1
|
Farag M, Tabrizi SJ, Wild EJ. Huntington's disease clinical trials update: March 2025. J Huntingtons Dis 2025:18796397251337000. [PMID: 40302443 DOI: 10.1177/18796397251337000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
In this edition of the Huntington's Disease Clinical Trials Update, we expand on the ongoing phase I clinical trial of ALN-HTT02 from Alynlam Pharmaceuticals. We also report on the SAGE-718 (also known as dalzanemdor) program from Sage Therapeutics, with results of the phase II DIMENSION study and the recent termination of the open-label phase III PURVIEW study. Additionally, we discuss recent developments in the regulatory pathway for AMT-130, following discussions between uniQure and the U.S. Food and Drug Administration regarding key aspects of accelerated approval. Finally, we provide a comprehensive listing of all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Mena Farag
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
2
|
Puig-Davi A, Franch-Marti C, Ruiz-Barrio I, Sampedro F, Perez-Perez J, Matias-Guiu JA, Cuetos F, Olmedo-Saura G, Perez-Carasol L, Horta-Barba A, Aracil-Bolaños I, Pagonabarraga J, Kulisevsky J, Martinez-Horta S. Early Language Impairment as an Integral Part of the Cognitive Phenotype in Huntington's Disease. Ann Clin Transl Neurol 2025. [PMID: 40244831 DOI: 10.1002/acn3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Huntington's disease (HD) speech/language disorders have typically been attributed to motor and executive impairment due to striatal dysfunction. In-depth study of linguistic skills and the role of extrastriatal structures in HD is scarce. This study aimed to explore the profile of language compromise in HD and identify the structural neuroimaging correlates. METHODS Language and structural correlates were assessed using the Mini Linguistic State Examination (MLSE) in 81 participants (20 HD-ISS 0-1, 40 HD-ISS 2-3 and 21 controls). Clinical and global cognition measures were also obtained. Imaging data included computed gray matter volume (GMV) and cortical thickness (CTh) values extracted from a general linear model with the MLSE. Correlation analyses were performed with the language components of the MLSE. Multivariate regression analyses were used to explore the predictive ability of the language components on GMV and CTh loss. RESULTS HD individuals showed impaired MLSE performance (84.5 ± 12.8), particularly in syntax, motor speech, and to a lesser extent, semantics and phonology. Significant associations were found between linguistic performance and the structural integrity of nodes within the temporo-parietal, fronto-parietal, and fronto-striatal lexical-semantic and syntactic networks. Correlation analyses linked motor speech and syntax with predominantly left fronto-striatal GMV and CTh clusters, while semantics had a bilateral fronto-parietal topography. Multivariate regression analyses showed language domains as independent contributing factors of GMV and CTh loss in classical language-related regions. INTERPRETATION Language impairment is an integral part of the HD cognitive phenotype, with severity associated with structural disintegration in extensive cortico-subcortical territories involved in language production and processing.
Collapse
Affiliation(s)
- Arnau Puig-Davi
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Carla Franch-Marti
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
| | - Iñigo Ruiz-Barrio
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesus Perez-Perez
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clinico San Carlos, San Carlos Institute for Health Research (IdiSSC). Universidad Complutense, Madrid, Spain
| | | | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Laura Perez-Carasol
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jaime Kulisevsky
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Saul Martinez-Horta
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- European Huntington's Disease Network, Ulm, Germany
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
3
|
Mehrnoosh F, Rezaei D, Pakmehr SA, Nataj PG, Sattar M, Shadi M, Ali-Khiavi P, Zare F, Hjazi A, Al-Aouadi RFA, Sapayev V, Zargari F, Alkhathami AG, Ahmadzadeh R, Khedmatgozar M, Hamzehzadeh S. The role of Panax ginseng in neurodegenerative disorders: mechanisms, benefits, and future directions. Metab Brain Dis 2025; 40:183. [PMID: 40232582 DOI: 10.1007/s11011-025-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Huntington's disease (HD) represent a growing global health challenge, especially with aging populations. Characterized by progressive neuronal loss, these diseases lead to cognitive, motor, and behavioral impairments, significantly impacting patients' quality of life. Current therapies largely address symptoms without halting disease progression, underscoring the need for innovative, disease-modifying treatments. Ginseng, a traditional herbal medicine with well-known adaptogenic and neuroprotective properties, has gained attention as a potential therapeutic agent for neurodegeneration. Rich in bioactive compounds called ginsenosides, ginseng exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects, making it a promising candidate for addressing the complex pathology of neurodegenerative diseases. Recent studies demonstrate that ginsenosides modulate disease-related processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, and inflammation. In AD models, ginsenosides have been shown to reduce amyloid-beta accumulation and tau hyperphosphorylation, while in PD, they help protect dopaminergic neurons and mitigate motor symptoms. Ginseng's effects in ALS, MS, and HD models include improving motor function, extending neuronal survival, and reducing cellular toxicity. This review provides a comprehensive overview of the neuroprotective mechanisms of ginseng, emphasizing its therapeutic potential across various neurodegenerative diseases and discussing future research directions for its integration into clinical practice.
Collapse
Affiliation(s)
- Faranak Mehrnoosh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | | | | | | | - Mustafa Sattar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Melina Shadi
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshad Zare
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Valisher Sapayev
- General Professional Science Department, Mamun University, Khiva, Uzbekistan
| | - Faranak Zargari
- Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Roya Ahmadzadeh
- Medicine Faculty, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | |
Collapse
|
4
|
Zhang S, Cheng Y, Zhang L, Ma Y, Fu J, Yang T, Xia J, Li C, Burgunder JM, Shang H. Education Level and Huntington's Disease Progression: A Retrospective Cohort Analysis in Western China. Mov Disord Clin Pract 2025. [PMID: 40105026 DOI: 10.1002/mdc3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Identifying the effect of modifiable socio-environmental factors on Huntington's disease (HD) symptoms onset and progression is of great value. The role of educational attainment in HD clinical characteristics has not been elucidated. OBJECTIVES To clarify the effect of education attainment on the age of motor symptoms onset and clinical progression of HD patients from Western China. METHODS A total of 244 adult-onset Chinese HD patients were included in the analysis. Linear regression, Kaplan-Meier analysis, and Cox regression analysis were conducted to assess the effect of education on the disease progression in HD. RESULTS Higher education level was significantly associated with slower decline in cognitive performance, as indicated by the Symbol Digit Modality Test (β = 0.339 [95% CI, 0.047, 0.632], p = 0.026), while it exhibited no association with the progression of other symptoms. CONCLUSIONS The present findings suggest that education attainment is associated with a milder cognitive decline in Chinese HD patients.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanzheng Ma
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Fu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jieqiang Xia
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jean-Marc Burgunder
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Swiss Huntington's Disease Centre, Siloah, and Department of Neurology, University of Bern, Bern, Switzerland
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Geva M, Goldberg YP, Schuring H, Tan AM, Long JD, Hayden MR. Antidopaminergic Medications and Clinical Changes in Measures of Huntington's Disease: A Causal Analysis. Mov Disord 2025. [PMID: 40099482 DOI: 10.1002/mds.30164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Antidopaminergic medications (ADM) are often used for symptom management of Huntington's disease (HD). Evidence from past research suggests that ADMs are associated with worse clinical outcomes in HD, but their impact on various domains remains underexplored. OBJECTIVE We used causal inference analysis to understand the impact of ADM use on measures of clinical progression in HD across multiple domains over 2 years. METHODS We used the Enroll-HD database with a new-user design, which compared a cohort that initiated ADM use after the first visit with an unexposed cohort that remained off ADMs. To control for 27 covariates, we used a doubly robust targeted maximum likelihood estimation and conducted two analyses. First, we analyzed ADM treatment 2 years post-baseline and separately for 12 outcome measures. Second, we examined the association of ADM dose with measures of clinical outcomes. RESULTS The ADM-exposed group exhibited faster change in measures of clinical outcome compared with the off-ADM group, which was statistically reliable in cognitive and functional outcome measures, and the composite Unified Huntington's Disease Rating Scale (cUHDRS). Motor domain analyses showed faster change in bradykinesia in the ADM-exposed group versus off-ADM but no difference in chorea or total motor score (TMS). Higher ADM doses also showed greater differences compared to the off-ADM group. CONCLUSIONS ADM use was associated with more rapid change in clinical measures, particularly in cognitive and functional domains. However, assumptions required to establish causation between ADM use and disease progression may not have been fully met, and further research is warranted. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michal Geva
- Prilenia Therapeutics B.V, Naarden, The Netherlands
| | | | | | - Andrew M Tan
- Prilenia Therapeutics B.V, Naarden, The Netherlands
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Michael R Hayden
- Prilenia Therapeutics B.V, Naarden, The Netherlands
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Farag M, Knights H, Scahill RI, McColgan P, Estevez-Fraga C. Neuroimaging Techniques in Huntington's Disease: A Critical Review. Mov Disord Clin Pract 2025. [PMID: 39976324 DOI: 10.1002/mdc3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by cognitive, neuropsychiatric and motor symptoms caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Imaging techniques are crucial for understanding HD pathophysiology and monitoring disease progression. OBJECTIVES This review is targeted at general neurologists and movement disorders specialists with an interest in HD and aims to bring complex imaging, including new experimental techniques, closer to the practicing clinician. METHODS We provide a summary of findings from conventional structural, diffusion and functional imaging in HD studies, together with an update on emerging novel techniques, including multiparametric mapping, multi-shell diffusion techniques, ultra-high field 7-Tesla MRI, positron emission tomography and magnetoencephalography. RESULTS Conventional imaging techniques have deepened our understanding of neuropathological progression in HD, from striatal atrophy to widespread cortical and white matter changes. The integration of novel imaging techniques reviewed has further improved our ability to interrogate, quantify and visualize disease-specific alterations with high precision. CONCLUSIONS Novel imaging techniques have promising roles to further our understanding of HD pathology and as imaging markers for clinical trials, disease staging and therapeutic monitoring. Additionally, the synergistic potential of combining imaging modalities with molecular and genetic data, along with wet biomarkers and clinical data, will help provide a complete and comprehensive view of HD pathology and progression.
Collapse
Affiliation(s)
- Mena Farag
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harry Knights
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rachael I Scahill
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter McColgan
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Roche Products Limited, Welwyn Garden City, United Kingdom
| |
Collapse
|
7
|
Moreu-Valls A, Puig-Davi A, Martinez-Horta S, Kulisevsky G, Sampedro F, Perez-Perez J, Horta-Barba A, Olmedo-Saura G, Pagonabarraga J, Kulisevsky J. A randomized clinical trial to evaluate the efficacy of cognitive rehabilitation and music therapy in mild cognitive impairment in Huntington's disease. J Neurol 2025; 272:202. [PMID: 39934473 DOI: 10.1007/s00415-025-12927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Cognitive impairment is a core feature of Huntington's disease (HD), yet no disease-modifying or symptomatic interventions have demonstrated efficacy in addressing these deficits. Non-pharmacological interventions, particularly cognitive training (CT), are promising options for maintaining neural plasticity, enhancing cognition, and improving emotional well-being. METHODS This 24-week, single-center, randomized, single-blind study evaluated the safety and efficacy of two cognitive rehabilitation strategies in early-to-middle-stage HD patients. Participants were randomized into a computerized cognitive training (CT; n = 13) intervention or a music therapy (MT; n = 16) intervention. A standard of care (SoC; n = 15) group with no active intervention was also involved. Weekly 45-min sessions were conducted. Baseline and endpoint assessments included measures of global cognition, functional, motor, and neuropsychiatric assessments, along with structural and functional neuroimaging. RESULTS Both CT and MT groups demonstrated significant improvements in primary and secondary cognitive endpoints, including global cognition an composite measures of disease severity. Regression analysis identified longitudinal cognitive score changes as independent predictors of the rate of atrophy in the caudate, putamen, and inferior frontal gyrus. Functional connectivity analysis showed distinct intervention-related effects: CT group exhibited increased connectivity between the central executive and sensorymotor networks, while MT group reduced aberrant connectivity between the central executive and the default-mode network. CONCLUSION This is the first randomized-controlled trial to evaluate two cognitive rehabilitation strategies in HD using multimodal neuroimaging. Both interventions were effective in improving cognition and modulating structural and functional brain changes in regions critical to HD. Trial Registration ClinicalTrials.gov (ID: NCT05769972).
