 10.1111/head.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE The aim of this study was to provide long-term clinical results-including "sweet spot" identification and connectomic imaging analysis-in a series of patients treated with deep brain stimulation for refractory chronic cluster headache. BACKGROUND Deep brain stimulation is a relatively recent indication for the treatment of refractory chronic cluster headache. This indication has generated substantial debate in recent years due to uncertainty surrounding the mechanism of action and the lack of long-term efficacy data. METHODS Case retrospective series of adult patients diagnosed with refractory chronic cluster headache and treated with deep brain stimulation. Demographic and clinical data were registered preoperatively and at 3, 6, 12, and 24 months. The primary endpoint was reduction in headache load, a composite score of frequency, severity, and duration of each attack. Imaging analyses (sweet spot and connectomic analyses) were performed to identify the brain regions most closely correlated with the reduction in headache load and to identify the structural networks involved. Treatment response was categorized according to the reduction in headache load, as follows: poor (<30% reduction), partial (30-50%), or high (>50%). RESULTS A total of 14 patients were included, with a mean (standard deviation [SD]) age of 42.4 (10.7) years and mean (SD) headache duration of 8.0 (5.8) years. Headache load scores decreased significantly from baseline to Month 24: mean (SD) 424.2 (325.9) versus 135.9 (155.7) (p = 0.001). In most patients (eight patients [58.0%]), headache load scores decreased by 50% after treatment. The other six patients showed either a partial (three [21.0%]) or poor (three [21.0%]) response. The optimized sweet spot was the lateral ventral tegmental area ((Montreal Neurological Institute) MNI coordinates of the center of mass: x = ± 9.0 mm, y = -10.6 mm, z = -3.5 mm). The connectomic analysis pointed to the probable implication of corticorubral tracts. CONCLUSION These findings suggest that a substantial proportion of patients with refractory chronic cluster headache obtain significant long-term clinical benefits from deep brain stimulation. Good responders were characterized by a robust improvement in headache load within 3-6 months after surgery. The lateral ventral tegmental area was identified as the best target for this indication, with the likely participation of corticorubral tracts.
Collapse
Affiliation(s)
- Juan Ángel Aibar-Durán
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Nerea González
- Image Engineering, Universitat Pompeu-Fabra (UPF), Barcelona, Spain
| | - Rosa M Mirapeix
- Human Anatomy Unit of the Universitat Autònoma de Ba rcelona (UAB), Barcelona, Spain
| | - Noemi Morollón Sánchez-Mateos
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neurology Department, Headache-Neuralgia Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Clara Roig Arsequell
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Borrell Pichot
- Neurology Department, Headache-Neuralgia Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Robert Belvís Nieto
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neurology Department, Headache-Neuralgia Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Cristian de Quintana Schmidt
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Fernando Muñoz Hernandez
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | | | - Rodrigo Rodríguez Rodríguez
- Neurosurgery Department, Functional Neurosurgery Section, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Headache and Neuralgia Committee, Hospital de la Santa Creu i Sant Pau, Hospital del Marc-Parc Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| |
Collapse
|
2
|
Mofatteh M, Mohamed A, Mashayekhi MS, Skandalakis GP, Neudorfer C, Arfaie S, MohanaSundaram A, Sabahi M, Anand A, Aboulhosn R, Liao X, Horn A, Ashkan K. Deep brain stimulation of the hypothalamic region: a systematic review. Acta Neurochir (Wien) 2025; 167:33. [PMID: 39904782 PMCID: PMC11794333 DOI: 10.1007/s00701-025-06430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been successfully used for the treatment of circuitopathies including movement, anxiety, and behavioral disorders. The hypothalamus is a crucial integration center for many peripheral and central pathways relating to cardiovascular, metabolic, and behavioral functions and constitutes a potential target for neuromodulation in treatment-refractory conditions. To conduct a systematic review, investigating hypothalamic targets in DBS, their indications, and the primary clinical findings. METHODS PubMed, Scopus, and Web of Science databases were searched in accordance with the PRISMA guideline to identify papers published in English studying DBS of the hypothalamus in humans. RESULTS After screening 3,148 papers, 34 studies consisting of 412 patients published over two decades were included in the final review. Hypothalamic DBS was indicated in refractory headaches (n = 238, 57.8%), aggressive behavior (n = 100, 24.3%), mild Alzheimer's disease (n = 58, 14.1%), trigeminal neuralgia in multiple sclerosis (n = 5, 1.2%), Prader-Willi syndrome (n = 4, 0.97%), and atypical facial pain (n = 3, 0.73%). The posterior hypothalamus was the most common DBS target site across 30 studies (88.2%). 262 (63.6%) participants were males, and 110 (26.7%) were females. 303 (73.5%) patients were adults whereas 33 (8.0%) were pediatrics. The lowest mean age of participants was 15.25 ± 4.6 years for chronic refractory aggressiveness, and the highest was 68.5 ± 7.9 years in Alzheimer's disease patients. The mean duration of the disease ranged from 2.2 ± 1.7 (mild Alzheimer's disease) to 19.8 ± 10.1 years (refractory headaches). 213 (51.7%) patients across 29 studies (85.3%) reported symptom improvements which ranged from 23.1% to 100%. 25 (73.5%) studies reported complications, most of which were associated with higher voltage stimulations. CONCLUSIONS DBS of the hypothalamus is feasible in selected patients with various refractory conditions ranging from headaches to aggression in both pediatric and adult populations. Future large-scale studies with long-term follow-up are required to validate the safety and efficacy data and extend these findings.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- Neuro International Collaboration (NIC), London, UK.
| | - Abdulkadir Mohamed
- Medical Sciences Division, University of Oxford, Oxford, UK
- Neuro International Collaboration (NIC), Oxford, UK
| | - Mohammad Sadegh Mashayekhi
- Faculty of Medicine, Division of Neurosurgery, University of Ottawa, Ottawa, ON, Canada
- Neuro International Collaboration (NIC), Vancouver, Ottawa, ON, Canada
| | - Georgios P Skandalakis
- Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, corporate member of, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Neurosurgery, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Neuro International Collaboration (NIC), Montreal, QC, Canada
| | | | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ayush Anand
- Koirala Institute of Health Sciences, B. P, Dharan, Nepal
| | | | - Xuxing Liao
- Department of Neurosurgery, First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keyoumars Ashkan
- Neuro International Collaboration (NIC), London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Health Partners Academic Health Sciences Centre, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation 2024; 27:422-439. [PMID: 37204360 DOI: 10.1016/j.neurom.2023.04.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.
Collapse
Affiliation(s)
| | - Alan Bush
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matteo Vissani
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Robert Mark Richardson
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Cheema S, Ferreira F, Parras O, Lagrata S, Kamourieh S, Pakzad A, Zrinzo L, Matharu M, Akram H. Association of Clinical and Neuroanatomic Factors With Response to Ventral Tegmental Area DBS in Chronic Cluster Headache. Neurology 2023; 101:e2423-e2433. [PMID: 37848331 PMCID: PMC10752645 DOI: 10.1212/wnl.0000000000207750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Deep brain stimulation (DBS) of the ventral tegmental area (VTA) is a surgical treatment option for selected patients with refractory chronic cluster headache (CCH). We aimed to identify clinical and structural neuroimaging factors associated with response to VTA DBS in CCH. METHODS This prospective observational cohort study examines consecutive patients with refractory CCH treated with VTA DBS by a multidisciplinary team in a single tertiary neuroscience center as part of usual care. Headache diaries and validated questionnaires were completed at baseline and regular follow-up intervals. All patients underwent T1-weighted structural MRI before surgery. We compared clinical features using multivariable logistic regression and neuroanatomic differences using voxel-based morphometry (VBM) between responders and nonresponders. RESULTS Over a 10-year period, 43 patients (mean age 53 years, SD 11.9), including 29 male patients, with a mean duration of CCH 12 years (SD 7.4), were treated and followed up for at least 1 year (mean follow-up duration 5.6 years). Overall, there was a statistically significant improvement in median attack frequency from 140 to 56 per month (Z = -4.95, p < 0.001), attack severity from 10/10 to 8/10 (Z = -4.83, p < 0.001), and duration from 110 to 60 minutes (Z = -3.48, p < 0.001). Twenty-nine (67.4%) patients experienced ≥50% improvement in attack frequency and were therefore classed as responders. There were no serious adverse events. The most common side effects were discomfort or pain around the battery site (7 patients) and transient diplopia and/or oscillopsia (6 patients). There were no differences in demographics, headache characteristics, or comorbidities between responders and nonresponders. VBM identified increased neural density in nonresponders in several brain regions, including the orbitofrontal cortex, anterior cingulate cortex, anterior insula, and amygdala, which were statistically significant (p < 0.001). DISCUSSION VTA DBS showed no serious adverse events, and, although there was no placebo control, was effective in approximately two-thirds of patients at long-term follow-up. This study did not reveal any reliable clinical predictors of response. However, nonresponders had increased neural density in brain regions linked to processing of pain and autonomic function, both of which are prominent in the pathophysiology of CCH.
