1
|
Liu M, Gao Y, Hao G, Yan X, Zhang X, Wang X, Shu W, Yu T. Symptomatic Emotional Responses and Changes in Networks Elicited by Direct Electrical Stimulation. CNS Neurosci Ther 2025; 31:e70393. [PMID: 40243275 PMCID: PMC12004395 DOI: 10.1111/cns.70393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
AIM Emotion is a major area of research in psychology and neuroscience. However, the role of direct electrical stimulation (DES) in emotional localization has not yet been fully explored. This study aimed to analyze the use of DES in examining the local connectivity of brain regions eliciting emotional responses, thereby providing evidence for a new perspective of local changes in brain networks during emotional responses. METHODS We reviewed the clinical data of 500 patients with refractory epilepsy who underwent stereoencephalogram (SEEG) implantation to locate the epileptogenic area and functional mapping of the brain. The three-dimensional reconstruction was employed for the qualitative and positioning analysis on the emotional responses elicited using DES. We used Granger causality (GC), directed transfer function (DTF), and partial directed coherence (PDC) to analyze the changes in functional connectivity before and after stimulation in selected patients. RESULTS Emotional responses were evoked without aura using DES in 85 contacts in 31 patients, including 35 (41.2%) contacts with fear, 37 (43.5%) contacts with happiness, 6 (7.1%) contacts with anxiety, and 7 (8.2%) contacts with depression. Three contacts of interest in two patients experiencing transient emotional symptoms underwent GC, DTF, and PDC analyses; the analysis revealed significant differences in brain networks before and after stimulation in selected patients. CONCLUSIONS DES can evoke emotions across various brain regions, such as the bilateral amygdala, hippocampus, temporal lobe, frontal lobe, insula, cingulate cortex, paracentral gyrus, fusiform, orbitofrontal cortex, left thalamus, and putamen. These elicited emotional experiences may largely result from the alterations in local brain networks.
Collapse
Affiliation(s)
- Menglin Liu
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Ying Gao
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Guiliang Hao
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xiaoming Yan
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohua Zhang
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Xueyuan Wang
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wei Shu
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Tao Yu
- Beijing Institute of Functional NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Cecchi R, Collomb-Clerc A, Rachidi I, Minotti L, Kahane P, Pessiglione M, Bastin J. Direct stimulation of anterior insula and ventromedial prefrontal cortex disrupts economic choices. Nat Commun 2024; 15:7508. [PMID: 39209840 PMCID: PMC11362155 DOI: 10.1038/s41467-024-51822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Neural activity within the ventromedial prefrontal cortex (vmPFC) and anterior insula (aIns) is often associated with economic choices and confidence. However, it remains unclear whether these brain regions are causally related to these processes. To address this issue, we leveraged intracranial electrical stimulation (iES) data obtained from patients with epilepsy performing an economic choice task. Our results reveal opposite effects of stimulation on decision-making depending on its location along a dorso-ventral axis within each region. Specifically, stimulation of the ventral subregion within aIns reduces risk-taking by increasing participants' sensitivity to potential losses, whereas stimulation of the dorsal subregion of aIns and the ventral portion of the vmPFC increases risk-taking by reducing participants' sensitivity to losses. Moreover, stimulation of the aIns consistently decreases participants' confidence, regardless of its location within the aIns. These findings suggest the existence of functionally dissociated neural subregions and circuits causally involved in accepting or avoiding challenges.
Collapse
Affiliation(s)
- Romane Cecchi
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
- Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et de la Recherche Médicale, Paris, France.
- Département d'Études Cognitives, École Normale Supérieure, Université Paris Sciences et Lettres, Paris, France.