Collapse
Affiliation(s)
- Andrea Moreu-Valls
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Institute of Neuroscience, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gabriel Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesus Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
8
|
Aqel S, Ahmad J, Saleh I, Fathima A, Al Thani AA, Mohamed WMY, Shaito AA. Advances in Huntington's Disease Biomarkers: A 10-Year Bibliometric Analysis and a Comprehensive Review. BIOLOGY 2025; 14:129. [PMID: 40001897 PMCID: PMC11852324 DOI: 10.3390/biology14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Neurodegenerative disorders (NDs) cause progressive neuronal loss and are a significant public health concern, with NDs projected to become the second leading global cause of death within two decades. Huntington's disease (HD) is a rare, progressive ND caused by an autosomal-dominant mutation in the huntingtin (HTT) gene, leading to severe neuronal loss in the brain and resulting in debilitating motor, cognitive, and psychiatric symptoms. Given the complex pathology of HD, biomarkers are essential for performing early diagnosis, monitoring disease progression, and evaluating treatment efficacy. However, the identification of consistent HD biomarkers is challenging due to the prolonged premanifest HD stage, HD's heterogeneous presentation, and its multiple underlying biological pathways. This study involves a 10-year bibliometric analysis of HD biomarker research, revealing key research trends and gaps. The study also features a comprehensive literature review of emerging HD biomarkers, concluding the need for better stratification of HD patients and well-designed longitudinal studies to validate HD biomarkers. Promising candidate wet HD biomarkers- including neurofilament light chain protein (NfL), microRNAs, the mutant HTT protein, and specific metabolic and inflammatory markers- are discussed, with emphasis on their potential utility in the premanifest HD stage. Additionally, biomarkers reflecting brain structural deficits and motor or behavioral impairments, such as neurophysiological (e.g., motor tapping, speech, EEG, and event-related potentials) and imaging (e.g., MRI, PET, and diffusion tensor imaging) biomarkers, are evaluated. The findings underscore that the discovery and validation of reliable HD biomarkers urgently require improved patient stratification and well-designed longitudinal studies. Reliable biomarkers, particularly in the premanifest HD stage, are crucial for optimizing HD clinical management strategies, enabling personalized treatment approaches, and advancing clinical trials of HD-modifying therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Jamil Ahmad
- Medical Education, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Aseela Fathima
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Al Thani
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 50728, Malaysia;
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdullah A. Shaito
- Biomedical Research Center (BRC), QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar; (A.F.); (A.A.A.T.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
- College of Medicine, QU Health Sector, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Tan AM, Geva M, Goldberg YP, Schuring H, Sanson BJ, Rosser A, Raymond L, Reilmann R, Hayden MR, Anderson K. Antidopaminergic medications in Huntington's disease. J Huntingtons Dis 2025:18796397241304312. [PMID: 39973394 DOI: 10.1177/18796397241304312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder marked by motor, cognitive, and behavioral impairments. Antidopaminergic medications (ADMs), such as VMAT2 inhibitors and antipsychotics, are commonly used to manage HD motor disturbances and behavioral disorders. For patients and caregivers, ADMs are an important tool for managing symptoms that negatively affect daily life. However, the impact of ADM use in HD is not firmly understood due to a lack of robust, systematic studies that assessed their overall effect on HD disease. A mounting body of evidence suggests these medications may be associated with worse clinical measures of cognitive function and functional impairment. While regulatory guidelines highlight adverse effects like sedation, cognitive dysfunction, and extrapyramidal symptoms, it is unclear whether ADMs directly impact disease progression or if the side effects mimic or exacerbate measures of HD symptoms in clinical trials. Given ADM effects on the central nervous system and biological uncertainty within HD outcomes, clinical trial designs should recognize the impact of ADMs on key outcomes, as measured by acceptable scales including Total Functional Capacity, Stoop Word Reading, Symbol Digit Modality Test, and the composite Unified Huntington's Disease Rating Scale. The development of novel HD interventions requires consideration of concomitant ADM use that may influence measures of disease presentation. In this review, we highlight the role of ADMs in HD management, their symptomatic benefits and potential risks, especially with high dose associated side effects, interactions with CYP2D6 inhibitors, and the individualized need for careful dose monitoring for clinical care and trial design.
Collapse
Affiliation(s)
- Andrew M Tan
- Prilenia Therapeutics B.V., Naarden, The Netherlands
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Michal Geva
- Prilenia Therapeutics B.V., Naarden, The Netherlands
| | | | - Henk Schuring
- Prilenia Therapeutics B.V., Naarden, The Netherlands
| | | | - Anne Rosser
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- School of Biosciences Life Sciences Building, Cardiff University Brain Repair Group, Cardiff, UK
- Advanced Neurotherapeutics Centre, Neuroscience and Mental Health Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lynn Raymond
- Departments of Psychiatry and Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Ralf Reilmann
- Section for Neurodegenerative Diseases, Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Institute of Clinical Radiology, University of Münster, Germany
| | - Michael R Hayden
- Prilenia Therapeutics B.V., Naarden, The Netherlands
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Karen Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University, Washington, DC, USA
| |
Collapse
|
10
|
Dickson SP, Mallinckrodt CH, Rogula B, Powell LC, Potashman MH, Coric V, L'Italien GJ, Hendrix SB. Development of a General Composite Scale (GENCOMS) for Progressive Neurodegenerative Diseases and Implications for the Assessment of Disease-Modifying Therapies. Neurol Ther 2024; 13:1627-1639. [PMID: 39287752 PMCID: PMC11541966 DOI: 10.1007/s40120-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION The reliable assessment of treatment outcomes for disease-modifying therapies (DMT) in neurodegenerative disease is challenging. The objective of this paper is to describe a generalized framework for developing composite scales that can be applied in diverse, degenerative conditions, termed "GENCOMS." Composite scales optimize the sensitivity for detecting clinically meaningful effects that slow disease progression. METHODS The GENCOMS method relies on robust natural history data and/or placebo arm data from DMT trials. Validated scales that are core to the disease process have been identified, and item level data obtained to standardize the response outcomes from 0 (best possible score) to 1 (worst possible score). A partial least squares regression analysis was conducted with temporal change as the dependent variable and change scores in standardized items as the explanatory variables. The derived model coefficients constitute a weighted sum of items that most effectively measure disease progression. RESULTS The resultant composite scale was optimized to detect disease progression and can be examined in a range of slow or fast progressing populations. The scale can be used in studies with comparable patient populations as an endpoint optimized to measure disease progression and therefore ideally suited to assess treatment effects in DMTs. CONCLUSION The methodology presented here provides a generalizable framework for developing composite scales in the assessment of neurodegenerative disease progression and evaluation of DMT effects. By objectively selecting and weighting items from previously validated measures based solely on their sensitivity to disease progression, this methodology allows for the creation of a more responsive measurement of clinical decline. This heightened sensitivity to clinical decline can be utilized to detect modest yet meaningful treatment effects in the early stages of neurogenerative diseases, when it is optimal to begin a DMT.
Collapse
Affiliation(s)
| | | | - Basia Rogula
- Broadstreet Health Economics and Outcomes Research, 201-343 Railway Street, Vancouver, BC, Canada
| | - Lauren C Powell
- Broadstreet Health Economics and Outcomes Research, 201-343 Railway Street, Vancouver, BC, Canada
| | | | - Vladimir Coric
- Biohaven Pharmaceuticals, Inc 215 Church St, New Haven, CT, USA
| | | | | |
Collapse
|
11
|
Herrero‐Lorenzo M, Pérez‐Pérez J, Escaramís G, Martínez‐Horta S, Pérez‐González R, Rivas‐Asensio E, Kulisevsky J, Gámez‐Valero A, Martí E. Small RNAs in plasma extracellular vesicles define biomarkers of premanifest changes in Huntington's disease. J Extracell Vesicles 2024; 13:e12522. [PMID: 39377487 PMCID: PMC11633361 DOI: 10.1002/jev2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Despite the advances in the understanding of Huntington's disease (HD), there is a need for molecular biomarkers to categorize mutation carriers during the preclinical stage of the disease preceding functional decline. Small RNAs (sRNAs) are a promising source of biomarkers since their expression levels are highly sensitive to pathobiological processes. Here, using an optimized method for plasma extracellular vesicles (EVs) purification and an exhaustive analysis pipeline of sRNA sequencing data, we show that EV-sRNAs are downregulated early in mutation carriers and that this deregulation is associated with premanifest cognitive performance. Seven candidate sRNAs (tRF-Glu-CTC, tRF-Gly-GCC, miR-451a, miR-21-5p, miR-26a-5p, miR-27a-3p and let7a-5p) were validated in additional subjects, showing a significant diagnostic accuracy at premanifest stages. Of these, miR-21-5p was significantly decreased over time in a longitudinal study; and miR-21-5p and miR-26a-5p levels correlated with cognitive changes in the premanifest cohort. In summary, the present results suggest that deregulated plasma EV-sRNAs define an early biosignature in mutation carriers with specific species highlighting the progression and cognitive changes occurring at the premanifest stage.
Collapse
Affiliation(s)
- Marina Herrero‐Lorenzo
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
| | - Jesús Pérez‐Pérez
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Georgia Escaramís
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Saül Martínez‐Horta
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Rocío Pérez‐González
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL) and Neuroscience InstituteAlicanteSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jaime Kulisevsky
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ana Gámez‐Valero
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Eulàlia Martí
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
- August Pi i Sunyer Biomedical research Institute (IDIBAPS), BarcelonaCatalunyaSpain
| |
Collapse
|
12
|
L'Italien G, Popoff E, Rogula B, Powell L, Potashman M, Dickson S, O'Keefe P, Beiner M, Coric V, Perlman S, Schmahmann JD, Hendrix S. Development and Validation of SCACOMS, a Composite Scale for Assessing Disease Progression and Treatment Effects in Spinocerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2028-2041. [PMID: 38710966 PMCID: PMC11489241 DOI: 10.1007/s12311-024-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Spinocerebellar ataxias (SCA) are rare inherited neurodegenerative disorders characterized by a progressive impairment of gait, balance, limb coordination, and speech. There is currently no composite scale that includes multiple aspects of the SCA experience to assess disease progression and treatment effects. Applying the method of partial least squares (PLS) regression, we developed the Spinocerebellar Ataxia Composite Scale (SCACOMS) from two SCA natural history datasets (NCT01060371, NCT02440763). PLS regression selected items based on their ability to detect clinical decline, with optimized weights based on the item's degree of progression. Following model validation, SCACOMS was leveraged to examine disease progression and treatment effects in a 48-week SCA clinical trial cohort (NCT03701399). Items from the Clinical Global Impression-Global Improvement Scale (CGI-I), the Friedreich Ataxia Rating Scale (FARS) - functional stage, and the Modified Functional Scale for the Assessment and Rating of Ataxia (f-SARA) were objectively selected with weightings based on their sensitivity to clinical decline. The resulting SCACOMS exhibited improved sensitivity to disease progression and greater treatment effects (compared to the original scales from which they were derived) in a 48-week clinical trial of a novel therapeutic agent. The trial analyses also provided a SCACOMS-derived estimate of the temporal delay in SCA disease progression. SCACOMS is a useful composite measure, effectively capturing disease progression and highlighting treatment effects in patients with SCA. SCACOMS will be a powerful tool in future studies given its sensitivity to clinical decline and ability to detect a meaningful clinical impact of disease-modifying treatments.
Collapse
Affiliation(s)
| | - Evan Popoff
- Broadstreet Health Economics and Outcomes Research, 201-343 Railway Street, Vancouver, BC, Canada
| | - Basia Rogula
- Broadstreet Health Economics and Outcomes Research, 201-343 Railway Street, Vancouver, BC, Canada
| | - Lauren Powell
- Broadstreet Health Economics and Outcomes Research, 201-343 Railway Street, Vancouver, BC, Canada
| | | | - Sam Dickson
- Pentara Corp, 2261 East 3300 South, Millcreek, UT, USA
| | | | - Melissa Beiner
- Biohaven Pharmaceuticals, Inc 215 Church St, New Haven, CT, USA
| | - Vlad Coric
- Biohaven Pharmaceuticals, Inc 215 Church St, New Haven, CT, USA
| | - Susan Perlman
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
13
|
Hendel RK, Hellem MNN, Larsen IU, Vinther-Jensen T, Hjermind LE, Nielsen JE, Vogel A. Impairments of social cognition significantly predict the progression of functional decline in Huntington's disease: A 6-year follow-up study. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:777-786. [PMID: 35549503 DOI: 10.1080/23279095.2022.2073824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study sought to investigate if there was a significant difference between the Huntington's Disease gene expansion carriers who were impaired on the cognitive domains, social cognition and executive functions. Also, it was investigated which of the cognitive domains could predict the decrease in total functional capacity over a 6-year follow-up period. Premanifest and motor-manifest Huntington's Disease gene expansion carriers (N = 98), were examined with a neurological and neuropsychological examination at Time 1 (year 2012-2013). Regression-based normative data was used to classify impairments on the two cognitive domains. Follow-up participants (N = 80) had their functional capacity reexamined at Time 2 (year 2018-2020), to examine which cognitive domain could predict the decrease in functional capacity over the 6-year follow-up. More than 50% of the participants were impaired on the domain of social cognition. These participants were significantly different from the participants who were impaired on executive functions. The motor function and impairments on social cognition significantly predicted the decline in functional capacity. The Emotion Hexagon test was the only significant social cognitive task, that predicted the decline in functional capacity. Social cognition includes unique and separate functions in Huntington's Disease, unaffected by executive functions. This study emphasizes the importance of regular assessment of social cognition in Huntington's Disease and the clinical relevance of impaired social cognitive function.