Collapse
Affiliation(s)
- Sanjay Cheema
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK.
| | - Francisca Ferreira
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Olga Parras
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Susie Lagrata
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Salwa Kamourieh
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Ashkan Pakzad
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Ludvic Zrinzo
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Manjit Matharu
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| | - Harith Akram
- From the Headache and Facial Pain Group (S.C., S.K., M.M.), UCL Queen Square Institute of Neurology; The National Hospital for Neurology and Neurosurgery (S.C., F.F., O.P., S.L., S.K., L.Z., M.M., H.A.); Functional Neurosurgery Unit (F.F., O.P., L.Z., H.A.), UCL Queen Square Institute of Neurology; Wellcome Centre for Human Neuroimaging (F.F.), 12 Queen Square; UCL EPSRC Centre for Doctoral Training in Intelligent Integrated Imaging in Healthcare (i4health) (F.F.); Centre for Medical Image Computing (A.P.), University College London; and Department of Medical Physics and Biomedical Engineering (A.P.), University College London, London, UK
| |
Collapse
|
5
|
Rissardo JP, Vora NM, Tariq I, Mujtaba A, Caprara ALF. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1991. [PMID: 38004040 PMCID: PMC10673515 DOI: 10.3390/medicina59111991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
In recent decades, deep brain stimulation (DBS) has been extensively studied due to its reversibility and significantly fewer side effects. DBS is mainly a symptomatic therapy, but the stimulation of subcortical areas by DBS is believed to affect the cytoarchitecture of the brain, leading to adaptability and neurogenesis. The neurological disorders most commonly studied with DBS were Parkinson's disease, essential tremor, obsessive-compulsive disorder, and major depressive disorder. The most precise approach to evaluating the location of the leads still relies on the stimulus-induced side effects reported by the patients. Moreover, the adequate voltage and DBS current field could correlate with the patient's symptoms. Implantable pulse generators are the main parts of the DBS, and their main characteristics, such as rechargeable capability, magnetic resonance imaging (MRI) safety, and device size, should always be discussed with patients. The safety of MRI will depend on several parameters: the part of the body where the device is implanted, the part of the body scanned, and the MRI-tesla magnetic field. It is worth mentioning that drug-resistant individuals may have different pathophysiological explanations for their resistance to medications, which could affect the efficacy of DBS therapy. Therefore, this could explain the significant difference in the outcomes of studies with DBS in individuals with drug-resistant neurological conditions.
Collapse
Affiliation(s)
| | - Nilofar Murtaza Vora
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India;
| | - Irra Tariq
- Medicine Department, United Medical & Dental College, Karachi 75600, Pakistan;
| | - Amna Mujtaba
- Medicine Department, Karachi Medical & Dental College, Karachi 74700, Pakistan;
| | | |
Collapse
|
6
|
Murray M, Pahapill PA, Awad AJ. Deep Brain Stimulation for Chronic Cluster Headaches: A Systematic Review and Meta-Analysis. Stereotact Funct Neurosurg 2023; 101:232-243. [PMID: 37245509 DOI: 10.1159/000530508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/29/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Chronic cluster headache (CCH) is a severe and debilitating sub-type of trigeminal autonomic cephalalgia that can be resistant to medical management and associated with significant impairment in quality of life. Studies of deep brain stimulation (DBS) for CCH have provided promising results but have not been assessed in a comprehensive systematic review/meta-analysis. OBJECTIVE The objective was to perform a systematic literature review and meta-analysis of patients with CCH treated with DBS to provide insight on safety and efficacy. METHODS A systematic review and meta-analysis were performed according to PRISMA 2020 guidelines. 16 studies were included in final analysis. A random-effects model was used to meta-analyze data. RESULTS Sixteen studies reported 108 cases for data extraction and analysis. DBS was feasible in >99% of cases and was performed either awake or asleep. Meta-analysis revealed that the mean difference in headache attack frequency and headache intensity after DBS were statistically significant (p < 0.0001). Utilization of microelectrode recording was associated with statistically significant improvement in headache intensity postoperatively (p = 0.006). The average overall follow-up period was 45.4 months and ranged from 1 to 144 months. Death occurred in <1%. The rate of major complications was 16.67%. CONCLUSIONS DBS for CCHs is a feasible surgical technique with a reasonable safety profile that can be successfully performed either awake or asleep. In carefully selected patients, approximately 70% of patients achieve excellent control of their headaches.
Collapse
Affiliation(s)
- Molly Murray
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Peter A Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ahmed J Awad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
7
|
Wang Z, Yang X, Zhao B, Li W. Primary headache disorders: From pathophysiology to neurostimulation therapies. Heliyon 2023; 9:e14786. [PMID: 37077680 PMCID: PMC10106918 DOI: 10.1016/j.heliyon.2023.e14786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023] Open
Abstract
Primary headache disorders including migraine, cluster headache, and tension-type headache are among the most common disabling diseases worldwide. The unclear pathogenesis of primary headache disorders has led to high rates of misdiagnosis and limited available treatment options. In this review, we have summarized the pathophysiological factors for a better understanding of primary headache disorders. Advances in functional neuroimaging, genetics, neurophysiology have indicated that cortical hyperexcitability, regional brain dysfunction, central sensitization and neuroplasticity changes play vital roles in the development of primary headache disorders. Moreover, we have also discussed a series of neurostimulation approaches with their stimulation mechanism, safety and efficacy for prevention and treatment of primary headache disorders. Noninvasive or implantable neurostimulation techniques show great promise for treating refractory primary headache disorders.
Collapse
Affiliation(s)
- Ziying Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Binglei Zhao
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, And Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Simmonds L, Lagrata S, Stubberud A, Cheema S, Tronvik E, Matharu M, Kamourieh S. An open-label observational study and meta-analysis of non-invasive vagus nerve stimulation in medically refractory chronic cluster headache. Front Neurol 2023; 14:1100426. [PMID: 37064192 PMCID: PMC10098146 DOI: 10.3389/fneur.2023.1100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundMany patients with cluster headache (CH) are inadequately controlled by current treatment options. Non-invasive vagus nerve stimulation (nVNS) is reported to be effective in the management of CH though some studies suggest that it is ineffective.ObjectiveTo assess the safety and efficacy of nVNS in chronic cluster headache (CCH) patients.MethodWe prospectively analysed data from 40 patients with refractory CCH in this open-label, observational study. Patients were seen in tertiary headache clinics at the National Hospital for Neurology and Neurosurgery and trained to use nVNS as preventative therapy. Patients were reivewed at one month and then three-monthly from onset. The primary endpoint was number of patients achieving ≥50% reduction in attack frequency at 3 months. A meta-analysis of all published studies evaluating the efficacy of nVNS in CCH was also conducted. We searched MEDLINE and EMBASE for all studies investigating the use of nVNS as a preventive or adjunctive treatment for CCH with five or more participants. Combined mean difference and responder proportions with 95% confidence intervals (CI) were calculated from the included studies.Results17/40 patients (43%) achieved ≥50% reduction in attack frequency at 3 months. There was a significant reduction in monthly attack frequency from a baseline of 124 (±67) attacks to 79 (±63) attacks in month 3 (mean difference 44.7; 95% CI 25.1 to 64.3; p < 0.001). In month 3, there was also a 1.2-point reduction in average severity from a baseline Verbal Rating Scale of 8/10 (95% CI 0.5 to 1.9; p = 0.001). Four studies, along with the present study, were deemed eligible for meta-analysis, which showed a responder proportion of 0.35 (95% CI 0.07 to 0.69, n = 137) and a mean reduction in headache frequency of 35.3 attacks per month (95% CI 11.0 to 59.6, n = 108), from a baseline of 105 (±22.7) attacks per month.ConclusionThis study highlights the potential benefit of nVNS in CCH, with significant reductions in headache frequency and severity. To better characterise the effect, randomised sham-controlled trials are needed to confirm the beneficial response of VNS reported in some, but not all, open-label studies.
