1
|
Mertiri L, Boltshauser E, Kralik SF, Desai NK, Lequin MH, Huisman TAGM. Incidence and Characteristics of Cerebellar Atrophy/Volume Loss in Children with Confirmed Diagnosis of Tuberous Sclerosis Complex. CHILDREN (BASEL, SWITZERLAND) 2024; 11:627. [PMID: 38929207 PMCID: PMC11201845 DOI: 10.3390/children11060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Objectives: The goal of our study was to determine the incidence of cerebellar atrophy, assess the imaging findings in the posterior fossa and determine the incidence of hippocampal sclerosis in a cohort of pediatric patients with confirmed tuberous sclerosis complex (TSC). Material and methods: MRI studies of 98 TSC pediatric patients (mean age 7.67 years) were evaluated for cerebellar atrophy, cerebral/cerebellar tubers, white matter lesions, subependymal nodules, subependymal giant cell astrocytomas, ventriculomegaly, and hippocampal sclerosis. Clinical charts were revisited for clinical symptoms suggesting cerebellar involvement, for seizures and treatment for seizures, behavioral disorders and autism. Results: Cerebral tubers were present in 97/98 cases. In total, 97/98 had subependymal nodules, 15/98 had SEGA, 8/98 had ventriculomegaly and 4/98 had hippocampal sclerosis. Cerebellar tubers were found in 8/98 patients (8.2%), whereas cerebellar atrophy was described in 38/98 cases (38.8%). In 37/38 patients, cerebellar volume loss was mild and diffuse, and only one case presented with left hemi-atrophy. Briefly, 32/38 presented with seizures and were treated with anti-seizure drugs. In total, 8/38 (21%) presented with behavioral disorders, 10/38 had autism and 2/38 presented with seizures and behavioral disorders and autism. Conclusions: Several studies have demonstrated cerebellar involvement in patients with TSC. Cerebellar tubers differ in shape compared with cerebral tubers and are associated with cerebellar volume loss. Cerebellar atrophy may be focal and diffuse and one of the primary cerebellar manifestations of TSC, especially if a TSC2 mutation is present. Cerebellar degeneration may, however, also be secondary/acquired due to cellular damage resulting from seizure activity, the effects of anti-seizure drugs and anoxic-ischemic injury from severe seizure activity/status epilepticus. Further, prospective studies are required to identify and establish the pathogenic mechanism of cerebellar atrophy in patients with TSC.
Collapse
Affiliation(s)
- Livja Mertiri
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; (S.F.K.); (N.K.D.); (M.H.L.); (T.A.G.M.H.)
| | - Eugen Boltshauser
- Division of Pediatric Neurology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Stephen F. Kralik
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; (S.F.K.); (N.K.D.); (M.H.L.); (T.A.G.M.H.)
| | - Nilesh K. Desai
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; (S.F.K.); (N.K.D.); (M.H.L.); (T.A.G.M.H.)
| | - Maarten H. Lequin
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; (S.F.K.); (N.K.D.); (M.H.L.); (T.A.G.M.H.)
| | - Thierry A. G. M. Huisman
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; (S.F.K.); (N.K.D.); (M.H.L.); (T.A.G.M.H.)