Collapse
Affiliation(s)
- Rebecca K Hendel
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Marie N N Hellem
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida U Larsen
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tua Vinther-Jensen
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lena E Hjermind
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jørgen E Nielsen
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Asmus Vogel
- Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Gil‐Salcedo A, Massart R, de Langavant LC, Bachoud‐Levi A. Modifiable factors associated with Huntington's disease progression in presymptomatic participants. Ann Clin Transl Neurol 2024; 11:1930-1941. [PMID: 38855890 PMCID: PMC11251488 DOI: 10.1002/acn3.52120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms. Our aim here was to identify factors that can be modified to slow disease progression even before the first symptoms appear. METHODS We included 2636 presymptomatic individuals (comparison with family controls) drawn from the prospective observational cohort Enroll-HD, with more than 35 CAG repeats and at least two assessments of disease progression measured with the composite Huntington's disease rating Scale (cUHDRS). The association between sociodemographic factors, health behaviors, health history, and cUHDRS trajectory was assessed with a mixed-effects random forest using partial dependence plots and Shapley additive explanation method. RESULTS Participants were followed by an average of 3.4 (SD = 1.97) years. We confirmed the negative impact of age and a high number of CAG repeats. We found that a high level of education, a body mass index (BMI) <23 kg/m2 before the age of 40 and >23 kg/m2 thereafter, alcohol consumption of <15 units per week, current coffee consumption and no smoking were linked to slow disease progression, as did no previous exposure to antidepressants or anxiolytic, no psychiatric history or comorbidities, and being female. Other comorbidities or marital status showed no major association with HD evolution. INTERPRETATION Reducing modifiable risk factors for HD is one way to support the presymptomatic population. A high level of education, low-to-moderate alcohol consumption, no smoking, and BMI control are likely to slow disease progression in this population.
Collapse
Affiliation(s)
- Andres Gil‐Salcedo
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
| | - Renaud Massart
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
| | - Laurent Cleret de Langavant
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
- APHP, Hôpital Henri Mondor, service de neurologie, centre national de référence maladie de HuntingtonCréteil94000France
| | - Anne‐Catherine Bachoud‐Levi
- Département d'Études Cognitives, École Normale SupérieurePSL UniversityParis75005France
- Faculté de MédecineUniversité Paris‐Est CréteilCréteil94000France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe NeuroPsychologie InterventionnelleCréteil94000France
- NeurATRIS, Mondor NodeCréteilFrance
- APHP, Hôpital Henri Mondor, service de neurologie, centre national de référence maladie de HuntingtonCréteil94000France
| |
Collapse
|
15
|
Chenain L, Riad R, Fraisse N, Jubin C, Morgado G, Youssov K, Lunven M, Bachoud-Levi AC. Graph methods to infer spatial disturbances: Application to Huntington's Disease's speech. Cortex 2024; 176:144-160. [PMID: 38795650 DOI: 10.1016/j.cortex.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE Huntington's Disease (HD) is an inherited neurodegenerative disease caused by the mutation of the Htt gene, impacting all aspects of living and functioning. Among cognitive disabilities, spatial capacities are impaired, but their monitoring remains scarce as limited by lengthy experts' assessments. Language offers an alternative medium to evaluate patients' performance in HD. Yet, its capacities to assess HD's spatial abilities are unknown. Here, we aimed to bring proof-of-concept that HD's spatial deficits can be assessed through speech. METHODS We developed the Spatial Description Model to graphically represent spatial relations described during the Cookie Theft Picture (CTP) task. We increased the sensitivity of our model by using only sentences with spatial terms, unlike previous studies in Alzheimer's disease. 78 carriers of the mutant Htt, including 56 manifest and 22 premanifest individuals, as well as 25 healthy controls were included from the BIOHD & (NCT01412125) & Repair-HD (NCT03119246) cohorts. The convergence and divergence of the model were validated using the SelfCog battery. RESULTS Our Spatial Description Model was the only one among the four assessed approaches, revealing that individuals with manifest HD expressed fewer spatial relations and engaged in less spatial exploration compared to healthy controls. Their graphs correlated with both visuospatial and language SelfCog performances, but not with motor, executive nor memory functions. CONCLUSIONS We provide the proof-of-concept using our Spatial Description Model that language can grasp HD patient's spatial disturbances. By adding spatial capabilities to the panel of functions tested by the language, it paves the way for eventual remote clinical application.
Collapse
Affiliation(s)
- Lucie Chenain
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; ALMAnaCH, INRIA, 75012 Paris, France; Learning Planet Institute, Université de Paris, 75004 Paris, France
| | - Rachid Riad
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France
| | - Nicolas Fraisse
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
| | - Cécilia Jubin
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
| | - Graça Morgado
- Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Katia Youssov
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France; Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Marine Lunven
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France.
| | - Anne-Catherine Bachoud-Levi
- Département d'Etudes Cognitives, École normale supérieure, PSL University, NeuroPsychologie Interventionnelle, 75005 Paris, France; Univ Paris Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Créteil, France; NeurATRIS Créteil, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France; Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
16
|
Lozano-Garcia M, Doheny EP, Mann E, Morgan-Jones P, Drew C, Busse-Morris M, Lowery MM. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2239-2249. [PMID: 38819972 DOI: 10.1109/tnsre.2024.3407887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In Huntington's disease (HD), wearable inertial sensors could capture subtle changes in motor function. However, disease-specific validation of methods is necessary. This study presents an algorithm for walking bout and gait event detection in HD using a leg-worn accelerometer, validated only in the clinic and deployed in free-living conditions. Seventeen HD participants wore shank- and thigh-worn tri-axial accelerometers, and a wrist-worn device during two-minute walk tests in the clinic, with video reference data for validation. Thirteen participants wore one of the thigh-worn tri-axial accelerometers (AP: ActivPAL4) and the wrist-worn device for 7 days under free-living conditions, with proprietary AP data used as reference. Gait events were detected from shank and thigh acceleration using the Teager-Kaiser energy operator combined with unsupervised clustering. Estimated step count (SC) and temporal gait parameters were compared with reference data. In the clinic, low mean absolute percentage errors were observed for stride (shank/thigh: 0.6/0.9%) and stance (shank/thigh: 3.3/7.1%) times, and SC (shank/thigh: 3.1%). Similar errors were observed for proprietary AP SC (3.2%), with higher errors observed for the wrist-worn device (10.9%). At home, excellent agreement was observed between the proposed algorithm and AP software for SC and time spent walking (ICC [Formula: see text]). The wrist-worn device overestimated SC by 34.2%. The presented algorithm additionally allowed stride and stance time estimation, whose variability correlated significantly with clinical motor scores. The results demonstrate a new method for accurate estimation of HD gait parameters in the clinic and free-living conditions, using a single accelerometer worn on either the thigh or shank.
Collapse
|
17
|
Parkin GM, Thomas EA, Corey-Bloom J. Mapping neurodegeneration across the Huntington's disease spectrum: a five-year longitudinal analysis of plasma neurofilament light. EBioMedicine 2024; 104:105173. [PMID: 38815362 PMCID: PMC11167241 DOI: 10.1016/j.ebiom.2024.105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Neurofilament light (NfL) has previously been highlighted as a potential biomarker for Huntington's Disease (HD) using cross-sectional analyses. Our study aim was to investigate how longitudinal trajectories of plasma NfL relate to HD disease stage. METHODS 108 participants [78 individuals with the HD mutation, and 30 healthy controls (HC)] were included in this study. Individuals with the HD mutation were categorised separately by both HD-Integrated Staging System (HD-ISS) (Study 1) and PIN score-Approximated Staging System (PASS) (Study 2) criteria. Plasma NfL trajectories were examined using Mixed Linear Modeling (MLM); associations with symptom presentation were assessed using Spearman's rho correlations. FINDINGS The MLM coefficients for disease stage (HD-ISS β = 32.73, p < 0.0001; PASS β = 33.00, p < 0.0001) and disease stage∗time (HD-ISS β = 7.85, p = 0.004; PASS β = 6.58, p = 0.0047) suggest these are significant contributors to plasma NfL levels. In addition, the plasma NfL rate of change varied significantly across time (HD-ISS β = 3.14, p = 0.04; PASS β = 2.94, p = 0.050). The annualised rate of change was 8.32% for HC; 10.55%, 12.75% and 15.62% for HD-ISS Stage ≤1, Stage 2, and Stage 3, respectively; and 12.13%, 10.46%, 10.33%, 17.52%, for PASS Stage 0, Stage 1, Stage 2, and Stage 3, respectively. Plasma NfL levels correlated with the Symbol Digit Modalities Test (SDMT) in HD-ISS Stage ≤1, and both SDMT and Total Motor Score in Stage 3 (ps < 0.01). INTERPRETATION Our findings suggest that plasma NfL levels increase linearly across earlier disease stages, correlating with the cognitive SDMT measure. Thereafter, an increase or surge in plasma NfL levels, paired with correlations with both cognitive and motor measures, suggest a late acceleration in clinical and pathological progression. FUNDING NIH (NS111655); the UCSD HDSA CoE; the UCSD ADRC (NIH-NIA P30 AG062429).
Collapse
Affiliation(s)
- Georgia M Parkin
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, 92697, CA, USA.
| | - Elizabeth A Thomas
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, 92697, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, 92697, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA, USA
| |
Collapse
|
18
|
Fahed VS, Doheny EP, Collazo C, Krzysztofik J, Mann E, Morgan-Jones P, Mills L, Drew C, Rosser AE, Cousins R, Witkowski G, Cubo E, Busse M, Lowery MM. Language-Independent Acoustic Biomarkers for Quantifying Speech Impairment in Huntington's Disease. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:1390-1405. [PMID: 38530396 DOI: 10.1044/2024_ajslp-23-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
PURPOSE Changes in voice and speech are characteristic symptoms of Huntington's disease (HD). Objective methods for quantifying speech impairment that can be used across languages could facilitate assessment of disease progression and intervention strategies. The aim of this study was to analyze acoustic features to identify language-independent features that could be used to quantify speech dysfunction in English-, Spanish-, and Polish-speaking participants with HD. METHOD Ninety participants with HD and 83 control participants performed sustained vowel, syllable repetition, and reading passage tasks recorded with previously validated methods using mobile devices. Language-independent features that differed between HD and controls were identified. Principal component analysis (PCA) and unsupervised clustering were applied to the language-independent features of the HD data set to identify subgroups within the HD data. RESULTS Forty-six language-independent acoustic features that were significantly different between control participants and participants with HD were identified. Following dimensionality reduction using PCA, four speech clusters were identified in the HD data set. Unified Huntington's Disease Rating Scale (UHDRS) total motor score, total functional capacity, and composite UHDRS were significantly different for pairwise comparisons of subgroups. The percentage of HD participants with higher dysarthria score and disease stage also increased across clusters. CONCLUSION The results support the application of acoustic features to objectively quantify speech impairment and disease severity in HD in multilanguage studies. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25447171.
Collapse
Affiliation(s)
- Vitória S Fahed
- School of Electrical and Electronic Engineering, University College Dublin, Ireland
- Insight Centre for Data Analytics, University College Dublin, Ireland
| | - Emer P Doheny
- School of Electrical and Electronic Engineering, University College Dublin, Ireland
- Insight Centre for Data Analytics, University College Dublin, Ireland
| | | | | | - Elliot Mann
- Centre for Trials Research, Cardiff University, United Kingdom
| | - Philippa Morgan-Jones
- Centre for Trials Research, Cardiff University, United Kingdom
- School of Engineering, Cardiff University, United Kingdom
| | - Laura Mills
- Centre for Trials Research, Cardiff University, United Kingdom
| | - Cheney Drew
- Centre for Trials Research, Cardiff University, United Kingdom
| | - Anne E Rosser
- Brain Repair Centre and BRAIN Unit, Schools of Medicine and Biosciences, Cardiff University, United Kingdom
| | | | | | | | - Monica Busse
- Centre for Trials Research, Cardiff University, United Kingdom
| | - Madeleine M Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Ireland
- Insight Centre for Data Analytics, University College Dublin, Ireland
| |
Collapse
|
19
|
Considine CM, Rossetti MA, Anderson K, Del Bene VA, Anderson SA, Celka AS, Edmondson MC, Sheese ALN, Piccolino A, Teixeira AL, Stout JC. Huntington study group's neuropsychology working group position on best practice recommendations for the clinical neuropsychological evaluation of patients with Huntington disease. Clin Neuropsychol 2024; 38:984-1006. [PMID: 37849335 DOI: 10.1080/13854046.2023.2267789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Objective: Neuropsychological evaluation is critical to detection and management of cognitive and neuropsychiatric changes associated with Huntington disease (HD). Accurate assessment of non-motor complications of HD is critical given the prominent impact on functional disability, frequently commensurate with or exceeding that of motor symptoms. The increasing emphasis on developing disease-modifying therapies targeting cognitive decline in HD requires consensus on clinical neuropsychological assessment methods. The Neuropsychology Working Group (NPWG) of the Huntington Study Group (HSG) sought to provide evidence and consensus-based, practical guidelines for the evaluation of cognitive and neuropsychiatric symptoms associated with HD. Method: The NPWG recruited a multi-disciplinary group of neuropsychologists, neurologists, and psychiatrists to inform best practices in assessing, diagnosing, and treating the non-motor symptoms in HD. A review was circulated among the NPWG, and in an iterative process informed by reviewed literature, best practices in neuropsychological evaluation of patients with HD were identified. Results: A brief review of the available literature and rational for a clinical consensus battery is offered. Conclusion: Clinical neuropsychologists are uniquely positioned to both detect and characterize the non-motor symptoms in HD, and further, provide neurologists and allied health professions with clinically meaningful information that impacts functional outcomes and quality of life. The NPWG provides guidance on best practices to clinical neuropsychologists in this statement. A companion paper operationalizing clinical application of previous research-based non-motor diagnostic criteria for HD is forthcoming, which also advises on non-motor symptom screening methods for the non-neuropsychologist working with HD.