| | - Antoine Collomb-Clerc
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Inès Rachidi
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior (MBB) team, Paris Brain Institute, Pitié-Salpêtrière Hospital, Paris, France
- Université de Paris, Paris, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
3
|
Hedaya A, Ver Hoef L. "Amity Seizures": A previously unreported semiology localizing to a circuit between the right hippocampus and orbitofrontal area. Epilepsy Behav Rep 2024; 25:100649. [PMID: 38323089 PMCID: PMC10844940 DOI: 10.1016/j.ebr.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
We describe a case of focal epilepsy with a semiology consisting of behaviors indicating an enthusiastic desire for those around him to get along and engage in friendly relations, which we refer to as "amity seizures". The patient was a 41-year-old right-handed male with seizures since age 26. Semiology consisted of stereotyped enthusiastic behaviors such as expressing "Peace! Peace!… Come on, we all on the same team, right?!", and giving hugs, kisses, and high-fives to those around him. On SEEG evaluation, 2 independent areas of seizure onset were identified, the right hippocampus and right posterior orbitofrontal area. Locally confined seizures had bland manifestation. However, spread from right hippocampus to right orbitofrontal area, or vice versa, elicited his typical amity seizure semiology. To our knowledge this is the first report of the seizure semiology we have coined "Amity seizures". While emotions were once thought to localize to discrete brain regions, they are now accepted to arise from networks across multiple brain regions. The fact that this behavior only occurred when seizures spread from either of 2 onset zones to the other suggests that this semiology results from network engagement between, and likely beyond, either onset zone.
Collapse
Affiliation(s)
- Alexander Hedaya
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 25233, USA
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 25233, USA
- Birmingham VA Medical Center, Neurology Service, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Tiesinga P, Platonov A, Pelliccia V, LoRusso G, Sartori I, Orban GA. Uncovering the fast, directional signal flow through the human temporal pole during semantic processing. Sci Rep 2023; 13:6831. [PMID: 37100843 PMCID: PMC10133264 DOI: 10.1038/s41598-023-33318-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The temporal pole (TP) plays a central role in semantic memory, yet its neural machinery is unknown. Intracerebral recordings in patients discriminating visually the gender or actions of an actor, yielded gender discrimination responses in the ventrolateral (VL) and tip (T) regions of right TP. Granger causality revealed task-specific signals travelling first forward from VL to T, under control of orbitofrontal cortex (OFC) and neighboring prefrontal cortex, and then, strongly, backwards from T to VL. Many other cortical regions provided inputs to or received outputs from both TP regions, often with longer delays, with ventral temporal afferents to VL signaling the actor's physical appearance. The TP response timing reflected more that of the connections to VL, controlled by OFC, than that of the input leads themselves. Thus, visual evidence for gender categories, collected by VL, activates category labels in T, and consequently, category features in VL, indicating a two-stage representation of semantic categories in TP.
Collapse
Affiliation(s)
- P Tiesinga
- Neuroinformatics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - A Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy
| | - V Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G LoRusso
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - I Sartori
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
5
|
Havlík M, Hlinka J, Klírová M, Adámek P, Horáček J. Towards causal mechanisms of consciousness through focused transcranial brain stimulation. Neurosci Conscious 2023; 2023:niad008. [PMID: 37089451 PMCID: PMC10120840 DOI: 10.1093/nc/niad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Conscious experience represents one of the most elusive problems of empirical science, namely neuroscience. The main objective of empirical studies of consciousness has been to describe the minimal sets of neural events necessary for a specific neuronal state to become consciously experienced. The current state of the art still does not meet this objective but rather consists of highly speculative theories based on correlates of consciousness and an ever-growing list of knowledge gaps. The current state of the art is defined by the limitations of past stimulation techniques and the emphasis on the observational approach. However, looking at the current stimulation technologies that are becoming more accurate, it is time to consider an alternative approach to studying consciousness, which builds on the methodology of causal explanations via causal alterations. The aim of this methodology is to move beyond the correlates of consciousness and focus directly on the mechanisms of consciousness with the help of the currently focused brain stimulation techniques, such as geodesic transcranial electric neuromodulation. This approach not only overcomes the limitations of the correlational methodology but will also become another firm step in the following science of consciousness.