| |
Collapse
|
2
|
Srivastava S, Yang F, Prohl AK, Davis PE, Capal JK, Filip-Dhima R, Bebin EM, Krueger DA, Northrup H, Wu JY, Warfield SK, Sahin M, Zhang B. Abnormality of Early White Matter Development in Tuberous Sclerosis Complex and Autism Spectrum Disorder: Longitudinal Analysis of Diffusion Tensor Imaging Measures. J Child Neurol 2024; 39:178-189. [PMID: 38751192 PMCID: PMC11220686 DOI: 10.1177/08830738241248685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Background: Abnormalities in white matter development may influence development of autism spectrum disorder in tuberous sclerosis complex (TSC). Our goals for this study were as follows: (1) use data from a longitudinal neuroimaging study of tuberous sclerosis complex (TACERN) to develop optimized linear mixed effects models for analyzing longitudinal, repeated diffusion tensor imaging metrics (fractional anisotropy, mean diffusivity) pertaining to select white matter tracts, in relation to positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months, and (2) perform an exploratory analysis using optimized models applied to all white matter tracts from these data. Methods: Eligible participants (3-12 months) underwent brain magnetic resonance imaging (MRI) at repeated time points from ages 3 to 36 months. Positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months was used. Linear mixed effects models were fine-tuned separately for fractional anisotropy values (using fractional anisotropy corpus callosum as test outcome) and mean diffusivity values (using mean diffusivity right posterior limb internal capsule as test outcome). Fixed effects included participant age, within-participant longitudinal age, and autism spectrum disorder diagnosis. Results: Analysis included data from n = 78. After selecting separate optimal models for fractional anisotropy and mean diffusivity values, we applied these models to fractional anisotropy and mean diffusivity of all 27 white matter tracts. Fractional anisotropy corpus callosum was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = 0.0093, P = .0612), and mean diffusivity right inferior cerebellar peduncle was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = -0.00002071, P = .0445), though these findings were not statistically significant after multiple comparisons correction. Conclusion: These optimized linear mixed effects models possibly implicate corpus callosum and cerebellar pathology in development of autism spectrum disorder in tuberous sclerosis complex, but future studies are needed to replicate these findings and explore contributors of heterogeneity in these models.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Fanghan Yang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna K. Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Peter E. Davis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Jamie K. Capal
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Rajna Filip-Dhima
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Darcy A. Krueger
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Joyce Y. Wu
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology and ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sidira C, Vargiami E, Anastasiou A, Talimtzi P, Kyriazi M, Dragoumi P, Spanou M, Ntinopoulos A, Dalpa E, Evangeliou A, Zafeiriou DI. The Complex Interplay of Cortex, Cerebellum, and Age in a Cohort of Pediatric Patients With Tuberous Sclerosis Complex. Pediatr Neurol 2021; 123:43-49. [PMID: 34399109 DOI: 10.1016/j.pediatrneurol.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The neurodevelopmental impairment in tuberous sclerosis complex (TSC) has a multifactorial origin. Various factors have been proposed as predictors of neurological outcome such as tuber load, seizure onset, and TSC2 mutation. Cerebellar lesions have been associated with worse neuroradiological phenotype, but their contribution is not well understood. METHODS A partly retrospective and partly prospective pediatric cohort study was conducted at three hospitals in Greece between 2015 and 2020. Patients aged ≤ 18 years with a confirmed TSC daignosis were included and underwent brain imaging, a semistructured interview (authorized Greek version of the tuberous sclerosis-associated neuropsychiatric disorders, or TAND, checklist), and intellectual ability assessment. RESULTS The study populations consisted of 45 patients with TSC (22 females, 23 males; mean age 9.53 years). Twenty patients (44.4%) had cerebellar lesions. Cerebellar involvement was the most powerful predictor of tuber load (P = 0.03). Cerebellar lesions were associated with giant cell astrocytomas (SEGAs) (P = 0.01) and severe neurological outcome (P = 0.01). Even though in the univariate analysis early seizure onset, tuber load, and cerebellar involvement were associated with intellectual impairment and neurological severity, none of them was an independent predictor of cognitive outcome and neurological severity. CONCLUSIONS Cerebellar lesions are common among individuals with TSC. Cerebellar involvement correlates with supratentorial derangement and the development of SEGAs, which is suggestive of a more severe clinical and neuroradiological phenotype. Cerebellar involvement and early seizure onset were not independent predictors of either neurological severity or intellectual disability or neurobehavioral outcome; their role in TSC clinical phenotype should be further investigated.
Collapse
Affiliation(s)
- Christina Sidira
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Efthymia Vargiami
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | | | - Persefoni Talimtzi
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Kyriazi
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Pinelopi Dragoumi
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Maria Spanou
- 3(rd)Pediatric Department, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Argirios Ntinopoulos
- 3(rd)Pediatric Department, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Efterpi Dalpa
- 4(th) Pediatric Department, Aristotle University of Thessaloniki, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | - Athanasios Evangeliou
- 4(th) Pediatric Department, Aristotle University of Thessaloniki, "Papageorgiou" General Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece.