Collapse
Affiliation(s)
- Ciaran M Considine
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Agustina Rossetti
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kendra Anderson
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sharlet A Anderson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Andrea S Celka
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | | | - Amelia L Nelson Sheese
- Department of Neurological Sciences, University of Nebraska Medical Center College of Medicine, Omaha, NE, USA
| | - Adam Piccolino
- Psychology, Piccolino Psychological Services, Burnsville, MN, USA
| | - Antonio L Teixeira
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, and School of Psychological Science, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Lotspeich SC, Ashner MC, Vazquez JE, Richardson BD, Grosser KF, Bodek BE, Garcia TP. Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION 2024; 11:255-277. [PMID: 38962579 PMCID: PMC11220439 DOI: 10.1146/annurev-statistics-040522-095944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The landscape of survival analysis is constantly being revolutionized to answer biomedical challenges, most recently the statistical challenge of censored covariates rather than outcomes. There are many promising strategies to tackle censored covariates, including weighting, imputation, maximum likelihood, and Bayesian methods. Still, this is a relatively fresh area of research, different from the areas of censored outcomes (i.e., survival analysis) or missing covariates. In this review, we discuss the unique statistical challenges encountered when handling censored covariates and provide an in-depth review of existing methods designed to address those challenges. We emphasize each method's relative strengths and weaknesses, providing recommendations to help investigators pinpoint the best approach to handling censored covariates in their data.
Collapse
Affiliation(s)
- Sarah C Lotspeich
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Marissa C Ashner
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jesus E Vazquez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Richardson
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle F Grosser
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Benjamin E Bodek
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tanya P Garcia
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Migliore S, Bianco SD, Scocchia M, Maffi S, Busi LC, Ceccarelli C, Curcio G, Mazza T, Squitieri F. Prodromal Cognitive Changes as a Prognostic Indicator of Forthcoming Huntington's Disease Severity: A Retrospective Longitudinal Study. Mov Disord Clin Pract 2024; 11:363-372. [PMID: 38264920 PMCID: PMC10982604 DOI: 10.1002/mdc3.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Cognitive changes in Huntington's disease (HD) precede motor manifestations. ENROLL-HD platform includes four cognitive measures of information processing speed (IPS). Our group is eager to seek clinical markers in the life stage that is as close as possible to the age of onset (ie, the so called prodromal HD phase) because this is the best time for therapeutic interventions. OBJECTIVES Our study aimed to test whether cognitive scores in prodromal ENROLL-HD mutation carriers show the potential to predict the severity of motor and behavioral changes once HD became fully manifested. METHODS From the global ENROLL-HD cohort of 21,343 participants, we first selected a premanifest Cohort#1 (ie, subjects with Total Motor Score (TMS) <10 and Diagnostic Confidence Level (DCL) <4, N = 1.222). From this cohort, we then focused on a prodromal Cohort#2 of subjects who were ascertained to phenoconvert into manifest HD at follow-up visits (ie, subjects from 6 ≤ TMS≤9 and DCL <4 to TMS≥10 and DCL = 4, n = 206). RESULTS The main results of our study showed that low IPS before phenoconversion in Cohort#2 predicted the severity of motor and behavioral manifestations. By combining the four IPS cognitive measures (eg, the Categorical Verbal Fluency Test; Stroop Color Naming Test; Stroop Word Reading; Symbol Digit Modalities Test), we generated a Composite Cognition Score (CCS). The lower the CCS score the higher the TMS and the apathy scores in the same longitudinally followed-up patients after phenoconversion. CONCLUSIONS CCS might represent a clinical instrument to predict the prognosis of mutation carriers who are close to manifesting HD.
Collapse
Affiliation(s)
- Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza HospitalSan Giovanni RotondoItaly
| | | | - Marta Scocchia
- Rare Neurological Diseases Centre (CMNR)Fondazione Italian League for Research on Huntington (LIRH)RomeItaly
| | - Sabrina Maffi
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza HospitalSan Giovanni RotondoItaly
| | - Ludovica Camilla Busi
- Rare Neurological Diseases Centre (CMNR)Fondazione Italian League for Research on Huntington (LIRH)RomeItaly
| | - Consuelo Ceccarelli
- Rare Neurological Diseases Centre (CMNR)Fondazione Italian League for Research on Huntington (LIRH)RomeItaly
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza"San Giovanni RotondoItaly
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza HospitalSan Giovanni RotondoItaly
- Rare Neurological Diseases Centre (CMNR)Fondazione Italian League for Research on Huntington (LIRH)RomeItaly
| |
Collapse
|
22
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
23
|
Parkin GM, Culbert B, Churchill E, Gilbert PE, Corey-Bloom J. Exploring bradyphrenia in Huntington's disease using the computerized test of information processing (CTiP). Clin Park Relat Disord 2024; 10:100243. [PMID: 38425474 PMCID: PMC10901849 DOI: 10.1016/j.prdoa.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Background Bradyphrenia, best thought of as the mental equivalent of bradykinesia, has been described in several disorders of the brain including Parkinson's disease and schizophrenia; however, little is known about this phenomenon in Huntington's Disease (HD). Objective The aim of this study was to investigate the presence of bradyphrenia in HD using the Computerized Test of Information Processing (CTiP), an easy to administer and objective task that assesses cognitive processing speed with increasing task complexity. Methods This study included 211 participants: Huntington's Disease Integrated Staging System (HD-ISS) Stage 0 [n = 28], Stage 1 [n = 30], Stage 2 [n = 48] and Stage 3 [n = 48], and healthy controls (HC) [n = 57]. The CTiP incorporates three subtests: Simple Reaction Time (SRT), which assesses baseline motor function; Choice Reaction Time (CRT), with an added decisional component; and Semantic Search Reaction Time (SSRT), with an added conceptual component. SRT scores were subtracted from CRT and SSRT scores to establish a motor-corrected measure of central conduction time, which was used to operationalize bradyphrenia. Results HD-ISS and HC within-group reaction times differed significantly when comparing motor-corrected CRT vs SSRT (all ps < 0.0001). Furthermore, the magnitude of these differences increased with HD disease stage (p < 0.0001). An ROC analysis determined that motor-corrected within-subject differences significantly distinguished Stage 2 + 3 from Stage 0 + 1 (AUC = 0.72, p < 0.0001). Conclusions We report evidence of bradyphrenia in HD that increases with disease progression. This processing deficit, which can be quantified using the CTiP, has the potential to greatly impact HD daily life and warrants additional research.
Collapse
Affiliation(s)
- Georgia M. Parkin
- Department of Neurosciences, University of California San Diego, San Diego 92093, CA, USA
| | - Braden Culbert
- Department of Neurosciences, University of California San Diego, San Diego 92093, CA, USA
| | - Emma Churchill
- Department of Neurosciences, University of California San Diego, San Diego 92093, CA, USA
| | - Paul E. Gilbert
- Department of Psychology, San Diego State University, San Diego 92182, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego 92093, CA, USA
| |
Collapse
|
24
|
Sun Z, Ware J, Dey S, Eyigoz E, Sathe S, Sampaio C, Hu J. Large-scale screening of clinical assessments to distinguish between states in the Integrated HD Progression Model (IHDPM). Front Aging Neurosci 2024; 16:1320755. [PMID: 38414632 PMCID: PMC10896990 DOI: 10.3389/fnagi.2024.1320755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Background Understanding the sensitivity and utility of clinical assessments across different HD stages is important for study/trial endpoint selection and clinical assessment development. The Integrated HD Progression Model (IHDPM) characterizes the complex symptom progression of HD and separates the disease into nine ordered disease states. Objective To generate a temporal map of discriminatory clinical measures across the IHDPM states. Methods We applied the IHDPM to all HD individuals in an integrated longitudinal HD dataset derived from four observational studies, obtaining disease state assignment for each study visit. Using large-scale screening, we estimated Cohen's effect sizes to rank the discriminative power of 2,472 clinical measures for separating observations in disease state pairs. Individual trajectories through IHDPM states were examined. Discriminative analyses were limited to individuals with observations in both states of the pairs compared (N = 3,790). Results Discriminative clinical measures were heterogeneous across the HD life course. UHDRS items were frequently identified as the best state pair discriminators, with UHDRS Motor items - most notably TMS - showing the highest discriminatory power between the early-disease states and early post-transition period states. UHDRS functional items emerged as strong discriminators from the transition period and on. Cognitive assessments showed good discriminative power between all state pairs examined, excepting state 1 vs. 2. Several non-UHDRS assessments were also flagged as excellent state discriminators for specific disease phases (e.g., SF-12). For certain state pairs, single assessment items other than total/summary scores were highlighted as having excellent discriminative power. Conclusion By providing ranked quantitative scores indicating discriminatory ability of thousands of clinical measures between specific pairs of IHDPM states, our results will aid clinical trial designers select the most effective outcome measures tailored to their study cohort. Our observations may also assist in the development of end points targeting specific phases in the disease life course, through providing specific conceptual foci.
Collapse
Affiliation(s)
- Zhaonan Sun
- IBM Research, Yorktown Heights, NY, United States
| | | | - Sanjoy Dey
- IBM Research, Yorktown Heights, NY, United States
| | - Elif Eyigoz
- IBM Research, Yorktown Heights, NY, United States
| | - Swati Sathe
- CHDI Management, Inc., Princeton, NJ, United States
| | | | - Jianying Hu
- IBM Research, Yorktown Heights, NY, United States
| |
Collapse
|
25
|
Rossetti MA, Anderson KM, Hay KR, Del Bene VA, Celka AS, Piccolino A, Nelson Sheese AL, Huynh M, Zhu L, Claassen DO, Furr Stimming E, Considine CM. An Exploratory Pilot Study of Neuropsychological Performance in Two Huntington Disease Centers of Excellence Clinics. Arch Clin Neuropsychol 2024; 39:24-34. [PMID: 37530515 DOI: 10.1093/arclin/acad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 08/03/2023] Open
Abstract
OBJECTIVES To describe the characteristics of patients receiving a clinical referral for neuropsychological evaluation in two Huntington's Disease Society of America Centers of Excellence (HDSA COE). In this exploratory pilot study, we used an empirically supported clinical neuropsychological battery to assess differences in cognitive performance between premanifest and manifest HD patient groups (compared with each other and normative expectations). METHOD Clinical data from 76 adult genetically confirmed patients referred for neuropsychological evaluations was retrospectively collected from two HDSA COEs. ANOVA and Chi-square tests were used to compare variables between pre-manifest (n = 14) and manifest (n = 62) groups for demographic, cognitive, neuropsychiatric, and disease severity variables. RESULTS Our clinics serviced a disproportionate number of motor manifest patients. Six measures were excluded from analyses due to infrequent administration. The full WAIS-IV Digit Span was disproportionately administered to the manifest group. The premanifest group showed stronger cognitive performance with effect sizes in the large range on subtests of the WAIS-IV Digit Span, HVLT-R, SDMT, and verbal fluency. CONCLUSIONS This is the first study to assess an empirically supported neuropsychological research battery in a clinical setting with a relatively large sample size given the rarity of HD. The battery adequately captured areas of impairment across the disease spectrum. Application of the current battery with larger premanifest samples is warranted.