Collapse
Affiliation(s)
- Lucy Simmonds
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Susie Lagrata
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Anker Stubberud
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Norwegian Centre for Headache Research, Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjay Cheema
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Erling Tronvik
- Norwegian Centre for Headache Research, Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - Manjit Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
- Norwegian Centre for Headache Research, Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Salwa Kamourieh
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
- *Correspondence: Salwa Kamourieh,
| |
Collapse
|
9
|
Membrilla JA, Roa J, Díaz-de-Terán J. Preventive treatment of refractory chronic cluster headache: systematic review and meta-analysis. J Neurol 2023; 270:689-710. [PMID: 36310189 DOI: 10.1007/s00415-022-11436-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Preventive treatment for refractory chronic cluster headache (rCCH) is challenging and many therapies have been tried. OBJECTIVE To study what could be considered the therapy of choice in rCCH through a systematic review and meta-analysis. METHODS This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The protocol was registered in PROSPERO (ID CRD42021290983). A systematic search was performed in MEDLINE, Embase, Cochrane, clinicaltrials.gov, and the WHO's-International-Clinical-Trials-Registry-Platform. Studies on the preventive treatment for rCCH as defined by the European Headache Federation consensus statement were included. A meta-analysis of the pooled response rate was conducted for the different therapies. RESULTS Of 336 results, 45 were eligible for inclusion. Most articles studied the effect of neuromodulation as a preventive treatment for rCCH. The most studied neuromodulation technique was occipital nerve stimulation (ONS), with a pooled response rate in the meta-analysis of 57.3% (95% CI 0.481-0.665). Deep brain stimulation (DBS) was the second most studied treatment with a pooled response rate of 77.0% (95% CI 0.594-0.957). DBS results were more heterogeneous than ONS, which could be related to the different stimulation targets in DBS studies, and reported more serious adverse events than in ONS studies. The remaining therapies (anti-CGRP pathway drugs, warfarin, ketamine-magnesium infusions, serial occipital nerve blocks, clomiphene, onabotulinum toxin A, ketogenic diet, sphenopalatine ganglion radiofrequency or stimulation, vagus nerve stimulation, percutaneous bioelectric current stimulation, upper cervical cord stimulation, and vidian neurectomy) present weaker results or have less quality of evidence. CONCLUSIONS The results of this systematic review and meta-analysis suggest that ONS could be the first therapeutic strategy for patients with rCCH based on the current evidence.
Collapse
Affiliation(s)
- Javier A Membrilla
- Neurology Department, "La Paz" University Hospital, P.º de la Castellana 261, 28046, Madrid, Spain.
| | - Javier Roa
- Neurology Department, "La Paz" University Hospital, P.º de la Castellana 261, 28046, Madrid, Spain
| | - Javier Díaz-de-Terán
- Neurology Department, "La Paz" University Hospital, P.º de la Castellana 261, 28046, Madrid, Spain
| |
Collapse
|
10
|
Rezaei M, Raoufy MR, Fathollahi Y, Shojaei A, Mirnajafi-Zadeh J. Tonic and phasic stimulations of ventral tegmental area have opposite effects on pentylenetetrazol kindled seizures in mice. Epilepsy Res 2023; 189:107073. [PMID: 36584482 DOI: 10.1016/j.eplepsyres.2022.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Dopamine may be involved in the anticonvulsant action of deep brain stimulation (DBS). Therefore, ventral tegmental area (VTA), as a brain dopaminergic nucleus, may be a suitable target for DBS anticonvulsant action. This study investigated the effect of tonic and phasic stimulations of the VTA on seizure parameters. Seizures were induced in adult mice by sequential injections of a sub-convulsive dose of 35 mg/kg pentylenetetrazole (PTZ) every 48 h to develop the chemical kindling until the mice reached full kindled state (showing three consecutive seizure stages 4 or 5). Fully kindled mice received DBS once a day as tonic (square waves at 1 Hz; pulse duration: 200 μs; intensity: 300 μA; 600 pulses in 10 min) or phasic (square waves at 100 Hz; pulse duration: 200 μs; intensity: 300 μA; 8 trains of 10 pulses at 1 min interval; 800 pulses in 10 min) stimulations applied into their VTA for 4 days. A single dose of PTZ was injected after each DBS. Simultaneously electrocorticography and video recordings were performed during the seizure for accuracy in seizure severity parameters detection. Tonic but not phasic stimulation significantly decreased the epileptiform discharge duration and the seizure behavioral parameters such as maximum seizure stage, stage 5 duration, seizure duration. In addition, focal to generalized seizure latency increased following VTA tonic stimulation. These data suggest that tonic (but not phasic) stimulation of VTA before PTZ injection on 4 test days had anticonvulsant effects on PTZ-kindled seizures.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Lu C, Feng Y, Li H, Gao Z, Zhu X, Hu J. A preclinical study of deep brain stimulation in the ventral tegmental area for alleviating positive psychotic-like behaviors in mice. Front Hum Neurosci 2022; 16:945912. [PMID: 36034113 PMCID: PMC9399924 DOI: 10.3389/fnhum.2022.945912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a clinical intervention for the treatment of movement disorders. It has also been applied to the treatment of psychiatric disorders such as depression, anorexia nervosa, obsessive-compulsive disorder, and schizophrenia. Psychiatric disorders including schizophrenia, bipolar disorder, and major depression can lead to psychosis, which can cause patients to lose touch with reality. The ventral tegmental area (VTA), located near the midline of the midbrain, is an important region involved in psychosis. However, the clinical application of electrical stimulation of the VTA to treat psychotic diseases has been limited, and related mechanisms have not been thoroughly studied. In the present study, hyperlocomotion and stereotyped behaviors of the mice were employed to mimic and evaluate the positive-psychotic-like behaviors. We attempted to treat positive psychotic-like behaviors by electrically stimulating the VTA in mice and exploring the neural mechanisms behind behavioral effects. Local field potential recording and in vivo fiber photometry to observe the behavioral effects and changes in neural activities caused by DBS in the VTA of mice. Optogenetic techniques were used to verify the neural mechanisms underlying the behavioral effects induced by DBS. Our results showed that electrical stimulation of the VTA activates local gamma-aminobutyric acid (GABA) neurons, and dopamine (DA) neurons, reduces hyperlocomotion, and relieves stereotyped behaviors induced by MK-801 (dizocilpine) injection. The results of optogenetic manipulation showed that the activation of the VTA GABA neurons, but not DA neurons, is involved in the alleviation of hyperlocomotion and stereotyped behaviors. We visualized changes in the activity of specific types in specific brain areas induced by DBS, and explored the neural mechanism of DBS in alleviating positive psychotic-like behaviors. This preclinical study not only proposes new technical means of exploring the mechanism of DBS, but also provides experimental justification for the clinical treatment of psychotic diseases by electrical stimulation of the VTA.