Collapse
Affiliation(s)
- Marek Havlík
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | - Jaroslav Hlinka
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic
| | - Monika Klírová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Petr Adámek
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Jiří Horáček
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
6
|
Li Y, Tan Z, Wang J, Cai Y, Wang M, Zhou W, Wang L. Responses of Chemosensory Perception to Stimulation of the Human Brain. Ann Neurol 2023; 93:175-183. [PMID: 36218015 DOI: 10.1002/ana.26532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Significant advances have been made in our understanding of the neural substrates of human chemosensory processing, involving the piriform cortex, insula, and orbitofrontal cortex. However, the important and challenging issues are to localize the brain regions with high anatomic precision that can causally produce chemosensory perception and further delineate the topography of different classifications of chemosensory perception. METHODS We quantitatively measured subjective responses of chemosensory perception to intracranial electrical stimulation over the brain in neurosurgical patients (n = 302) with medically refractory epilepsy. RESULTS The chemosensory perceptions including olfaction, gustation, and chemesthesis were elicited in 21 of 302 patients (7%). Chemosensory responses were evoked in 53 (0.2%) of 21,661 stimulated sites. The highest response rate (1.8%) was in the insula (37/2,051 stimulated sites from 15/163 patients). The chemosensory perception emerged predominantly during stimulation of the insula along the central sulcus axis. Notably, there existed a distinct pattern that the anteroventral insula predominately represented orthonasal olfaction, whereas different chemosensory modalities converged in the mid-dorsal insula. INTERPRETATION This study provided a detailed characterization of chemosensory perception across the brain, especially in the insula. These results suggest that the cortex along the banks of the central sulcus of the insula may play a role in producing the supramodal sensation of flavor. It also indicates that dysfunction of the central insula should be considered during the evaluation of chemosensory-related epileptic seizures. ANN NEUROL 2023;93:175-183.
Collapse
Affiliation(s)
- Yanyan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yufei Cai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengyang Wang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wen Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
8
|
Analysis of lateral orbitofrontal cortex activation on acquisition of fear extinction and neuronal activities in fear circuit. Brain Struct Funct 2022; 227:2529-2541. [PMID: 35918458 DOI: 10.1007/s00429-022-02545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Inappropriate fear expression and failure of fear extinction are commonly seen in patients with post-traumatic stress disorder (PTSD) and obsessive-compulsive disorder (OCD). Among the patients, aberrant and asymmetric activation of the lateral orbitofrontal cortex (lOFC) is reported in some clinical cases. In this study, we aimed to examine the role of lOFC activation in extinction acquisition and explore the potential functional lateralization of lOFC on extinction. We bilaterally or unilaterally activated the lOFC with N-methyl-D-aspartate (NMDA) before fear extinction acquisition in rats. Our data suggested that both left and bilateral lOFC activation interfered with the in-session expression of conditioned fear, whereas activation of the right lOFC did not. In addition, pre-extinction unilateral or bilateral activation of the lOFC, regardless of the side, impaired the acquisition of fear extinction. We also quantified the neuronal activities during the late phase of extinction with immunohistochemical approach. Our data showed that activation of the lOFC increased the neuronal activities on the injection side(s) in the medial prefrontal cortex (mPFC), the lateral amygdala (LA), the basolateral amygdala (BLA; preferentially the non-GABAergic neurons), and the medial intercalated cells (mITC; preferentially the right side). To conclude, aberrant activation of the lOFC during extinction disturbed the excitatory/inhibitory balance of neuronal activities in fear-related brain regions, which interfered with the expression of conditioned fear and impaired the acquisition of fear extinction.
Collapse
|
9
|
Beniczky S, Tatum WO, Blumenfeld H, Stefan H, Mani J, Maillard L, Fahoum F, Vinayan KP, Mayor LC, Vlachou M, Seeck M, Ryvlin P, Kahane P. Seizure semiology: ILAE glossary of terms and their significance. Epileptic Disord 2022; 24:447-495. [PMID: 35770761 DOI: 10.1684/epd.2022.1430] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
This educational topical review and Task Force report aims to address learning objectives of the International League Against Epilepsy (ILAE) curriculum. We sought to extract detailed features involving semiology from video recordings and interpret semiological signs and symptoms that reflect the likely localization for focal seizures in patients with epilepsy. This glossary was developed by a working group of the ILAE Commission on Diagnostic Methods incorporating the EEG Task Force. This paper identifies commonly used terms to describe seizure semiology, provides definitions, signs and symptoms, and summarizes their clinical value in localizing and lateralizing focal seizures based on consensus in the published literature. Video-EEG examples are included to illustrate important features of semiology in patients with epilepsy.