Collapse
Affiliation(s)
- M Agustina Rossetti
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Kendra M Anderson
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health, Science Center, Houston, TX 77054, USA
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35244,USA
| | - Andrea S Celka
- Department of Neurology, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35244,USA
| | - Adam Piccolino
- Piccolino Psychological Services, Burnsville, MN 55337, USA
| | - Amelia L Nelson Sheese
- Department of Neurological Sciences, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA
| | - Melissa Huynh
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Liang Zhu
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health, Science Center, Houston, TX 77054, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin Furr Stimming
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health, Science Center, Houston, TX 77054, USA
| | - Ciaran M Considine
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Aracil-Bolaños I, Pérez-Pérez J, Martínez-Horta S, Horta-Barba A, Puig-Davi A, García-Cornet J, Olmedo-Saura G, Campolongo A, Pagonabarraga J, Kulisevsky J. Baseline Large-Scale Network Dynamics Associated with Disease Progression in Huntington's Disease. Mov Disord 2024; 39:197-203. [PMID: 38148511 DOI: 10.1002/mds.29655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a genetically determined disease with motor, cognitive, and neuropsychiatric disorders. However, the links between clinical progression and disruptions to dynamics in motor and cognitive large-scale networks are not well established. OBJECTIVE To investigate changes in dynamic and static large-scale networks using an established tool of disease progression in Huntington's disease, the composite Unified Huntington's Disease Rating Scale (cUHDRS). METHODS Sixty-four mutation carriers were included. Static and dynamic baseline functional connectivity as well as topological features were correlated to 2-year follow-up clinical assessments using the cUHDRS. RESULTS Decline in cUHDRS scores was associated with higher connectivity between frontal default-mode and motor networks, whereas higher connectivity in posterior, mainly visuospatial regions was associated with a smaller decline in cUHDRS scores. CONCLUSIONS Structural disruptions in HD were evident both in posterior parietal/occipital and frontal motor regions, with reciprocal increases in functional connectivity. However, although higher visuospatial network connectivity was tied to a smaller cUHDRS decline, increased motor and frontal default-mode connections were linked to a larger cUHDRS decreases. Therefore, divergent functional compensation mechanisms might be at play in the clinical evolution of HD.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Júlia García-Cornet
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
27
|
Pfalzer AC, Shiino S, Silverman J, Codreanu SG, Sherrod SD, McLean JA, Claassen DO. Alterations in Cerebrospinal Fluid Urea Occur in Late Manifest Huntington's Disease. J Huntingtons Dis 2024; 13:103-111. [PMID: 38461512 PMCID: PMC11238568 DOI: 10.3233/jhd-231511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disorder caused by expanded cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene, resulting in the production of mutant huntingtin proteins (mHTT). Previous research has identified urea as a key metabolite elevated in HD animal models and postmortem tissues of HD patients. However, the relationship between disease course and urea elevations, along with the molecular mechanisms responsible for these disturbances remain unknown. Objective To better understand the molecular disturbances and timing of urea cycle metabolism across different stages in HD. Methods We completed a global metabolomic profile of cerebrospinal fluid (CSF) from individuals who were at several stages of disease: pre-manifest (PRE), manifest (MAN), and late manifest (LATE) HD participants, and compared to controls. Results Approximately 500 metabolites were significantly altered in PRE participants compared to controls, although no significant differences in CSF urea or urea metabolites were observed. CSF urea was significantly elevated in LATE participants only. There were no changes in the urea metabolites citrulline, ornithine, and arginine. Conclusions Overall, our study confirms that CSF elevations occur late in the HD course, and these changes may reflect accumulating deficits in cellular energy metabolism.
Collapse
Affiliation(s)
- Anna C. Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuhei Shiino
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Silverman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simona G. Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Stacy D. Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - John A. McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Horta-Barba A, Martinez-Horta S, Pérez-Pérez J, Puig-Davi A, de Lucia N, de Michele G, Salvatore E, Kehrer S, Priller J, Migliore S, Squitieri F, Castaldo A, Mariotti C, Mañanes V, Lopez-Sendon JL, Rodriguez N, Martinez-Descals A, Júlio F, Januário C, Delussi M, de Tommaso M, Noguera S, Ruiz-Idiago J, Sitek EJ, Wallner R, Nuzzi A, Pagonabarraga J, Kulisevsky J. Measuring cognitive impairment and monitoring cognitive decline in Huntington's disease: a comparison of assessment instruments. J Neurol 2023; 270:5408-5417. [PMID: 37462754 PMCID: PMC10576674 DOI: 10.1007/s00415-023-11804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Progressive cognitive decline is an inevitable feature of Huntington's disease (HD) but specific criteria and instruments are still insufficiently developed to reliably classify patients into categories of cognitive severity and to monitor the progression of cognitive impairment. METHODS We collected data from a cohort of 180 positive gene-carriers: 33 with premanifest HD and 147 with manifest HD. Using a specifically developed gold-standard for cognitive status we classified participants into those with normal cognition, those with mild cognitive impairment, and those with dementia. We administered the Parkinson's Disease-Cognitive Rating Scale (PD-CRS), the MMSE and the UHDRS cogscore at baseline, and at 6-month and 12-month follow-up visits. Cutoff scores discriminating between the three cognitive categories were calculated for each instrument. For each cognitive group and instrument we addressed cognitive progression, sensitivity to change, and the minimally clinical important difference corresponding to conversion from one category to another. RESULTS The PD-CRS cutoff scores for MCI and dementia showed excellent sensitivity and specificity ratios that were not achieved with the other instruments. Throughout follow-up, in all cognitive groups, PD-CRS captured the rate of conversion from one cognitive category to another and also the different patterns in terms of cognitive trajectories. CONCLUSION The PD-CRS is a valid and reliable instrument to capture MCI and dementia syndromes in HD. It captures the different trajectories of cognitive progression as a function of cognitive status and shows sensitivity to change in MCI and dementia.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Saul Martinez-Horta
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jesús Pérez-Pérez
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Natascia de Lucia
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Giuseppe de Michele
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Elena Salvatore
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Stefanie Kehrer
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Josef Priller
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Anna Castaldo
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Mañanes
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Noelia Rodriguez
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Asunción Martinez-Descals
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Filipa Júlio
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Cristina Januário
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Marianna Delussi
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Marina de Tommaso
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Sandra Noguera
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Jesús Ruiz-Idiago
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Emilia J Sitek
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurological and Psychiatric Nursing, Faculty of Health Science Medical, University of Gdansk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus, Gdańsk, Poland
| | - Renata Wallner
- Department of Psychiatry, Medical University of Wroclaw, Wroclaw, Poland
| | - Angela Nuzzi
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Javier Pagonabarraga
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jaime Kulisevsky
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- European Huntington's Disease Network (EHDN), Ulm, Germany.
| |
Collapse
|
29
|
Parkin GM, Thomas EA, Corey-Bloom J. Plasma NfL as a prognostic biomarker for enriching HD-ISS stage 1 categorisation: a cross-sectional study. EBioMedicine 2023; 93:104646. [PMID: 37315450 PMCID: PMC10363447 DOI: 10.1016/j.ebiom.2023.104646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The recently proposed Huntington's Disease Integrated Staging System (HD-ISS) categorises individuals with the Huntintin genetic mutation into disease progression cohorts based on quantitative neuroimaging, cognitive, and functional markers for research purposes. Unfortunately, many research studies do not collect quantitative neuroimaging data, and so the authors of the HD-ISS have subsequently provided approximated cohort thresholds based on disease and clinical data alone. However, these are rough proxies that aim to maximise stage separation, and should not be considered as 1:1 substitutes for the HD-ISS. Notably, no wet biomarker met the stringent criteria required to be considered a landmark for HD-ISS categorisation. We have previously shown that levels of plasma neurofilament light (NfL), a neuronal marker associated with axonal injury, are associated with predicted years to clinical motor diagnosis (CMD). Our objective in the current study was to determine whether HD-ISS categorisation, particularly for stages prior to CMD, could be improved with consideration of plasma NfL levels. METHODS A total of 290 blood samples, and clinical measures, were collected from participants across all HD-ISS stages: n = 50 [Stage 0], n = 64 [Stage 1], n = 63 [Stage 2], n = 63 [Stage 3], as well as 50 healthy controls. Plasma NfL levels were measured using a Meso Scale Discovery assay. FINDINGS Cohorts differed by age, cognitive function, CAG repeat length, and select UHDRS measures. Plasma NfL levels also differed significantly across cohorts. Approximately 50% of Stage 1 participants had plasma NfL levels indicative of predicted CMD within ten years. INTERPRETATION Our findings suggest that plasma NfL levels may have use in enriching Stage 1 membership into sub-groups that are less than, and within, predicted 10 years until CMD. FUNDING This work was supported by the National Institutes of Health (NS111655 to E.A.T.); the UCSD Huntington's Disease Society of America Center of Excellence; and the UCSD Shiley-Marcos Alzheimer's Disease Research Center (NIH-NIA P30 AG062429).
Collapse
Affiliation(s)
- Georgia M Parkin
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA.
| | - Elizabeth A Thomas
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
30
|
van de Zande NA, Bulk M, Najac C, van der Weerd L, de Bresser J, Lewerenz J, Ronen I, de Bot ST. Study protocol of IMAGINE-HD: Imaging iron accumulation and neuroinflammation with 7T-MRI + CSF in Huntington's disease. Neuroimage Clin 2023; 39:103450. [PMID: 37327706 PMCID: PMC10509525 DOI: 10.1016/j.nicl.2023.103450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Strong evidence suggests a significant role for iron accumulation in the brain in addition to the well-documented neurodegenerative aspects of Huntington's disease (HD). The putative mechanisms by which iron is linked to the HD pathogenesis are multiple, including oxidative stress, ferroptosis and neuroinflammation. However, no previous study in a neurodegenerative disease has linked the observed increase of brain iron accumulation as measured by MRI with well-established cerebrospinal fluid (CSF) and blood biomarkers for iron accumulation, or with associated processes such as neuroinflammation. This study is designed to link quantitative data from iron levels and neuroinflammation metabolites obtained from 7T MRI of HD patients, with specific and well-known clinical biofluid markers for iron accumulation, neurodegeneration and neuroinflammation. Biofluid markers will provide quantitative measures of overall iron accumulation, neurodegeneration and neuroinflammation, while MRI measurements on the other hand will provide quantitative spatial information on brain pathology, neuroinflammation and brain iron accumulation, which will be linked to clinical outcome measures. METHODS This is an observational cross-sectional study, IMAGINE-HD, in HD gene expansion carriers and healthy controls. We include premanifest HD gene expansion carriers and patients with manifest HD in an early or moderate stage. The study includes a 7T MRI scan of the brain, clinical evaluation, motor, functional, and neuropsychological assessments, and sampling of CSF and blood for the detection of iron, neurodegenerative and inflammatory markers. Quantitative Susceptibility Maps will be reconstructed using T2* weighted images to quantify brain iron levels and Magnetic Resonance Spectroscopy will be used to obtain information about neuroinflammation by measuring cell-specific intracellular metabolites' level and diffusion. Age and sex matched healthy subjects are included as a control group. DISCUSSION Results from this study will provide an important basis for the evaluation of brain iron levels and neuroinflammation metabolites as an imaging biomarker for disease stage in HD and their relationship with the salient pathomechanisms of the disease on the one hand, and with clinical outcome on the other.
Collapse
Affiliation(s)
| | - Marjolein Bulk
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Baden-Württemberg, Germany.