Collapse
Affiliation(s)
- Chen Lu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Feng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Gao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaona Zhu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
12
|
Silvestro M, Tessitore A, Orologio I, Battista G, Siciliano M, Tedeschi G, Russo A. Cluster headache pathophysiology: What we have learned from advanced neuroimaging. Headache 2022; 62:436-452. [PMID: 35315064 PMCID: PMC9314615 DOI: 10.1111/head.14279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Background Although remarkable progress has been achieved in understanding cluster headache (CH) pathophysiology, there are still several gaps about the mechanisms through which independent subcortical and cortical brain structures interact with each other. These gaps could be partially elucidated by structural and functional advanced neuroimaging investigations. Objective Although we are aware that substantial achievements have come from preclinical, neurophysiological, and biochemical experiments, the present narrative review aims to summarize the most significant findings from structural, microstructural, and functional neuroimaging investigations, as well as the consequent progresses in understanding CH pathophysiological mechanisms, to achieve a comprehensive and unifying model. Results Advanced neuroimaging techniques have contributed to overcoming the peripheral hypothesis that CH is of cavernous sinus pathology, in transitioning from the pure vascular hypothesis to a more comprehensive trigeminovascular model, and, above all, in clarifying the role of the hypothalamus and its connections in the genesis of CH. Conclusion Altogether, neuroimaging findings strongly suggest that, beyond the theoretical model of the “pain matrix,” the model of the “neurolimbic pain network” that is accepted in migraine research could also be extended to CH. Indeed, although the hypothalamus’ role is undeniable, the genesis of CH attacks is complex and seems to not be just the result of a single “generator.” Cortical‐hypothalamic‐brainstem functional interconnections that can switch between out‐of‐bout and in‐bout periods, igniting the trigeminovascular system (probably by means of top‐down mechanisms) and the consensual trigeminal autonomic reflexes, may represent the “neuronal background” of CH.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giorgia Battista
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Pohl H. History of cluster headache. CEPHALALGIA REPORTS 2022. [DOI: 10.1177/25158163221128183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: To summarise the history of cluster headache evolving concepts and growing insights. Background: Excruciating pain, activation of the parasympathetic nervous system, and circadian rhythmicity characterise cluster headache attacks. Results: We find the oldest descriptions of patients suffering from the disorder in case reports of the 17th and 18th centuries. Only in the 19th and early 20th centuries did physicians start hypothesizing its cause. Initially, many researchers suspected the origin of the pain in peripheral nerves or blood vessels. However, eventually, they understood that the cause of the disease lies in the brain. In 1998, Positron emission tomography studies revealed increased activity of the posterior hypothalamus, whose role remains incompletely understood. Only recently have researchers realised that being diseased implies more than dysfunction. Recent studies analysed the consequences of cluster headache for each patient. Many struggle to deal with the disorder even in the absence of pain. Conclusion: Physicians have been aware of this type of pain for at least 300 years. Only when researchers studied pathological anatomy and physiology did knowledge accrue. A more comprehensive picture of the disease severity emerged when they also considered its consequences.
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
15
|
Keuken MC, Alkemade A, Stevenson N, Innes RJ, Forstmann BU. Structure-function similarities in deep brain stimulation targets cross-species. Neurosci Biobehav Rev 2021; 131:1127-1135. [PMID: 34715147 DOI: 10.1016/j.neubiorev.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
Deep Brain Stimulation (DBS) is an effective neurosurgical treatment to alleviate motor symptoms of advanced Parkinson's disease. Due to its potential, DBS usage is rapidly expanding to target a large number of brain regions to treat a wide range of diseases and neuropsychiatric disorders. The identification and validation of new target regions heavily rely on the insights gained from rodent and primate models. Here we present a large-scale automatic meta-analysis in which the structure-function associations within and between species are compared for 21 DBS targets in humans. The results indicate that the structure-function association for the majority of the 21 included subcortical areas were conserved cross-species. A subset of structures showed overlapping functional association. This can potentially be attributed to shared brain networks and might explain why multiple brain areas are targeted for the same disease or neuropsychiatric disorder.
Collapse
Affiliation(s)
- Max C Keuken
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands.
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands
| | - Niek Stevenson
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands
| | - Reilly J Innes
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands; Newcastle Cognition Lab, University of Newcastle, Callaghan, NSW, Australia
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Coenen VA. Commentary: Posteromedial Hypothalamic Deep Brain Stimulation for Refractory Aggressiveness in a Patient With Weaver Syndrome: Clinical, Technical Report and Operative Video. Oper Neurosurg (Hagerstown) 2021; 21:E226-E228. [PMID: 34038954 DOI: 10.1093/ons/opab165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty, Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| |
Collapse
|
17
|
Devaluez M, Tir M, Krystkowiak P, Aubignat M, Lefranc M. Selection of deep brain stimulation contacts using volume of tissue activated software following subthalamic nucleus stimulation. J Neurosurg 2021; 135:611-618. [PMID: 33096524 DOI: 10.3171/2020.6.jns192157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 06/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in the treatment of motor symptoms of Parkinson's disease. Using a patient-specific lead and volume of tissue activated (VTA) software, it is possible to visualize contact positions in the context of the patient's own anatomy. In this study, the authors' aim was to demonstrate that VTA software can be used in clinical practice to help determine the clinical effectiveness of stimulation in patients with Parkinson's disease undergoing DBS of the STN. METHODS Brain images of 26 patients undergoing STN DBS were analyzed using VTA software. Preoperative clinical and neuropsychological data were collected. Contacts were chosen by two experts in DBS blinded to the clinical data. A therapeutic window of amplitude was determined. These results were compared with the parameter settings for each patient. Data were obtained at 3 months and 1 year postsurgery. RESULTS In 90.4% (95% CI 82%-98%) of the patients, the contacts identified by the VTA software were concordant with the clinically effective contacts or with an effective contact in contact-by-contact testing. The therapeutic window of amplitude selected virtually included 81.3% of the clinical amplitudes. CONCLUSIONS VTA software appears to present significant concordance with clinical data for selecting contacts and stimulation parameters that could help in postoperative follow-up and programming.
Collapse
Affiliation(s)
| | | | | | | | - Michel Lefranc
- 2Neurosurgery, Amiens University Hospital Center, Amiens, France
| |
Collapse
|
18
|
Abstract
Background Cluster headache is a highly disabling primary headache disorder which is widely described as the most painful condition a human can experience. Aim To provide an overview of the clinical characteristics, epidemiology, risk factors, differential diagnosis, pathophysiology and treatment options of cluster headache, with a focus on recent developments in the field. Methods Structured review of the literature on cluster headache. Results Cluster headache affects approximately one in 1000 of the population. It is characterised by attacks of severe unilateral head pain associated with ipsilateral cranial autonomic symptoms, and the tendency for attacks to occur with circadian and circannual periodicity. The pathophysiology of cluster headache and other primary headache disorders has recently become better understood and is thought to involve the hypothalamus and trigeminovascular system. There is good quality evidence for acute treatment of attacks with parenteral triptans and high flow oxygen; preventive treatment with verapamil; and transitional treatment with oral corticosteroids or greater occipital nerve injection. New pharmacological and neuromodulation therapies have recently been developed. Conclusion Cluster headache causes distinctive symptoms, which once they are recognised can usually be managed with a variety of established treatments. Recent pathophysiological understanding has led to the development of newer pharmacological and neuromodulation therapies, which may soon become established in clinical practice.
Collapse
Affiliation(s)
- Sanjay Cheema
- Headache and Facial Pain Group, University College London (UCL) Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Manjit Matharu
- Headache and Facial Pain Group, University College London (UCL) Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
19
|
Rizzi M, Gambini O, Marras CE. Posterior hypothalamus as a target in the treatment of aggression: From lesioning to deep brain stimulation. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:95-106. [PMID: 34266615 DOI: 10.1016/b978-0-12-819973-2.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intermittent explosive disorder can be described as a severe "affective aggression" condition, for which drugs and other supportive therapies are not fully effective. In the first half of the 19th century, experimental studies progressively increased knowledge of aggressive disorders. A neurobiologic approach revealed the posterior hypothalamic region as a key structure for the modulation of aggression. In the 1960s, patients with severe aggressive disorder, frequently associated with intellectual disability, were treated by bilateral stereotactic lesioning of the posterior hypothalamic area, with efficacy. This therapy was later abandoned because of issues related to the misuse of psychosurgery. In the last 2 decades, however, the same diencephalic target has been selected for the reversible treatment by deep brain stimulation, with success. This chapter presents a comprehensive approach to posterior hypothalamic surgery for the treatment of severely aggressive patients and discusses the experimental steps that allowed this surgical target to be selected. Surgical experiences are reported, together with considerations on target features and related encephalic circuits.