| |
Collapse
|
5
|
Congenital subpendymal giant cell astrocytoma in children with tuberous sclerosis complex: growth patterns and neurological outcome. Pediatr Res 2021; 89:1447-1451. [PMID: 32516799 DOI: 10.1038/s41390-020-1002-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Literature regarding congenital subependymal giant cell astrocytomas (SEGA) is limited, and suggests they are at risk of rapid growth and complications. We sought to characterise the growth patterns of congenital SEGA. The second part of the study was an exploratory analysis of congenital SEGA as a possible biomarker for poor neurological outcome. METHODS This single-centre case series describes ten patients with TSC who had SEGA diagnosed before 12 months. SEGA diameter and volumetric growth were analysed using serial MRIs. Neurological outcomes were compared to a genotype-matched group. RESULTS All children with congenital SEGA had a TSC2 mutation. Patients were followed for 1-8.7 years, during which median SEGA growth rate was 1.1 mm/yr in diameter or 150 mm3/yr volumetrically. SEGA with volume > 500 mm3 had a significantly higher growth rate compared with smaller SEGA (462 mm3/yr vs. 42 mm3/yr, p = 0.0095). Children with congenital SEGA had a high prevalence of severe epilepsy, developmental disability and autism spectrum disorder. CONCLUSION Congenital SEGA can follow a relatively benign course with a lower growth rate compared with published literature. Frequent neuroimaging surveillance is recommended for congenital SEGA with volumes exceeding 500 mm3. IMPACT Congenital SEGA occur in 9.2% of paediatric patients with tuberous sclerosis complex. There are few published cases of congenital SEGA to date. This case series of ten patients adds our experience seen in a tertiary referral hospital over 10 years. Congenital SEGA can follow a relatively benign course with a lower growth rate compared with published literature. Congenital SEGA with volume exceeding 500 mm3 had a significantly higher growth rate compared with smaller SEGA and should have more frequent neuroimaging surveillance.
Collapse
|
6
|
Machado-Rivas F, Afacan O, Khan S, Marami B, Rollins CK, Ortinau C, Velasco-Annis C, Warfield SK, Gholipour A, Jaimes C. Tractography of the Cerebellar Peduncles in Second- and Third-Trimester Fetuses. AJNR Am J Neuroradiol 2021; 42:194-200. [PMID: 33431505 PMCID: PMC7814802 DOI: 10.3174/ajnr.a6869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Little is known about microstructural development of cerebellar white matter in vivo. This study aimed to investigate developmental changes of the cerebellar peduncles in second- and third-trimester healthy fetuses using motion-corrected DTI and tractography. MATERIALS AND METHODS 3T data of 81 healthy fetuses were reviewed. Structural imaging consisted of multiplanar T2-single-shot sequences; DTI consisted of a series of 12-direction diffusion. A robust motion-tracked section-to-volume registration algorithm reconstructed images. ROI-based deterministic tractography was performed using anatomic landmarks described in postnatal tractography. Asymmetry was evaluated qualitatively with a perceived difference of >25% between sides. Linear regression evaluated gestational age as a predictor of tract volume, ADC, and fractional anisotropy. RESULTS Twenty-four cases were excluded due to low-quality reconstructions. Fifty-eight fetuses with a median gestational age of 30.6 weeks (interquartile range, 7 weeks) were analyzed. The superior cerebellar peduncle was identified in 39 subjects (69%), and it was symmetric in 15 (38%). The middle cerebellar peduncle was identified in all subjects and appeared symmetric; in 13 subjects (22%), two distinct subcomponents were identified. The inferior cerebellar peduncle was not found in any subject. There was a significant increase in volume for the superior cerebellar peduncle and middle cerebellar peduncle (both, P < .05), an increase in fractional anisotropy (both, P < .001), and a decrease in ADC (both, P < .001) with gestational age. The middle cerebellar peduncle had higher volume (P < .001) and fractional anisotropy (P = .002) and lower ADC (P < .001) than the superior cerebellar peduncle after controlling for gestational age. CONCLUSIONS A robust motion-tracked section-to-volume registration algorithm enabled deterministic tractography of the superior cerebellar peduncle and middle cerebellar peduncle in vivo and allowed characterization of developmental changes.