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | | |
Collapse
|
31
|
Li XY, Bao YF, Xie JJ, Gao B, Qian SX, Dong Y, Wu ZY. Application Value of Serum Neurofilament Light Protein for Disease Staging in Huntington's Disease. Mov Disord 2023. [PMID: 37148558 DOI: 10.1002/mds.29430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Neurofilament light protein (NfL) has been proven to be a sensitive biomarker for Huntington's disease (HD). However, these studies did not include HD patients at advanced stages or with larger CAG repeats (>50), leading to a knowledge gap of the characteristics of NfL. METHODS Serum NfL (sNfL) levels were quantified using an ultrasensitive immunoassay. Participants were assessed by clinical scales and 7.0 T magnetic resonance imaging. Longitudinal samples and clinical data were obtained. RESULTS Baseline samples were available from 110 controls, 90 premanifest HD (pre-HD) and 137 HD individuals. We found levels of sNfL significantly increased in HD compared to pre-HD and controls (both P < 0.0001). The increase rates of sNfL were differed by CAG repeat lengths. However, there was no difference in sNfL levels in manifest HD from early to late stages. In addition, sNfL levels were associated with cognitive measures in pre-HD and manifest HD group, respectively. The increased levels of sNfL were also closely related to microstructural changes in white matter. In the longitudinal analysis, baseline sNfL did not correlate with subsequent clinical function decline. Random forest analysis revealed that sNfL had good power for predicting disease onset. CONCLUSIONS Although sNfL levels are independent of disease stages in manifest HD, it is still an optimal indicator for predicting disease onset and has potential use as a surrogate biomarker of treatment effect in clinical trials. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Qian
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
32
|
Hamilton JL, Mills JA, Stebbins GT, Long JD, Fuller RLM, Sathe S, Roché M, Sampaio C. Defining Clinical Meaningfulness in Huntington's Disease. Mov Disord 2023. [PMID: 37147862 DOI: 10.1002/mds.29394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Minimal clinically important difference (MCID) represents the smallest within-person change on an outcome measure considered meaningful to the patient. Anchor-based MCID methods evaluate the relationship between changes in an outcome measure and the patient-reported clinical importance of that change. OBJECTIVE This study aims to estimate longitudinal MCID for clinically relevant outcome measures for individuals who have Stages 2 or 3 disease as measured by the Huntington's Disease Integrated Staging System (HD-ISS). METHODS Data were drawn from Enroll-HD, a large global longitudinal, observational study and clinical research platform for HD family members. We analyzed HD participants (N = 11,070) by staging group using time frames ranging from 12 to 36 months. The anchor was the physical component summary score of the 12-item short-form health survey. HD-relevant motor, cognitive, and functional outcome measures were independent, external criterion outcomes. Complex analysis was conducted using multiple, independent, linear mixed effect regression models with decomposition to calculate MCID for each external criterion by group. RESULTS MCID estimates varied by progression stage. MCID estimates increased as stage progression increased and as the time frame increased. MCID values for key HD measures are provided. For example, starting in HD-ISS stage 2, meaningful group change over 24 months equals an average increase of 3.6 or more points on the Unified Huntington's Disease Rating Scale Total Motor Score. CONCLUSIONS This is the first study to examine MCID estimation thresholds for HD. The results can be used to improve clinical interpretation of study outcomes and enable treatment recommendations to support clinical decision-making and clinical trial methodology. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jamie L Hamilton
- Clinical Department, CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | - James A Mills
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Glenn T Stebbins
- Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Rebecca L M Fuller
- Clinical Department, CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | - Swati Sathe
- Clinical Department, CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | - Matt Roché
- Clinical Department, CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | - Cristina Sampaio
- Clinical Department, CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| |
Collapse
|
33
|
Estevez-Fraga C, Elmalem MS, Papoutsi M, Durr A, Rees EM, Hobbs NZ, Roos RAC, Landwehrmeyer B, Leavitt BR, Langbehn DR, Scahill RI, Rees G, Tabrizi SJ, Gregory S. Progressive alterations in white matter microstructure across the timecourse of Huntington's disease. Brain Behav 2023; 13:e2940. [PMID: 36917716 PMCID: PMC10097137 DOI: 10.1002/brb3.2940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Whole-brain longitudinal diffusion studies are crucial to examine changes in structural connectivity in neurodegeneration. Here, we investigated the longitudinal alterations in white matter (WM) microstructure across the timecourse of Huntington's disease (HD). METHODS We examined changes in WM microstructure from premanifest to early manifest disease, using data from two cohorts with different disease burden. The TrackOn-HD study included 67 controls, 67 premanifest, and 10 early manifest HD (baseline and 24-month data); the PADDINGTON study included 33 controls and 49 early manifest HD (baseline and 15-month data). Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, and radial diffusivity from baseline to last study visit were investigated for each cohort using tract-based spatial statistics. An optimized pipeline was employed to generate participant-specific templates to which diffusion tensor imaging maps were registered and change maps were calculated. We examined longitudinal differences between HD expansion-carriers and controls, and correlations with clinical scores, including the composite UHDRS (cUHDRS). RESULTS HD expansion-carriers from TrackOn-HD, with lower disease burden, showed a significant longitudinal decline in FA in the left superior longitudinal fasciculus and an increase in MD across subcortical WM tracts compared to controls, while in manifest HD participants from PADDINGTON, there were significant widespread longitudinal increases in diffusivity compared to controls. Baseline scores in clinical scales including the cUHDRS predicted WM microstructural change in HD expansion-carriers. CONCLUSION The present study showed significant longitudinal changes in WM microstructure across the HD timecourse. Changes were evident in larger WM areas and across more metrics as the disease advanced, suggesting a progressive alteration of WM microstructure with disease evolution.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael S Elmalem
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marina Papoutsi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Nicola Z Hobbs
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Blair R Leavitt
- Centre for Huntington's Disease at UBC Hospital, Department of Medical Genetics and Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Rachael I Scahill
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
34
|
Lunven M, Hernandez Dominguez K, Youssov K, Hamet Bagnou J, Fliss R, Vandendriessche H, Bapst B, Morgado G, Remy P, Schubert R, Reilmann R, Busse M, Craufurd D, Massart R, Rosser A, Bachoud-Lévi AC. A new approach to digitized cognitive monitoring: validity of the SelfCog in Huntington's disease. Brain Commun 2023; 5:fcad043. [PMID: 36938527 PMCID: PMC10018460 DOI: 10.1093/braincomms/fcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cognitive deficits represent a hallmark of neurodegenerative diseases, but evaluating their progression is complex. Most current evaluations involve lengthy paper-and-pencil tasks which are subject to learning effects dependent on the mode of response (motor or verbal), the countries' language or the examiners. To address these limitations, we hypothesized that applying neuroscience principles may offer a fruitful alternative. We thus developed the SelfCog, a digitized battery that tests motor, executive, visuospatial, language and memory functions in 15 min. All cognitive functions are tested according to the same paradigm, and a randomization algorithm provides a new test at each assessment with a constant level of difficulty. Here, we assessed its validity, reliability and sensitivity to detect decline in early-stage Huntington's disease in a prospective and international multilingual study (France, the UK and Germany). Fifty-one out of 85 participants with Huntington's disease and 40 of 52 healthy controls included at baseline were followed up for 1 year. Assessments included a comprehensive clinical assessment battery including currently standard cognitive assessments alongside the SelfCog. We estimated associations between each of the clinical assessments and SelfCog using Spearman's correlation and proneness to retest effects and sensitivity to decline through linear mixed models. Longitudinal effect sizes were estimated for each cognitive score. Voxel-based morphometry and tract-based spatial statistics analyses were conducted to assess the consistency between performance on the SelfCog and MRI 3D-T1 and diffusion-weighted imaging in a subgroup that underwent MRI at baseline and after 12 months. The SelfCog detected the decline of patients with Huntington's disease in a 1-year follow-up period with satisfactory psychometric properties. Huntington's disease patients are correctly differentiated from controls. The SelfCog showed larger effect sizes than the classical cognitive assessments. Its scores were associated with grey and white matter damage at baseline and over 1 year. Given its good performance in longitudinal analyses of the Huntington's disease cohort, it should likely become a very useful tool for measuring cognition in Huntington's disease in the future. It highlights the value of moving the field along the neuroscience principles and eventually applying them to the evaluation of all neurodegenerative diseases.
Collapse
Affiliation(s)
- Marine Lunven
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Karen Hernandez Dominguez
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Katia Youssov
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Jennifer Hamet Bagnou
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Rafika Fliss
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Henri Vandendriessche
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Blanche Bapst
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, 94010 Créteil, France
- Faculty of Medicine, Université Paris Est Créteil, F-94010 Créteil, France
| | - Graça Morgado
- Inserm, Centre d’Investigation Clinique 1430, APHP, Hôpital Henri Mondor, 94010 Créteil, France
| | - Philippe Remy
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Robin Schubert
- George Huntington Institute, Technology-Park, 48149 Muenster, Germany
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Ralf Reilmann
- George Huntington Institute, Technology-Park, 48149 Muenster, Germany
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
- Department of Clinical Radiology, University of Muenster, 48149 Muenster, Germany
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff CF14 4EP, UK
- Wales Brain Research And Intracranial Neurotherapeutics (BRAIN) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - David Craufurd
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Renaud Massart
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| | - Anne Rosser
- Wales Brain Research And Intracranial Neurotherapeutics (BRAIN) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
- Cardiff School of Medicine, Neuroscience and Mental Health Institute, Cardiff CF24 4HQ, UK
- School of Biosciences, Cardiff University Brain Repair Group, Cardiff CF10 3AX, UK
| | - Anne-Catherine Bachoud-Lévi
- Département d'Etudes Cognitives, École normale supérieure, PSL University, 75005 Paris, France
- University Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010 Creteil, France
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre de référence Maladie de Huntington, Service de Neurologie, F-94010 Créteil, France
- NeurATRIS, Hôpital Henri Mondor, 94010 Créteil, France
| |
Collapse
|
35
|
Sturchio A, Duker AP, Muñoz-Sanjuan I, Espay AJ. Subtyping monogenic disorders: Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:171-184. [PMID: 36803810 DOI: 10.1016/b978-0-323-85555-6.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Huntington disease is a highly disabling neurodegenerative disease characterized by psychiatric, cognitive, and motor deficits. The causal genetic mutation in huntingtin (Htt, also known as IT15), located on chromosome 4p16.3, leads to an expansion of a triplet coding for polyglutamine. The expansion is invariably associated with the disease when >39 repeats. Htt encodes for the protein huntingtin (HTT), which carries out many essential biological functions in the cell, in particular in the nervous system. The precise mechanism of toxicity is not known. Based on a one-gene-one-disease framework, the prevailing hypothesis ascribes toxicity to the universal aggregation of HTT. However, the aggregation process into mutant huntingtin (mHTT) is associated with a reduction of the levels of wild-type HTT. A loss of wild-type HTT may plausibly be pathogenic, contributing to the disease onset and progressive neurodegeneration. Moreover, many other biological pathways are altered in Huntington disease, such as in the autophagic system, mitochondria, and essential proteins beyond HTT, potentially explaining biological and clinical differences among affected individuals. As one gene does not mean one disease, future efforts at identifying specific Huntington subtypes are important to design biologically tailored therapeutic approaches that correct the corresponding biological pathways-rather than continuing to exclusively target the common denominator of HTT aggregation for elimination.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States; Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden.
| | - Andrew P Duker
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | | | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
36
|
Ko J, Furby H, Ma X, Long JD, Lu XY, Slowiejko D, Gandhy R. Clustering and prediction of disease progression trajectories in Huntington's disease: An analysis of Enroll-HD data using a machine learning approach. Front Neurol 2023; 13:1034269. [PMID: 36793800 PMCID: PMC9923354 DOI: 10.3389/fneur.2022.1034269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023] Open
Abstract
Introduction Huntington's disease (HD) is a rare neurodegenerative disease characterized by cognitive, behavioral and motor symptoms that progressively worsen with time. Cognitive and behavioral signs of HD are generally present in the years prior to a diagnosis; however, manifest HD is typically assessed by genetic confirmation and/or the presence of unequivocal motor symptoms. Nevertheless, there is a large variation in symptom severity and rate of progression among individuals with HD. Methods In this retrospective study, longitudinal natural history of disease progression was modeled in individuals with manifest HD from the global, observational Enroll-HD study (NCT01574053). Unsupervised machine learning (k-means; km3d) was used to jointly model clinical and functional disease measures simultaneously over time, based on one-dimensional clustering concordance such that individuals with manifest HD (N = 4,961) were grouped into three clusters: rapid (Cluster A; 25.3%), moderate (Cluster B; 45.5%) and slow (Cluster C; 29.2%) progressors. Features that were considered predictive of disease trajectory were then identified using a supervised machine learning method (XGBoost). Results The cytosine adenine guanine-age product score (a product of age and polyglutamine repeat length) at enrollment was the top predicting feature for cluster assignment, followed by years since symptom onset, medical history of apathy, body mass index at enrollment and age at enrollment. Conclusions These results are useful for understanding factors that affect the global rate of decline in HD. Further work is needed to develop prognostic models of HD progression as these could help clinicians with individualized clinical care planning and disease management.
Collapse
Affiliation(s)
- Jinnie Ko
- Genentech Inc., South San Francisco, CA, United States,*Correspondence: Jinnie Ko ✉
| | - Hannah Furby
- Roche Products Ltd., Welwyn Garden City, United Kingdom
| | - Xiaoye Ma
- Genentech Inc., South San Francisco, CA, United States
| | - Jeffrey D. Long
- University of Iowa Health Care, Iowa City, IA, United States
| | - Xiao-Yu Lu
- Genentech Inc., South San Francisco, CA, United States
| | | | - Rita Gandhy
- Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
37
|
Parkin GM, Corey-Bloom J, Snell C, Smith H, Laurenza A, Daldin M, Bresciani A, Thomas EA. Salivary Huntingtin protein is uniquely associated with clinical features of Huntington's disease. Sci Rep 2023; 13:1034. [PMID: 36658243 PMCID: PMC9852574 DOI: 10.1038/s41598-023-28019-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Measuring Huntingtin (HTT) protein in peripheral cells represents an essential step in biomarker discovery for Huntington's Disease (HD), however to date, investigations into the salivary expression of HTT has been lacking. In the current study, we quantified total HTT (tHTT) and mutant HTT (mHTT) protein in matched blood and saliva samples using single molecule counting (SMC) immunoassays: 2B7-D7F7 (tHTT) and 2B7-MW1 (mHTT). Matched samples, and clinical data, were collected from 95 subjects: n = 19 manifest HD, n = 34 premanifest HD (PM), and n = 42 normal controls (NC). Total HTT and mHTT levels were not correlated in blood and saliva. Plasma tHTT was significantly associated with age, and participant sex; whereas salivary mHTT was significantly correlated with age, CAG repeat length and CAP score. Plasma and salivary tHTT did not differ across cohorts. Salivary and plasma mHTT were significantly increased in PM compared to NC; salivary mHTT was also significantly increased in HD compared to NC. Only salivary tHTT and mHTT were significantly correlated with clinical measures. Salivary HTT is uniquely associated with clinical measures of HD and offers significant promise as a relevant, non-invasive HD biomarker. Its use could be immediately implemented into both translational and clinical research applications.