Collapse
Affiliation(s)
- Michele Rizzi
- "C.Munari" Epilepsy Surgery Center, Department of Neuroscience, ASST GOM Niguarda, Milan, Italy.
| | - Orsola Gambini
- Department of Health of Sciences, University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
20
|
Neuromodulation in headache and craniofacial neuralgia: Guidelines from the Spanish Society of Neurology and the Spanish Society of Neurosurgery. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2020.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Barloese M. Current Understanding of the Chronobiology of Cluster Headache and the Role of Sleep in Its Management. Nat Sci Sleep 2021; 13:153-162. [PMID: 33603525 PMCID: PMC7886233 DOI: 10.2147/nss.s278088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cluster headache is uniquely rhythmic in its occurrence both diurnally and annually. This has implications for the clinical approach to the patient but also for our understanding of the role of central structures in its pathological basis. Many intrinsic and extrinsic factors seem to influence CH rhythmicity, including genetics. The proclivity for attacks to occur at night and the possible association with particular sleep phenomena, including sleep apnea, have motivated a number of studies which has improved our understanding but many questions remain unanswered. The sleep-headache interaction seems to be bidirectional and possibly both direct and indirect. The latter could involve more disperse networks of homeostatic regulation, which may better encompass recent observations. Treatment of the headache patient with concurrent sleep problems can be particularly challenging, especially considering side-effects and interactions of commonly used medications. While current treatment guidelines do not incorporate chronotherapeutic thinking, some evidence may suggest that application of such principles on an individual level may be beneficial.
Collapse
Affiliation(s)
- Mads Barloese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging, Hvidovre Hospital, Hvidovre, Denmark.,Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
22
|
Elias GJB, Boutet A, Joel SE, Germann J, Gwun D, Neudorfer C, Gramer RM, Algarni M, Paramanandam V, Prasad S, Beyn ME, Horn A, Madhavan R, Ranjan M, Lozano CS, Kühn AA, Ashe J, Kucharczyk W, Munhoz RP, Giacobbe P, Kennedy SH, Woodside DB, Kalia SK, Fasano A, Hodaie M, Lozano AM. Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy. Ann Neurol 2020; 89:426-443. [PMID: 33252146 DOI: 10.1002/ana.25975] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment-resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high-resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above-mean and below-mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient-specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426-443.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Robert M Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Musleh Algarni
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Vijayashankar Paramanandam
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Sreeram Prasad
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Manish Ranjan
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Christopher S Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Jeff Ashe
- GE Global Research, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Bardon J, Kurcova S, Chudackova M, Otruba P, Krahulik D, Nevrly M, Kanovsky P, Zapletalova J, Valosek J, Hlustik P, Vastik M, Vecerkova M, Hvizdosova L, Mensikova K, Kurca E, Sivak S. Deep brain stimulation electrode position impact on parkinsonian non-motor symptoms. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 166:57-62. [PMID: 33883752 DOI: 10.5507/bp.2020.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In this study we evaluated the impact of location of deep brain stimulation electrode active contact in different parts of the subthalamic nucleus on improvement of non-motor symptoms in patients with Parkinson's disease. METHODS The subthalamic nucleus was divided into two (dorsolateral/ventromedial) and three (dorsolateral, medial, ventromedial) parts. 37 deep brain stimulation electrodes were divided according to their active contact location. Correlation between change in non-motor symptoms before and one and four months after deep brain stimulation electrode implantation and the location of active contact was made. RESULTS In dividing the subthalamic nucleus into three parts, no electrode active contact was placed ventromedially, 28 active contacts were located in the medial part and 9 contacts were placed dorsolaterally. After one and four months, no significant difference was found between medial and dorsolateral positions. In the division of the subthalamic nucleus into two parts, 13 contacts were located in the ventromedial part and 24 contacts were placed in the dorsolateral part. After one month, significantly greater improvement in the Non-motor Symptoms Scale for Parkinson's disease (P=0.045) was found on dorsolateral left-sided stimulation, but no significant differences between the ventromedial and dorsolateral positions were found on the right side. CONCLUSION This study demonstrated the relationship between improvement of non-motor symptoms and the side (hemisphere, left/right) of the deep brain stimulation electrode active contact, rather than its precise location within specific parts of the subthalamic nucleus in patients treated for advanced Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Monika Chudackova
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - David Krahulik
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Martin Nevrly
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Petr Kanovsky
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jana Zapletalova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jan Valosek
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Department of Biomedical Engineering, University Hospital Olomouc, Czech Republic
| | - Petr Hlustik
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Miroslav Vastik
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Marketa Vecerkova
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Lenka Hvizdosova
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Katerina Mensikova
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Egon Kurca
- Department of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Martin, Slovak Republic
| | - Stefan Sivak
- Department of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Martin, Slovak Republic
| |
Collapse
|
24
|
Stubberud A, Tronvik E, Matharu M. Treatment of SUNCT/SUNA, Paroxysmal Hemicrania, and Hemicrania Continua: An Update Including Single-Arm Meta-analyses. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00649-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Purpose of Review
This review presents a critical appraisal of the treatment strategies for short-lasting unilateral neuralgiform headache attacks (SUNHA), paroxysmal hemicrania (PH), and hemicrania continua (HC). We assess the available, though sparse, evidence on both medical and surgical treatments. In addition, we present estimated pooled analyses of the most common treatments and emphasize recent promising findings.
Recent Findings
The majority of literature available on the treatment of these rare trigeminal autonomic cephalalgias are small open-label observational studies and case reports. Pooled analyses reveal that lamotrigine for SUNHA and indomethacin for PH and HC are the preventative treatments of choice. Second-line choices include topiramate, gabapentin, and carbamazepine for SUNHA; verapamil for PH; and cyclooxygenase-2 inhibitors and gabapentin for HC. Parenteral lidocaine is highly effective as a transitional treatment for SUNHA. Novel therapeutic strategies such as non-invasive neurostimulation, targeted nerve and ganglion blockades, and invasive neurostimulation, including implanted occipital nerve stimulators and deep brain stimulation, appears to be promising options.
Summary
At present, lamotrigine as a prophylactic and parenteral lidocaine as transitional treatment remain the therapies of choice for SUNHA. While, by definition, both PH and CH respond exquisitely to indomethacin, evidence for other prophylactics is less convincing. Evidence for the novel emerging therapies is limited, though promising.
Collapse
|
25
|
Nowacki A, Schober M, Nader L, Saryyeva A, Nguyen TK, Green AL, Pollo C, Krauss JK, Fontaine D, Aziz TZ. Deep Brain Stimulation for Chronic Cluster Headache: Meta‐Analysis of Individual Patient Data. Ann Neurol 2020; 88:956-969. [DOI: 10.1002/ana.25887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
| | - Martin Schober
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
| | - Lydia Nader
- Thuy Hospital Universitario Central de Asturias Oviedo Spain
| | - Assel Saryyeva
- Department of Neurosurgery Medical School Hannover Hannover Germany
| | - Thuy‐Anh Khoa Nguyen
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
- ARTORG Center for Biomedical Engineering Research University of Bern Bern Switzerland
| | - Alexander L. Green
- Nuffield Department of Clinical Neuroscience University of Oxford Oxford UK
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
| | | | - Denys Fontaine
- Department of Neurosurgery, Centre Hospitalier Universitaire de Nice, FHU INOVPAIN University Cote d'Azur Nice France
| | - Tipu Z. Aziz
- Nuffield Department of Clinical Neuroscience University of Oxford Oxford UK
| |
Collapse
|
26
|
Klarendic M, Kaski D. Deep brain stimulation and eye movements. Eur J Neurosci 2020; 53:2344-2361. [DOI: 10.1111/ejn.14898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Maja Klarendic
- Neurological Department University Clinical Center Ljubljana Ljubljana Slovenia
| | - Diego Kaski
- Department of Clinical and Motor Neurosciences Centre for Vestibular and Behavioural Neurosciences University College London London UK
| |
Collapse
|
27
|
Belvís R, Irimia P, Seijo-Fernández F, Paz J, García-March G, Santos-Lasaosa S, Latorre G, González-Oria C, Rodríguez R, Pozo-Rosich P, Láinez JM. Neuromodulation in headache and craniofacial neuralgia: guidelines from the Spanish Society of Neurology and the Spanish Society of Neurosurgery. Neurologia 2020; 36:61-79. [PMID: 32718873 DOI: 10.1016/j.nrl.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Numerous invasive and non-invasive neuromodulation devices have been developed and applied to patients with headache and neuralgia in recent years. However, no updated review addresses their safety and efficacy, and no healthcare institution has issued specific recommendations on their use for these 2 conditions. METHODS Neurologists from the Spanish Society of Neurology's (SEN) Headache Study Group and neurosurgeons specialising in functional neurosurgery, selected by the Spanish Society of Neurosurgery (SENEC), performed a comprehensive review of articles on the MEDLINE database addressing the use of the technique in patients with headache and neuralgia. RESULTS We present an updated review and establish the first set of consensus recommendations of the SEN and SENC on the use of neuromodulation to treat headache and neuralgia, analysing the current levels of evidence on its effectiveness for each specific condition. CONCLUSIONS Current evidence supports the indication of neuromodulation techniques for patients with refractory headache and neuralgia (especially migraine, cluster headache, and trigeminal neuralgia) selected by neurologists and headache specialists, after pharmacological treatment options are exhausted. Furthermore, we recommend that invasive neuromodulation be debated by multidisciplinary committees, and that the procedure be performed by teams of neurosurgeons specialising in functional neurosurgery, with acceptable rates of morbidity and mortality.