Collapse
|
10
|
Parvizi J, Veit MJ, Barbosa DA, Kucyi A, Perry C, Parker JJ, Shivacharan RS, Chen F, Yih J, Gross JJ, Fisher R, McNab JA, Falco-Walter J, Halpern CH. Complex negative emotions induced by electrical stimulation of the human hypothalamus. Brain Stimul 2022; 15:615-623. [DOI: 10.1016/j.brs.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022] Open
|
11
|
Association of increased abdominal adiposity at birth with altered ventral caudate microstructure. Int J Obes (Lond) 2021; 45:2396-2403. [PMID: 34282269 DOI: 10.1038/s41366-021-00905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neonatal adiposity is associated with a higher risk of obesity and cardiometabolic risk factors in later life. It is however unknown if central food intake regulating networks in the ventral striatum are altered with in-utero abdominal growth, indexed by neonatal adiposity in our current study. We aim to examine the relationship between striatal microstructure and abdominal adipose tissue compartments (AATCs) in Asian neonates from the Growing Up in Singapore Toward healthy Outcomes mother-offspring cohort. STUDY DESIGN About 109 neonates were included in this study. Magnetic resonance imaging (MRI) was performed for the brain and abdominal regions between 5 to 17 days of life. Diffusion-weighted imaging of the brain was performed for the derivation of caudate and putamen fractional anisotropy (FA). Abdominal imaging was performed to quantify AATCs namely superficial subcutaneous adipose tissue (sSAT), deep subcutaneous adipose tissue (dSAT), and internal adipose tissue (IAT). Absolute and percentage adipose tissue of total abdominal volume (TAV) were calculated. RESULTS We showed that AATCs at birth were significantly associated with increased FA in bilateral ventral caudate heads which are part of the ventral striatum (sSAT: βleft = 0.56, p < 0.001; βright = 0.65, p < 0.001, dSAT: βleft = 0.43, p < 0.001; βright = 0.52, p < 0.001, IAT: βleft = 0.30, p = 0.005; βright = 0.32, p = 0.002) in neonates with low birth weights adjusted for gestational age. CONCLUSIONS Our study provides preliminary evidence of a potential relationship between neonatal adiposity and in-utero programming of the ventral striatum, a brain structure that governs feeding behavior.
Collapse
|
12
|
Zhang T, Bai T, Xie W, Wei Q, Lv H, Wang A, Guan J, Tian Y, Wang K. Abnormal connectivity of anterior-insular subdivisions and relationship with somatic symptom in depressive patients. Brain Imaging Behav 2021; 15:1760-1768. [PMID: 32748317 DOI: 10.1007/s11682-020-00371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Depressive patients frequently present with somatic complaints such as pain and fatigue. The anterior insula (AI) is a crucial region for somatic processing, but reported contributions of AI dysfunction to somatic symptoms have varied across studies. We speculated that functional heterogeneity among AI subdivisions may contribute to this inconsistency. To reveal the correlation between each subdivision and somatic symptoms, we investigated resting-state functional connectivity (RSFC) based on seeds within distinct AI subdivisions in 45 depressive patients and 35 matched healthy controls (HCs). Depressive and somatic symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and the 15-item somatic symptom severity scale of the Patient Health Questionnaire (PHQ-15), respectively. The contributions of AI subregion-specific pathways to depression were further validated by examining changes in symptom severity and RSFC following electroconvulsive therapy (ECT). At baseline, depressive patients exhibited weaker RSFC between ventral AI (vAI) and right orbitofrontal cortex (rOFC) than HCs. Moreover, vAI-rOFC RSFC strength was negatively correlated with PHQ-15 and HDRS scores, indicating that weaker RSFC predicted greater symptom severity. ECT reduced depressive and somatic symptoms, and symptom mitigation was correlated with enhanced vAI-rOFC RSFC. The findings suggest that reduced vAI-rOFC RSFC underlies the somatic symptoms of depression and that enhancing vAI-rOFC RSFC can contribute to amelioration of somatic symptoms.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Wen Xie
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Anzhen Wang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Jianjun Guan
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China.
- National Clinical Research Center for Mental Disorders, Hefei, China.
- Department of Medical Psychology, Anhui Medical University, Anhui Province, Hefei, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China.