Collapse
Affiliation(s)
- Georgia M Parkin
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA.
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Chase Snell
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Haileigh Smith
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Angela Laurenza
- Department of Translational Biology, IRBM S.p.A., via Pontina Km 30, 600, Pomezia, Rome, Italy
- Menarini Ricerche S.p.A., via Tito Speri 10, Pomezia, Rome, Italy
| | - Manuel Daldin
- Department of Translational Biology, IRBM S.p.A., via Pontina Km 30, 600, Pomezia, Rome, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM S.p.A., via Pontina Km 30, 600, Pomezia, Rome, Italy
- Exscientia, Oxford Science Park, Oxford, UK
| | - Elizabeth A Thomas
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
38
|
Schultz JL, Langbehn DR, Al-Kaylani HM, van der Plas E, Koscik TR, Epping EA, Espe-Pfeifer PB, Martin EP, Moser DJ, Magnotta VA, Nopoulos PC. Longitudinal Clinical and Biological Characteristics in Juvenile-Onset Huntington's Disease. Mov Disord 2023; 38:113-122. [PMID: 36318082 PMCID: PMC9851979 DOI: 10.1002/mds.29251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Juvenile-onset Huntington's disease (JOHD) is a rare form of Huntington's disease (HD) characterized by symptom onset before the age of 21 years. Observational data in this cohort is lacking. OBJECTIVES Quantify measures of disease progression for use in clinical trials of patients with JOHD. METHODS Participants who received a motor diagnosis of HD before the age of 21 were included in the Kids-JOHD study. The comparator group consisted of children and young adults who were at-risk for inheriting the genetic mutation that causes HD, but who were found to have a CAG repeat in the non-expanded range (gene non-expanded [GNE]). RESULTS Data were obtained between March 17, 2006, and February 13, 2020. There were 26 JOHD participants and 78 GNE participants who were comparable on age (16.03 vs. 14.43, respectively) and sex (53.8% female vs. 57.7% female, respectively). The mean annualized decrease in striatal volume in the JOHD group was -3.99% compared to -0.06% in the GNE (mean difference [MD], -3.93%; 95% confidence intervals [CI], [-4.98 to -2.80], FDR < 0.0001). The mean increase in the Unified Huntington's Disease Rating Scale Total Motor Score per year in the JOHD group was 7.29 points compared to a mean decrease of -0.21 point in the GNE (MD, 7.5; 95% CI, [5.71-9.28], FDR < 0·0001). CONCLUSIONS These findings demonstrate that structural brain imaging and clinical measures in JOHD may be potential biomarkers of disease progression for use in clinical trials. Collaborative efforts are required to validate these results in a larger cohort of patients with JOHD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jordan L. Schultz
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- University of Iowa College of Pharmacy, Division of Pharmacy Practice and Sciences, 200 Hawkins Drive, Iowa City, IA
| | - Douglas R. Langbehn
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Hend M. Al-Kaylani
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Ellen van der Plas
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Timothy R. Koscik
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Patricia B. Espe-Pfeifer
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Erin P. Martin
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - David J. Moser
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- Stead Family Children’s Hospital at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
39
|
Estevez-Fraga C, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: August 2023. J Huntingtons Dis 2023; 12:169-185. [PMID: 37483021 PMCID: PMC10473124 DOI: 10.3233/jhd-239001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the GENERATION HD2 (tominersen) and on the Asklepios Biopharmaceutical/BrainVectis trial with AB-1001. We also comment on the recent findings from the PROOF-HD trial, and list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J. Wild
- Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
40
|
Caligiuri M, Culbert B, Prasad N, Snell C, Hall A, Smirnova A, Churchill E, Corey-Bloom J. Graphomotor Dysfluency as a Predictor of Disease Progression in Premanifest Huntington's Disease. J Huntingtons Dis 2023; 12:283-292. [PMID: 37182891 DOI: 10.3233/jhd-230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Prior studies have relied on conventional observer-based severity ratings such as the Unified Huntington's Disease Rating Scale (UHDRS) to identify early motor markers of decline in Huntington's disease (HD). OBJECTIVE The present study examined the predictive utility of graphomotor measures handwriting and drawing movements. METHODS Seventeen gene-positive premanifest HD subjects underwent comprehensive clinical, cognitive, motor, and graphomotor assessments at baseline and at follow-up intervals ranging from 9-36 months. Baseline graphomotor assessments were subjected to linear multiple regression procedures to identify factors associated with change on the comprehensive UHDRS index. RESULTS Subjects were followed for an average of 21.2 months. Three multivariate regression models based on graphomotor variables derived from a complex loop task, a maximum speed circle drawing task and a combined task returned adjusted R2 coefficients of 0.76, 0.71, and 0.80 respectively accounting for a significant portion of the variability in cUHDRS change score. The best-fit model based on the combined tasks indicated that greater decline on the cUHDRS was associated with increased pen movement dysfluency and stroke-stroke variability at baseline. CONCLUSION Performance on multiple measures of graphomotor dysfluency assessed during the premanifest or prodromal stage in at-risk HD individuals was associated with decline on a multidimensional index of HD morbidity preceding an HD diagnosis.
Collapse
Affiliation(s)
| | - Braden Culbert
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Nikita Prasad
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Chase Snell
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Andrew Hall
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Anna Smirnova
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Emma Churchill
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
41
|
Bayen E, de Langavant LC, Youssov K, Bachoud-Lévi AC. Informal care in Huntington's disease: Assessment of objective-subjective burden and its associated risk and protective factors. Ann Phys Rehabil Med 2022; 66:101703. [PMID: 36055643 DOI: 10.1016/j.rehab.2022.101703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Because of the genetic transmission of Huntington's disease (HD), informal caregivers (ICs, i.e., non-professional caregivers) might experience consecutive and/or concurrent caregiving roles to support several symptomatic relatives with HD over their life. Additionally, some ICs might be HD carriers. However, whether family burden of care is associated with specific factors in HD remains poorly studied. OBJECTIVE To provide a quantitative view of the IC burden and identify associated factors. METHODS This was a cross-sectional assessment of home-dwelling symptomatic HD individuals (from REGISTRY and Bio-HD studies) and their primary adult ICs, including the HD individual's motor, cognitive, behavioral, functional Unified Huntington's Disease Rating Scale score; IC objective burden (quantification of IC time in activities of daily living, instrumental activities of daily living and supervision, using the Resource Utilization in Dementia instrument), IC subjective burden (Zarit Burden Inventory), and ICs' social economic functioning and use of professional home care. RESULTS We included 80 ICs (mean [SD] age 57 [12.9] years, 60% women) in charge of 80 individuals with early to advanced stage HD (mean age 56 [12.6] years, 51% men). The mean hours of informal care time was high: 7.3 (7.9) h/day (range 0-24); the mean professional home care was 2.8 (2.8) h/day (range 0.1-12.3). This objective burden increased with higher functional loss of the HD individual and with more severe cognitive-behavioral disorders. The mean subjective burden (35.4 [17.8], range 4-73) showed a high level since the earliest stage of HD; it was associated with HD duration (mean 9.2 [4.7] years) and with aggressive symptoms in individuals (44% of cases). The burden was partially related to the multiplex caregiving status (19%). Protective factors lowering the IC burden included the absence of financial hardship (57%), a strong social network (16%) and keeping active on the job market outside home (46%). CONCLUSIONS The objective-subjective burden of ICs related to changing patterns of neuro-psychiatric symptoms and mitigating environmental characteristics around the HD individual-caregiver dyads.
Collapse
Affiliation(s)
- Eléonore Bayen
- Service de Médecine Physique et de Réadaptation, hôpital Pitié-Salpêtrière, APHP, Paris, France et Faculté de Médecine, Sorbonne Université, Paris, France; Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France; Global Brain Health Institute, University of California San Francisco, San Francisco, USA.
| | - Laurent Cleret de Langavant
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA; National Reference Center for Huntington's Disease, Département de Neurologie, hôpital Henri Mondor-Albert Chenevier, APHP, Créteil, France; Equipe Neuropsychologie Interventionnelle, Département d'Etudes Cognitives, Ecole normale supérieure, PSL Research University, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, INSERM U955 E01, Paris et Créteil, France; Faculté de Médecine, Université Paris-Est Créteil, Créteil, France
| | - Katia Youssov
- National Reference Center for Huntington's Disease, Département de Neurologie, hôpital Henri Mondor-Albert Chenevier, APHP, Créteil, France; Equipe Neuropsychologie Interventionnelle, Département d'Etudes Cognitives, Ecole normale supérieure, PSL Research University, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, INSERM U955 E01, Paris et Créteil, France
| | - Anne-Catherine Bachoud-Lévi
- National Reference Center for Huntington's Disease, Département de Neurologie, hôpital Henri Mondor-Albert Chenevier, APHP, Créteil, France; Equipe Neuropsychologie Interventionnelle, Département d'Etudes Cognitives, Ecole normale supérieure, PSL Research University, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, INSERM U955 E01, Paris et Créteil, France; Faculté de Médecine, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
42
|
Plasma TDP-43 Reflects Cortical Neurodegeneration and Correlates with Neuropsychiatric Symptoms in Huntington's Disease. Clin Neuroradiol 2022; 32:1077-1085. [PMID: 35238950 DOI: 10.1007/s00062-022-01150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Huntington's disease (HD) is a monogenic neurodegenerative disease with no effective treatment currently available. The pathological hallmark of HD is the aggregation of mutant huntingtin in the medium spiny neurons of the striatum, leading to severe subcortical atrophy. Cortical degeneration also occurs in HD from its very early stages, although its biological origin is poorly understood. Among the possible pathological mechanisms that could promote cortical damage in HD, the in vivo study of TDP-43 pathology remains to be explored, which was the main objective of this work. METHODS We investigated the clinical and structural brain correlates of plasma TDP-43 levels in a sample of 36 HD patients. Neuroimaging alterations were assessed both at the macrostructural (cortical thickness) and microstructural (intracortical diffusivity) levels. Importantly, we controlled for mutant huntingtin and tau biomarkers in order to assess the independent role of TDP-43 in HD neurodegeneration. RESULTS Plasma TDP-43 levels in HD specifically correlated with the presence and severity of apathy (p = 0.003). The TDP-43 levels also reflected cortical thinning and microstructural degeneration, especially in frontal and anterior-temporal regions (p < 0.05 corrected). These TDP-43-related brain alterations correlated, in turn, with the severity of cognitive, motor and behavioral symptoms. CONCLUSION Our results suggest that the presence of TDP-43 pathology in HD has an independent contribution to the severity of neuropsychiatric symptoms and frontotemporal degeneration. These findings point out the importance of TDP-43 as an additional pathological process to be taken into consideration in this devastating disorder.
Collapse
|
43
|
Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, McBride JL, Abulrob A, Stanimirovic D, Leavitt BR, Hayden MR. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun 2022; 4:fcac309. [PMID: 36523269 PMCID: PMC9746690 DOI: 10.1093/braincomms/fcac309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Akshdeep Sandhu
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amirah E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jeffrey N Bone
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
44
|
Lumbar puncture safety and tolerability in premanifest and manifest Huntington's disease: a multi-analysis cross-sectional study. Sci Rep 2022; 12:18377. [PMID: 36319718 PMCID: PMC9626630 DOI: 10.1038/s41598-022-21934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Lumbar puncture (LP) has become increasingly common for people with Huntington's disease (HD) both to administer intrathecal investigational medicinal products and to collect cerebrospinal fluid to develop biological markers to track disease stage and progression. We aimed to investigate the safety profile of LP in people with HD, building on a recently published work by increasing the sample size and more specifically, increasing the representation of the premanifest population and healthy controls. We conducted a multi-study cross-sectional analysis including eligible participants from the HDClarity (304 Huntington's disease gene expansion carriers and 91 controls) and HD-YAS studies (54 premanifest and 48 controls), enrolled between February 2016 and September 2019. We investigated the odds of any adverse events, headaches, and back pain independently. Intergroup comparisons and adjusted event odds were derived using hierarchical logistic regressions. A total of 669 LP procedures involving 497 participants were included in this analysis. There were 184 (27.5%) LP procedures associated with one or more adverse events. The two most common adverse events were: post LP headache and back pain. Younger age and female gender were found to be associated with a higher risk of developing adverse events. There was no difference in the rate of adverse events between the disease subgroups after adjusting for covariates such as age and gender. Our results suggest that the LP is safe and tolerable in premanifest and manifest HD subjects, providing useful reassurance about the procedure to the HD community.