Collapse
Affiliation(s)
- R Belvís
- Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - P Irimia
- Clínica Universitaria de Navarra, Pamplona, España.
| | | | - J Paz
- Hospital Universitario La Paz, Madrid, España
| | | | | | - G Latorre
- Hospital Universitario de Fuenlabrada, Madrid, España
| | | | - R Rodríguez
- Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | - J M Láinez
- Hospital Clínico Universitario, Valencia, España
| |
Collapse
|
28
|
Green AL, Paterson DJ. Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. Compr Physiol 2020; 10:1085-1104. [PMID: 32941690 DOI: 10.1002/cphy.c190039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.
Collapse
Affiliation(s)
- Alexander L Green
- Division of Medical Sciences, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David J Paterson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Ferraro S, Nigri A, Demichelis G, Pinardi C, Chiapparini L, Giani L, Proietti Cecchini A, Leone M. Understanding Cluster Headache Using Magnetic Resonance Imaging. Front Neurol 2020; 11:535. [PMID: 32695062 PMCID: PMC7338680 DOI: 10.3389/fneur.2020.00535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Cluster headache is an excruciating pain syndrome characterized by unilateral head pain attacks, lasting between 15 and 180 min, accompanied by marked ipsilateral cranial autonomic symptoms, such as lacrimation and conjunctival injection. Despite important insights provided by neuroimaging studies and deep brain stimulation findings, the pathophysiology of cluster headache and its pathways of chronicization are still elusive. In this mini-review, we will provide an overview of the functional and structural neuroimaging studies in episodic and chronic cluster headache conditions conducted to clarify the underlying pathophysiology.
Collapse
Affiliation(s)
- Stefania Ferraro
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pinardi
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Giani
- Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Massimo Leone
- Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
30
|
Neuromodulation in primary headaches: current evidence and integration into clinical practice. Curr Opin Neurol 2020; 33:329-337. [DOI: 10.1097/wco.0000000000000820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Kakusa B, Saluja S, Dadey DYA, Barbosa DAN, Gattas S, Miller KJ, Cowan RP, Kouyoumdjian Z, Pouratian N, Halpern CH. Electrophysiology and Structural Connectivity of the Posterior Hypothalamic Region: Much to Learn From a Rare Indication of Deep Brain Stimulation. Front Hum Neurosci 2020; 14:164. [PMID: 32670034 PMCID: PMC7326144 DOI: 10.3389/fnhum.2020.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cluster headache (CH) is among the most common and debilitating autonomic cephalalgias. We characterize clinical outcomes of deep brain stimulation (DBS) to the posterior hypothalamic region through a novel analysis of the electrophysiological topography and tractography-based structural connectivity. The left posterior hypothalamus was targeted ipsilateral to the refractory CH symptoms. Intraoperatively, field potentials were captured in 1 mm depth increments. Whole-brain probabilistic tractography was conducted to assess the structural connectivity of the estimated volume of activated tissue (VAT) associated with therapeutic response. Stimulation of the posterior hypothalamic region led to the resolution of CH symptoms, and this benefit has persisted for 1.5-years post-surgically. Active contacts were within the posterior hypothalamus and dorsoposterior border of the ventral anterior thalamus (VAp). Delta- (3 Hz) and alpha-band (8 Hz) powers increased and peaked with proximity to the posterior hypothalamus. In the posterior hypothalamus, the delta-band phase was coupled to beta-band amplitude, the latter of which has been shown to increase during CH attacks. Finally, we identified that the VAT encompassing these regions had a high proportion of streamlines of pain processing regions, including the insula, anterior cingulate gyrus, inferior parietal lobe, precentral gyrus, and the brainstem. Our unique case study of posterior hypothalamic region DBS supports durable efficacy and provides a platform using electrophysiological topography and structural connectivity, to improve mechanistic understanding of CH and this promising therapy.
Collapse
Affiliation(s)
- Bina Kakusa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sabir Saluja
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - David Y A Dadey
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra Gattas
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert P Cowan
- Department of Neurology and Neurosciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Zepure Kouyoumdjian
- Department of Neurology, South Valley Neurology, Morgan Hill, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
32
|
Coenen VA, Sajonz B, Prokop T, Reisert M, Piroth T, Urbach H, Jenkner C, Reinacher PC. The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series. Acta Neurochir (Wien) 2020; 162:1053-1066. [PMID: 31997069 PMCID: PMC7156360 DOI: 10.1007/s00701-020-04248-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance. METHODS A total of 36 patients were enrolled (essential tremor (17), Parkinson's tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio). RESULTS Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis. DISCUSSION Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany.
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany.
- NeuroModul Basics (Center for Basics in NeuroModulation), Freiburg University, Freiburg (i.Br.), Germany.
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Tobias Piroth
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neurology and Neurophysiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Carolin Jenkner
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Clinical Trials Unit, Freiburg University Medical Center, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| |
Collapse
|
33
|
Messina R, Filippi M. What We Gain From Machine Learning Studies in Headache Patients. Front Neurol 2020; 11:221. [PMID: 32328022 PMCID: PMC7161430 DOI: 10.3389/fneur.2020.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
Wong JK, Middlebrooks EH, Grewal SS, Almeida L, Hess CW, Okun MS. A Comprehensive Review of Brain Connectomics and Imaging to Improve Deep Brain Stimulation Outcomes. Mov Disord 2020; 35:741-751. [PMID: 32281147 DOI: 10.1002/mds.28045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
DBS is an effective neuromodulatory therapy that has been applied in various conditions, including PD, essential tremor, dystonia, Tourette syndrome, and other movement disorders. There have also been recent examples of applications in epilepsy, chronic pain, and neuropsychiatric conditions. Innovations in neuroimaging technology have been driving connectomics, an emerging whole-brain network approach to neuroscience. Two rising techniques are functional connectivity profiling and structural connectivity profiling. Functional connectivity profiling explores the operational relationships between multiple regions of the brain with respect to time and stimuli. Structural connectivity profiling approximates physical connections between different brain regions through reconstruction of axonal fibers. Through these techniques, complex relationships can be described in various disease states, such as PD, as well as in response to therapy, such as DBS. These advances have expanded our understanding of human brain function and have provided a partial in vivo glimpse into the underlying brain circuits underpinning movement and other disorders. This comprehensive review will highlight the contemporary concepts in brain connectivity as applied to DBS, as well as introduce emerging considerations in movement disorders. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joshua K Wong
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | | | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Christopher W Hess
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
van der Velden L, Vinck MA, Wadman WJ. Resonance in the Mouse Ventral Tegmental Area Dopaminergic Network Induced by Regular and Poisson Distributed Optogenetic Stimulation in-vitro. Front Comput Neurosci 2020; 14:11. [PMID: 32132914 PMCID: PMC7040182 DOI: 10.3389/fncom.2020.00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 11/13/2022] Open
Abstract
Neurons in many brain regions exhibit spontaneous, intrinsic rhythmic firing activity. This rhythmic firing activity may determine the way in which these neurons respond to extrinsic synaptic inputs. We hypothesized that neurons should be most responsive to inputs at the frequency of the intrinsic oscillation frequency. We addressed this question in the ventral tegmental area (VTA), a dopaminergic nucleus in the midbrain. VTA neurons have a unique propensity to exhibit spontaneous intrinsic rhythmic activity in the 1-5 Hz frequency range, which persists in the in-vitro brain slice, and form a network of weakly coupled oscillators. Here, we combine in-vitro simultaneous recording of action potentials from a 60 channel multi-electrode-array with cell-type-specific optogenetic stimulation of the VTA dopamine neurons. We investigated how VTA neurons respond to wide-band stochastic (Poisson input) as well as regular laser pulses. Strong synchrony was induced between the laser input and the spike timing of the neurons, both for regular pulse trains and Poisson pulse trains. For rhythmically pulsed input, the neurons demonstrated resonant behavior with the strongest phase locking at their intrinsic oscillation frequency, but also at half and double the intrinsic oscillation frequency. Stochastic Poisson pulse stimulation provided a more effective stimulation of the entire population, yet we observed resonance at lower frequencies (approximately half the oscillation frequency) than the neurons' intrinsic oscillation frequency. The non-linear filter characteristics of dopamine neurons could allow the VTA to predict precisely timed future rewards based on past sensory inputs, a crucial component of reward prediction error signaling. In addition, these filter characteristics could contribute to a pacemaker role for the VTA in synchronizing activity with other regions like the prefrontal cortex and the hippocampus.