Collapse
Affiliation(s)
- F Machado-Rivas
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - O Afacan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - S Khan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - B Marami
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C K Rollins
- Department of Radiology, Department of Neurology (C.K.R.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Ortinau
- Department of Pediatrics (C.O.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - C Velasco-Annis
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
| | - S K Warfield
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - A Gholipour
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Jaimes
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center (C.J.), Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| |
Collapse
|
7
|
Williams ME, Pearson DA, Capal JK, Byars AW, Murray DS, Kissinger R, O'Kelley SE, Hanson E, Bing NM, Kent B, Wu JY, Northrup H, Bebin EM, Sahin M, Krueger D. Impacting development in infants with tuberous sclerosis complex: Multidisciplinary research collaboration. ACTA ACUST UNITED AC 2020; 74:356-367. [PMID: 30945897 DOI: 10.1037/amp0000436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Tuberous Sclerosis Complex Autism Center of Excellence Network (TACERN) is a 6-site collaborative conducting longitudinal research on infants with tuberous sclerosis complex (TSC), focused on identifying early biomarkers for autism spectrum disorder (ASD). A multidisciplinary research team that includes the specialties of psychology, neurology, pediatrics, medical genetics, and speech-language pathology, its members work together to conduct studies on neurological status, brain structure and function, neurodevelopmental phenotype, and behavioral challenges in this population. This article provides insights into the roles of the multidisciplinary multisite team and lessons learned from the collaboration, in terms of research as well as training of future researchers and clinicians. In addition, the authors detail the major findings to date, including those related to the identification and measurement of early symptoms of ASD, relationship between seizures and early development, and early biomarkers for epilepsy and developmental delay in infants and young children with TSC. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hope Northrup
- University of Texas Health Science Center at Houston
| | | | | | | | | |
Collapse
|
8
|
Jones JE, Asato MR, Brown MG, Doss JL, Felton EA, Kearney JA, Talos D, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area IV: Limit or Prevent Adverse Consequence of Seizures and Their Treatment Across the Life Span. Epilepsy Curr 2020; 20:31S-39S. [PMID: 31973592 PMCID: PMC7031803 DOI: 10.1177/1535759719895277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epilepsy represents a complex spectrum disorder, with patients sharing seizures as a common symptom and manifesting a broad array of additional clinical phenotypes. To understand this disorder and treat individuals who live with epilepsy, it is important not only to identify pathogenic mechanisms underlying epilepsy but also to understand their relationships with other health-related factors. Benchmarks Area IV focuses on the impact of seizures and their treatment on quality of life, development, cognitive function, and other aspects and comorbidities that often affect individuals with epilepsy. Included in this review is a discussion on sudden unexpected death in epilepsy and other causes of mortality, a major area of research focus with still many unanswered questions. We also draw attention to special populations, such as individuals with nonepileptic seizures and pregnant women and their offspring. In this study, we review the progress made in these areas since the 2016 review of the Benchmarks Area IV and discuss challenges and opportunities for future study.
Collapse
Affiliation(s)
- Jana E Jones
- University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Miya R Asato
- Division of Child Neurology, UPMC Children's Hospital of Pittsburgh, PA, USA
| | - Mesha-Gay Brown
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Elizabeth A Felton
- University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | | | - Delia Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
9
|
Ahtam B, Dehaes M, Sliva DD, Peters JM, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Sahin M, Grant PE. Resting-State fMRI Networks in Children with Tuberous Sclerosis Complex. J Neuroimaging 2019; 29:750-759. [PMID: 31304656 DOI: 10.1111/jon.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE There are no published studies examining resting state networks (RSNs) and their relationship with neurodevelopmental metrics in tuberous sclerosis complex (TSC). We aimed to identify major resting-state functional magnetic resonance imaging (rs-fMRI) networks in infants with TSC and correlate network analyses with neurodevelopmental assessments, autism diagnosis, and seizure history. METHODS Rs-fMRI data from 34 infants with TSC, sedated with propofol during the scan, were analyzed to identify auditory, motor, and visual RSNs. We examined the correlations between auditory, motor, and visual RSNs at approximately 11.5 months, neurodevelopmental outcome at approximately 18.5 months, and diagnosis of autism spectrum disorders at approximately 36 months of age. RESULTS RSNs were obtained in 76.5% (26/34) of infants. We observed significant negative correlations between auditory RSN and auditory comprehension test scores (p = .038; r = -.435), as well as significant positive correlations between motor RSN and gross motor skills test scores (p = .023; r = .564). Significant positive correlations between motor RSNs and gross motor skills (p = .012; r = .754) were observed in TSC infants without autism, but not in TSC infants with autism, which could suggest altered motor processing. There were no significant differences in RSNs according to seizure history. CONCLUSIONS Negative correlation between auditory RSN, as well as positive correlation between motor RSN and developmental outcome measures might reflect different brain mechanisms and, when identified, may be helpful in predicting later function. A larger study of TSC patients with a healthy control group is needed before auditory and motor RSNs could be considered as neurodevelopmental outcome biomarkers.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mathieu Dehaes
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal and CHU Sainte-Justine, Montreal, QC, Canada
| | - Danielle D Sliva
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Neuroscience, Brown University, Providence, RI
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | -
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|