Collapse
|
45
|
Hare E, Bachoud-Lévi AC, Reilmann R, Craufurd D, Busse M, Rosser A, McLauchlan D. Cognitive processes of apathy in Huntington's disease show high sensitivity to disease progression. Clin Park Relat Disord 2022; 7:100168. [PMID: 36405870 PMCID: PMC9673112 DOI: 10.1016/j.prdoa.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Background Disease-modifying treatments for Huntington's disease (HD) are entering clinical trials: there is a pressing need for objective outcome measures of disease progression. Our previous work showed an association between 2 novel, objective cognitive tasks and apathy - a core feature of disease progression in HD. Objective Evaluate the longitudinal validity and sensitivity of the novel Persistence and Maze tasks to assess their utility as clinical outcome measures in HD. Methods 83 participants positive for the HD gene and 54 controls performed a battery of established and novel tools, at baseline and 12 month follow up. Results The Maze task was found to be the most sensitive measure of change at 12 months, including the current gold-standard measure (the composite disease progression score). Conclusion The Maze task has potential as a novel outcome measure of disease progression in HD and may have utility in other major neurodegenerative diseases.
Collapse
Affiliation(s)
- Emily Hare
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Anne-Catherine Bachoud-Lévi
- INSERM U 955, Institut Mondor de Recherche Biomédicale (IMRB), Cretéil, France
- Hôpital Henri Mondor (Hôpitaux Universitaires Henri Mondor), Cretéil, France
| | - Ralf Reilmann
- George-Huntington-Institute, Technology-Park Muenster, Deilmann Building, Johann-Krane Weg 27, 48149 Muenster, Germany
| | - David Craufurd
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Monica Busse
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Centre for Trials Research, Neuadd Meirionnydd, Heath Park, Cardiff University, UK
| | - Anne Rosser
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Cardiff University Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff CF10 3AX, UK
| | - Duncan McLauchlan
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Swansea Bay University Health Board, Morriston Hospital, Heol Maes Egwlys, Swansea. SA6 6NL, UK
| |
Collapse
|
46
|
Quinn L, Playle R, Drew CJG, Taiyari K, Williams-Thomas R, Muratori LM, Hamana K, Griffin BA, Kelson M, Schubert R, Friel C, Morgan-Jones P, Rosser A, Busse M. Physical activity and exercise outcomes in Huntington's disease (PACE-HD): results of a 12-month trial-within-cohort feasibility study of a physical activity intervention in people with Huntington's disease. Parkinsonism Relat Disord 2022; 101:75-89. [PMID: 35809488 DOI: 10.1016/j.parkreldis.2022.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION While physical activity (PA) is recognized as important in Huntington's disease (HD) disease management, there has been no long-term evaluation undertaken. We aimed to evaluate the feasibility of a nested (within cohort) randomized controlled trial (RCT) of a physical therapist-led PA intervention. METHODS Participants were recruited from six HD specialist centers participating in the Enroll-HD cohort study in Germany, Spain and U.S. Assessments were completed at baseline and 12 months and linked to Enroll-HD cohort data. Participants at three sites (cohort) received no contact between baseline and 12 month assessments. Participants at three additional sites (RCT) were randomized to PA intervention or control group. The intervention consisted of 18 sessions delivered over 12 months; control group participants received no intervention, however both groups completed monthly exercise/falls diaries and 6-month assessments. RESULTS 274 participants were screened, 204 met inclusion criteria and 116 were enrolled (59 in cohort; 57 in RCT). Retention rates at 12-months were 84.7% (cohort) and 79.0% (RCT). Data completeness at baseline ranged from 42.3 to 100% and at 12-months 19.2-85.2%. In the RCT, there was 80.5% adherence, high intervention fidelity, and similar adverse events between groups. There were differences in fitness, walking endurance and self-reported PA at 12 months favoring the intervention group, with data completeness >60%. Participants in the cohort had motor and functional decline at rates comparable to previous studies. CONCLUSION Predefined progression criteria indicating feasibility were met. PACE-HD lays the groundwork for a future, fully-powered within cohort trial, but approaches to ensure data completeness must be considered. CLINICALTRIALS GOV: NCT03344601.
Collapse
Affiliation(s)
- Lori Quinn
- Dept of Biobehavioral Sciences, Teachers College, Columbia University, NY, NY, USA; Centre for Trials Research, Cardiff University, UK
| | | | | | | | | | - Lisa M Muratori
- George-Huntington-Institute and Institute for Clinical Radiology, University of Münster, Münster, Germany; Stony Brook University, Stony Brook, NY, USA
| | - Katy Hamana
- School of Healthcare Sciences, Cardiff University, UK
| | | | - Mark Kelson
- Department of Mathematics, Exeter University, Exeter, UK
| | - Robin Schubert
- George-Huntington-Institute and Institute for Clinical Radiology, University of Münster, Münster, Germany
| | - Ciaran Friel
- Feinstein Institutes for Medical Research, Northwell Health, NY, NY, UK
| | - Philippa Morgan-Jones
- Centre for Trials Research, Cardiff University, UK; School of Engineering, Cardiff University, Cardiff, UK
| | - Anne Rosser
- Schools of Medicine and Biosciences, Cardiff University, Cardiff, UK
| | - Monica Busse
- Centre for Trials Research, Cardiff University, UK.
| | | |
Collapse
|
47
|
Phillips MCL, McManus EJ, Brinkhuis M, Romero-Ferrando B. Time-Restricted Ketogenic Diet in Huntington's Disease: A Case Study. Front Behav Neurosci 2022; 16:931636. [PMID: 35967897 PMCID: PMC9372583 DOI: 10.3389/fnbeh.2022.931636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disorder with limited treatment options. Substantial evidence implicates mitochondria dysfunction in brain and skeletal muscle in the pathogenesis of HD. Metabolic strategies, such as fasting and ketogenic diets, theoretically enhance brain and muscle metabolism and mitochondria function, which may improve the clinical symptoms of HD. We report the case of a 41-year-old man with progressive, deteriorating HD who pursued a time-restricted ketogenic diet (TRKD) for 48 weeks. Improvements were measured in his motor symptoms (52% improvement from baseline), activities of daily living (28% improvement), composite Unified HD Rating Scale (cUHDRS) score (20% improvement), HD-related behavior problems (apathy, disorientation, anger, and irritability improved by 50–100%), and mood-related quality of life (25% improvement). Cognition did not improve. Weight remained stable and there were no significant adverse effects. This case study is unique in that a patient with progressive, deteriorating HD was managed with a TRKD, with subsequent improvements in his motor symptoms, activities of daily living, cUHDRS score, most major HD-related behavior problems, and quality of life. Our patient remains dedicated to his TRKD, which continues to provide benefit for him and his family.
Collapse
Affiliation(s)
- Matthew C. L. Phillips
- Department of Neurology, Waikato Hospital, Hamilton, New Zealand
- *Correspondence: Matthew C. L. Phillips
| | | | - Martijn Brinkhuis
- Mental Health Services for Older People, Tauranga Hospital, Tauranga, New Zealand
| | | |
Collapse
|
48
|
Tabrizi SJ, Schobel S, Gantman EC, Mansbach A, Borowsky B, Konstantinova P, Mestre TA, Panagoulias J, Ross CA, Zauderer M, Mullin AP, Romero K, Sivakumaran S, Turner EC, Long JD, Sampaio C. A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurol 2022; 21:632-644. [PMID: 35716693 DOI: 10.1016/s1474-4422(22)00120-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, UK.
| | - Scott Schobel
- Product Development Neuroscience, F Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neurology, Neuroscience, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Klaus Romero
- Critical Path Institute, Tucson, Arizona 85718, USA
| | | | | | - Jeffrey D Long
- Department of Psychiatry, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA; Clinical Pharmacology Laboratory, Faculdade de Medicina de Lisboa, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
49
|
Pfalzer AC, Yan Y, Kang H, Totten M, Silverman J, Bowman AB, Erikson K, Claassen DO. Alterations in metal homeostasis occur prior to canonical markers in Huntington disease. Sci Rep 2022; 12:10373. [PMID: 35725749 PMCID: PMC9209499 DOI: 10.1038/s41598-022-14169-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
The importance of metal biology in neurodegenerative diseases such as Huntingtin Disease is well documented with evidence of direct interactions between metals such as copper, zinc, iron and manganese and mutant Huntingtin pathobiology. To date, it is unclear whether these interactions are observed in humans, how this impacts other metals, and how mutant Huntington alters homeostatic mechanisms governing levels of copper, zinc, iron and manganese in cerebrospinal fluid and blood in HD patients. Plasma and cerebrospinal fluid from control, pre-manifest, manifest and late manifest HD participants were collected as part of HD-Clarity. Levels of cerebrospinal fluid and plasma copper, zinc, iron and manganese were measured as well as levels of mutant Huntingtin and neurofilament in a sub-set of cerebrospinal fluid samples. We find that elevations in cerebrospinal fluid copper, manganese and zinc levels are altered early in disease prior to alterations in canonical biomarkers of HD although these changes are not present in plasma. We also evidence that CSF iron is elevated in manifest patients. The relationships between plasma and cerebrospinal fluid metal are altered based on disease stage. These findings demonstrate that there are alterations in metal biology selectively in the CSF which occur prior to changes in known canonical biomarkers of disease. Our work indicates that there are pathological changes related to alterations in metal biology in individuals without elevations in neurofilament and mutant Huntingtin.
Collapse
Affiliation(s)
- Anna C. Pfalzer
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| | - Yan Yan
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Hakmook Kang
- grid.412807.80000 0004 1936 9916Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Melissa Totten
- grid.266860.c0000 0001 0671 255XDepartment of Nutrition, University of North Carolina-Greensboro, Greensboro, NC USA
| | - James Silverman
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| | - Aaron B. Bowman
- grid.169077.e0000 0004 1937 2197School of Health Sciences, Purdue University, West Lafayette, IN USA
| | - Keith Erikson
- grid.266860.c0000 0001 0671 255XDepartment of Nutrition, University of North Carolina-Greensboro, Greensboro, NC USA
| | - Daniel O. Claassen
- grid.412807.80000 0004 1936 9916Department of Neurology, Vanderbilt University Medical Center, 1611 21st Avenue South, Suite 1532, Nashville, TN 37232 USA
| |
Collapse
|
50
|
Riad R, Lunven M, Titeux H, Cao XN, Hamet Bagnou J, Lemoine L, Montillot J, Sliwinski A, Youssov K, Cleret de Langavant L, Dupoux E, Bachoud-Lévi AC. Predicting clinical scores in Huntington's disease: a lightweight speech test. J Neurol 2022; 269:5008-5021. [PMID: 35567614 PMCID: PMC9363375 DOI: 10.1007/s00415-022-11148-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Using brief samples of speech recordings, we aimed at predicting, through machine learning, the clinical performance in Huntington's Disease (HD), an inherited Neurodegenerative disease (NDD). METHODS We collected and analyzed 126 samples of audio recordings of both forward and backward counting from 103 Huntington's disease gene carriers [87 manifest and 16 premanifest; mean age 50.6 (SD 11.2), range (27-88) years] from three multicenter prospective studies in France and Belgium (MIG-HD (ClinicalTrials.gov NCT00190450); BIO-HD (ClinicalTrials.gov NCT00190450) and Repair-HD (ClinicalTrials.gov NCT00190450). We pre-registered all of our methods before running any analyses, in order to avoid inflated results. We automatically extracted 60 speech features from blindly annotated samples. We used machine learning models to combine multiple speech features in order to make predictions at individual levels of the clinical markers. We trained machine learning models on 86% of the samples, the remaining 14% constituted the independent test set. We combined speech features with demographics variables (age, sex, CAG repeats, and burden score) to predict cognitive, motor, and functional scores of the Unified Huntington's disease rating scale. We provided correlation between speech variables and striatal volumes. RESULTS Speech features combined with demographics allowed the prediction of the individual cognitive, motor, and functional scores with a relative error from 12.7 to 20.0% which is better than predictions using demographics and genetic information. Both mean and standard deviation of pause durations during backward recitation and clinical scores correlated with striatal atrophy (Spearman 0.6 and 0.5-0.6, respectively). INTERPRETATION Brief and examiner-free speech recording and analysis may become in the future an efficient method for remote evaluation of the individual condition in HD and likely in other NDD.
Collapse
Affiliation(s)
- Rachid Riad
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France.,Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Marine Lunven
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Hadrien Titeux
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Xuan-Nga Cao
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Jennifer Hamet Bagnou
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Laurie Lemoine
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Justine Montillot
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Agnes Sliwinski
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Katia Youssov
- Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Laurent Cleret de Langavant
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France.,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France.,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France.,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Emmanuel Dupoux
- Laboratoire de Sciences Cognitives et Psycholinguistique, CNRS 8554, PSL University, 29 rue d'Ulm, 75005, Paris, France.,INRIA, Cognitive Machine Learning Team, 2 Rue Simone IFF, 75012, Paris, France.,EHESS, 54 boulevard Raspail, 75006, Paris, France
| | - Anne-Catherine Bachoud-Lévi
- Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France. .,Faculté de Médecine, Université Paris-Est Créteil, 94000, Créteil, France. .,Inserm U955, Institut Mondor de Recherche Biomédicale, Équipe E01 NeuroPsychologie Interventionnelle, 94000, Créteil, France. .,Centre de Référence Maladie de Huntington, Service de Neurologie, AP-HP, Hôpital Henri Mondor-Albert Chenevier, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France.
| |
Collapse
|