Collapse
Affiliation(s)
- Luuk van der Velden
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Martin A Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation With Max Planck Society, Frankfurt am Main, Germany
| | - Wytse J Wadman
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Akram H, Zrinzo L. Cluster Headache: Deep Brain Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans. Brain Struct Funct 2019; 225:551-565. [DOI: 10.1007/s00429-019-02012-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
|
38
|
Moisset X, Lanteri-Minet M, Fontaine D. Neurostimulation methods in the treatment of chronic pain. J Neural Transm (Vienna) 2019; 127:673-686. [PMID: 31637517 DOI: 10.1007/s00702-019-02092-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The goal of this narrative review was to give an up-to-date overview of the peripheral and central neurostimulation methods that can be used to treat chronic pain. Special focus has been given to three pain conditions: neuropathic pain, nociplastic pain and primary headaches. Both non-invasive and invasive techniques are briefly presented together with their pain relief potentials. For non-invasive stimulation techniques, data concerning transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), remote electrical neuromodulation (REN) and vagus nerve stimulation (VNS) are provided. Concerning invasive stimulation techniques, occipital nerve stimulation (ONS), vagus nerve stimulation (VNS), epidural motor cortex stimulation (EMCS), spinal cord stimulation (SCS) and deep brain stimulation (DBS) are presented. The action mode of all these techniques is only partly understood but can be very different from one technique to the other. Patients' selection is still a challenge. Recent consensus-based guidelines for clinical practice are presented when available. The development of closed-loop devices could be of interest in the future, although the clinical benefit over open loop is not proven yet.
Collapse
Affiliation(s)
- X Moisset
- Service de Neurologie, Université Clermont-Auvergne, INSERM, Neuro-Dol, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| | - M Lanteri-Minet
- Pain Department, CHU Nice, FHU InovPain Côte Azur University, Nice, France
- Université Clermont-Auvergne, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte Azur University, CHU de Nice, FHU InovPain, Nice, France
| |
Collapse
|
39
|
|
40
|
Burchiel KJ, Raslan AM. Contemporary concepts of pain surgery. J Neurosurg 2019; 130:1039-1049. [PMID: 30933905 DOI: 10.3171/2019.1.jns181620] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 11/06/2022]
Abstract
Pain surgery is one of the historic foundations of neurological surgery. The authors present a review of contemporary concepts in surgical pain management, with reference to past successes and failures, what has been learned as a subspecialty over the past 50 years, as well as a vision for current and future practice. This subspecialty confronts problems of cancer pain, nociceptive pain, and neuropathic pain. For noncancer pain, ablative procedures such as dorsal root entry zone lesions and rhizolysis for trigeminal neuralgia (TN) should continue to be practiced. Other procedures, such as medial thalamotomy, have not been proven effective and require continued study. Dorsal rhizotomy, dorsal root ganglionectomy, and neurotomy should probably be abandoned. For cancer pain, cordotomy is an important and underutilized method for pain control. Intrathecal opiate administration via an implantable system remains an important option for cancer pain management. While there are encouraging results in small case series, cingulotomy, hypophysectomy, and mesencephalotomy deserve further detailed analysis. Electrical neuromodulation is a rapidly changing discipline, and new methods such as high-frequency spinal cord stimulation (SCS), burst SCS, and dorsal root ganglion stimulation may or may not prove to be more effective than conventional SCS. Despite a history of failure, deep brain stimulation for pain may yet prove to be an effective therapy for specific pain conditions. Peripheral nerve stimulation for conditions such as occipital neuralgia and trigeminal neuropathic pain remains an option, although the quality of outcomes data is a challenge to these applications. Based on the evidence, motor cortex stimulation should be abandoned. TN is a mainstay of the surgical treatment of pain, particularly as new evidence and insights into TN emerge. Pain surgery will continue to build on this heritage, and restorative procedures will likely find a role in the armamentarium. The challenge for the future will be to acquire higher-level evidence to support the practice of surgical pain management.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Cluster headache stands among the worst debilitating pain conditions. Available treatments for cluster headache have often disabling side effects, are not tolerated, or are ineffective. The management of drug-refractory chronic forms is challenging. New treatments are warranted and reported here. RECENT FINDINGS In cluster headache acute treatment, delivery systems like Demand Valve Oxygen or nonrebreather-type masks could enhance the effectiveness of inhaled oxygen therapy. Noninvasive vagus nerve stimulation relieves cluster headache pain at short-term in episodic patients. Sphenopalatine ganglion stimulation combines acute and preventive properties in subsets of patients and is of interest in selected refractory chronic forms. In cluster headache prevention, 'hypothalamic' deep brain stimulation is being refined using slightly different stereotactic coordinates or lower risk methods like endoventricular stimulation. Anti-CGRP monoclonal antibodies provide interesting results in episodic cluster headache, have a good safety profile, but do not appear effective in chronic cluster headache. SUMMARY These novel approaches provide additional alternatives to conventional cluster headache management, but results obtained in chronic forms are often disappointing. Research on cluster headache is often hampered by the lack of awareness in the medical world and by the relatively low prevalence of cluster headache compared with migraine. However, common features shared by these two primary headaches could help developing disease-specific therapies.
Collapse
|
42
|
Cappon D, Ryterska A, Lagrata S, Miller S, Akram H, Hyam J, Zrinzo L, Matharu M, Jahanshahi M. Ventral tegmental area deep brain stimulation for chronic cluster headache: Effects on cognition, mood, pain report behaviour and quality of life. Cephalalgia 2019; 39:1099-1110. [DOI: 10.1177/0333102419839957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Deep brain stimulation in the ventral tegmental area (VTA-DBS) has provided remarkable therapeutic benefits in decreasing headache frequency and severity in patients with medically refractory chronic cluster headache (CH). However, to date the effects of VTA-DBS on cognition, mood and quality of life have not been examined in detail. Methods The aim of the present study was to do so in a case series of 18 consecutive patients with cluster headache who underwent implantation of deep brain stimulation electrodes in the ventral tegmental area. The patients were evaluated preoperatively and after a mean of 14 months of VTA-DBS on tests of global cognition (Mini Mental State Examination), intelligence (Wechsler Abbreviated Scale of Intelligence), verbal memory (California Verbal Learning Test-II), executive function (Delis–Kaplan Executive Function System), and attention (Paced Auditory Serial Addition Test). Depression (Beck Depression Inventory and Hospital Anxiety and Depression Rating Scale-D), anxiety (Hospital Anxiety and Depression Rating Scale-A), apathy (Starkstein Apathy Scale), and hopelessness (Beck Hopelessness Scale) were also assessed. Subjective pain experience (McGill Pain Questionnaire), behaviour (Pain Behaviour Checklist) and quality of life (Short Form-36) were also evaluated at the same time points. Results VTA-DBS resulted in significant improvement of headache frequency (from a mean of five to two attacks daily, p < .001) and severity (from mean Verbal Rating Scale [VRS] of 10 to 7, p < .001) which was associated with significant reduction of anxiety (from mean HADS-A of 11.94 to 8.00, p < .001) and help-seeking behaviours (from mean PBC of 4.00 to 2.61, p < .001). VTA-DBS did not produce any significant change to any tests of cognitive function and any other outcome measures (BDI, HADS-D, SAS, BHS, McGill Pain Questionnaire, Short Form-36). Conclusion We confirm the efficacy of VTA-DBS in the treatment of medically refractory chronic cluster headache. The reduction of headache frequency and severity was associated with a significant reduction of anxiety. Furthermore, the result suggests that VTA-DBS for chronic cluster headache improves pain-related help-seeking behaviours and does not produce any change in cognition.
Collapse
Affiliation(s)
- Davide Cappon
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Agata Ryterska
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Susie Lagrata
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Sarah Miller
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jonatham Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Manjit Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
43
|
Cluster headache: crosspoint between otologists and neurologists—treatment of the sphenopalatine ganglion and systematic review. Neurol Sci 2019; 40:137-146. [PMID: 30877613 DOI: 10.1007/s10072-019-03796-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Buture A, Boland JW, Dikomitis L, Ahmed F. Update on the pathophysiology of cluster headache: imaging and neuropeptide studies. J Pain Res 2019; 12:269-281. [PMID: 30655693 PMCID: PMC6324919 DOI: 10.2147/jpr.s175312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Cluster headache (CH) is the most severe primary headache condition. Its pathophysiology is multifaceted and incompletely understood. This review brings together the latest neuroimaging and neuropeptide evidence on the pathophysiology of CH. METHODS A review of the literature was conducted by searching PubMed and Web of Science. The search was conducted using the following keywords: imaging studies, voxel-based morphometry, diffusion-tensor imaging, diffusion magnetic resonance imaging, tractography, connectivity, cerebral networks, neuromodulation, central modulation, deep brain stimulation, orexin-A, orexin-B, tract-based spatial statistics, single-photon emission computer tomography studies, positron-emission tomography, functional magnetic resonance imaging, magnetic resonance spectroscopy, trigeminovascular system, neuropeptides, calcitonin gene-related peptide, neurokinin A, substance P, nitric oxide synthase, pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide, neuropeptide Y, acetylcholine, noradrenaline, and ATP. "Cluster headache" was combined with each keyword for more relevant results. All irrelevant and duplicated records were excluded. Search dates were from October 1976 to May 2018. RESULTS Neuroimaging studies support the role of the hypothalamus in CH, as well as other brain areas involved in the pain matrix. Activation of the trigeminovascular system and the release of neuropeptides play an important role in CH pathophysiology. Among neuropeptides, calcitonin gene-related peptide, vasoactive intestinal peptide, and pituitary adenylate cyclase-activating peptide have been reported to be reliable biomarkers for CH attacks, though not specific for CH. Several other neuropeptides are involved in trigeminovascular activation, but the current evidence does not qualify them as reliable biomarkers in CH. CONCLUSION CH has a complex pathophysiology and the pain mechanism is not completely understood. Recent neuroimaging studies have provided insight into the functional and structural network bases of CH pathophysiology. Although there has been important progress in neuropeptide studies, a specific biomarker for CH is yet to be found.
Collapse
Affiliation(s)
- Alina Buture
- Department of Neurology, Hull Royal Infirmary, Hull, UK,
- Hull York Medical School, University of Hull, Hull, UK,
| | | | - Lisa Dikomitis
- School of Medicine and Institute of Primary Care and Health Sciences, Keele University, Newcastle, UK
| | - Fayyaz Ahmed
- Department of Neurology, Hull Royal Infirmary, Hull, UK,
- Hull York Medical School, University of Hull, Hull, UK,
| |
Collapse
|
45
|
Vukovic Cvetkovic V, Jensen RH. Neurostimulation for the treatment of chronic migraine and cluster headache. Acta Neurol Scand 2019; 139:4-17. [PMID: 30291633 DOI: 10.1111/ane.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Small subsets of patients who fail to respond to pharmacological treatment may benefit from alternative treatment methods. In the last decade, neurostimulation is being explored as a potential treatment option for the patients with chronic, severely disabling refractory primary headaches. To alleviate pain, specific nerves and brain areas have been stimulated, and various methods have been explored: deep brain stimulation, occipital nerve stimulation, and sphenopalatine ganglion stimulation are among the more invasive ones, whereas transcranial magnetic stimulation and supraorbital nerve stimulation are noninvasive. Vagal nerve stimulation can be invasive or noninvasive, though this review included only data for noninvasive VNS. Most of these methods have been tested in small open-label patient series; recently, more data from randomized, controlled, and blinded studies are available. Although neurostimulation treatments have demonstrated good efficacy in many studies, it still has not been established as a standard treatment in refractory patients. This review analyzes the available evidence regarding efficacy and safety of different neurostimulation modalities for the treatment of chronic migraine and cluster headache.
Collapse
|
46
|
Vyas DB, Ho AL, Dadey DY, Pendharkar AV, Sussman ES, Cowan R, Halpern CH. Deep Brain Stimulation for Chronic Cluster Headache: A Review. Neuromodulation 2018; 22:388-397. [DOI: 10.1111/ner.12869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Daivik B. Vyas
- Department of Neurosurgery Stanford University Stanford CA USA
| | - Allen L. Ho
- Department of Neurosurgery Stanford University Stanford CA USA
| | - David Y. Dadey
- Department of Neurosurgery Stanford University Stanford CA USA
| | | | - Eric S. Sussman
- Department of Neurosurgery Stanford University Stanford CA USA
| | - Robert Cowan
- Department of Neurology Stanford University Stanford CA USA
| | | |
Collapse
|
47
|
|
48
|
Akram H, Matharu M, Zrinzo L. Author response: Optimal deep brain stimulation site and target connectivity for chronic cluster headache. Neurology 2018; 91:194. [PMID: 30037920 DOI: 10.1212/wnl.0000000000005851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Gupta VK. Reader response: Optimal deep brain stimulation site and target connectivity for chronic cluster headache. Neurology 2018; 91:193. [PMID: 30037919 DOI: 10.1212/wnl.0000000000005849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Huotarinen A, Kallela M, Artto V, Laakso A, Kivisaari R. Deep brain stimulation of posterior hypothalamic area for cluster headache. CEPHALALGIA REPORTS 2018. [DOI: 10.1177/2515816318771334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Deep brain stimulation of the posterior hypothalamic area is one of the neuromodulation treatments used for chronic cluster headache, but the number of published patients remains low. Aim: The aim of this article was to present the retrospective results of 12 consecutive chronic cluster headache patients treated with deep brain stimulation at Helsinki University Hospital. Materials and Methods: All chronic cluster headache patients treated with deep brain stimulation between 2004 and 2012 were included in the study. Patients were interviewed and their hospital files analyzed. Treatment effect was classified as good, partial, or no effect. Results: Of the 12 patients, four had a good treatment effect, five had partial, and three had no effect of deep brain stimulation. In contrast to previous studies, our patients reported an almost immediate benefit after the onset of stimulation. Conclusions: Deep brain stimulation provides clinically meaningful benefit to a subgroup of chronic cluster headache patients.
Collapse
Affiliation(s)
- Antti Huotarinen
- Division of Neurosurgery, Department of Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mikko Kallela
- Division of Neurology, Department of Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Artto
- Division of Neurology, Department of Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aki Laakso
- Division of Neurosurgery, Department of Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riku Kivisaari
- Division of Neurosurgery, Department of Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|