- Department of Medical Psychology, Anhui Medical University, Anhui Province, Hefei, China.
| |
Collapse
|
13
|
Does the Prefrontal Cortex Play an Essential Role in Consciousness? Insights from Intracranial Electrical Stimulation of the Human Brain. J Neurosci 2021; 41:2076-2087. [PMID: 33692142 DOI: 10.1523/jneurosci.1141-20.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
A central debate in philosophy and neuroscience pertains to whether PFC activity plays an essential role in the neural basis of consciousness. Neuroimaging and electrophysiology studies have revealed that the contents of conscious perceptual experience can be successfully decoded from PFC activity, but these findings might be confounded by postperceptual cognitive processes, such as thinking, reasoning, and decision-making, that are not necessary for consciousness. To clarify the involvement of the PFC in consciousness, we present a synthesis of research that has used intracranial electrical stimulation (iES) for the causal modulation of neural activity in the human PFC. This research provides compelling evidence that iES of only certain prefrontal regions (i.e., orbitofrontal cortex and anterior cingulate cortex) reliably perturbs conscious experience. Conversely, stimulation of anterolateral prefrontal sites, often considered crucial in higher-order and global workspace theories of consciousness, seldom elicits any reportable alterations in consciousness. Furthermore, the wide variety of iES-elicited effects in the PFC (e.g., emotions, thoughts, and olfactory and visual hallucinations) exhibits no clear relation to the immediate environment. Therefore, there is no evidence for the kinds of alterations in ongoing perceptual experience that would be predicted by higher-order or global workspace theories. Nevertheless, effects in the orbitofrontal and anterior cingulate cortices suggest a specific role for these PFC subregions in supporting emotional aspects of conscious experience. Overall, this evidence presents a challenge for higher-order and global workspace theories, which commonly point to the PFC as the basis for conscious perception based on correlative and possibly confounded information.
Collapse
|
14
|
Ng S, Herbet G, Lemaitre AL, Moritz-Gasser S, Duffau H. Disrupting self-evaluative processing with electrostimulation mapping during awake brain surgery. Sci Rep 2021; 11:9386. [PMID: 33931714 PMCID: PMC8087680 DOI: 10.1038/s41598-021-88916-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Brain awake surgery with cognitive monitoring for tumor removal has become a standard of treatment for functional purpose. Yet, little attention has been given to patients' interpretation and awareness of their own responses to selected cognitive tasks during direct electrostimulation (DES). We aim to report disruptions of self-evaluative processing evoked by DES during awake surgery. We further investigate cortico-subcortical structures involved in self-assessment process and report the use of an intraoperative self-assessment tool, the self-confidence index (SCI). Seventy-two patients who had undergone awake brain tumor resections were selected. Inclusion criteria were the occurrence of a DES-induced disruption of an ongoing task followed by patient's failure to remember or criticize these impairments, or a dissociation between patient's responses to an ongoing task and patient's SCI. Disruptions of self-evaluation were frequently associated with semantic disorders and critical sites were mostly found along the left/right ventral semantic streams. Disconnectome analyses generated from a tractography-based atlas confirmed the high probability of the inferior fronto-occipital fasciculus to be transitory 'disconnected'. These findings suggest that white matters pathways belonging to the ventral semantic stream may be critically involved in human self-evaluative processing. Finally, the authors discuss the implementation of the SCI task during multimodal intraoperative monitoring.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France. .,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Chang LJ, Jolly E, Cheong JH, Rapuano KM, Greenstein N, Chen PHA, Manning JR. Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. SCIENCE ADVANCES 2021; 7:eabf7129. [PMID: 33893106 PMCID: PMC8064646 DOI: 10.1126/sciadv.abf7129] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
How we process ongoing experiences is shaped by our personal history, current needs, and future goals. Consequently, ventromedial prefrontal cortex (vmPFC) activity involved in processing these subjective appraisals appears to be highly idiosyncratic across individuals. To elucidate the role of the vmPFC in processing our ongoing experiences, we developed a computational framework and analysis pipeline to characterize the spatiotemporal dynamics of individual vmPFC responses as participants viewed a 45-minute television drama. Through a combination of functional magnetic resonance imaging, facial expression tracking, and self-reported emotional experiences across four studies, our data suggest that the vmPFC slowly transitions through a series of discretized states that broadly map onto affective experiences. Although these transitions typically occur at idiosyncratic times across people, participants exhibited a marked increase in state alignment during high affectively valenced events in the show. Our work suggests that the vmPFC ascribes affective meaning to our ongoing experiences.
Collapse
Affiliation(s)
- Luke J Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Eshin Jolly
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jin Hyun Cheong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Nathan Greenstein
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Pin-Hao A Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Jeremy R Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
16
|
Pellegrino R, Mainland JD, Kelly CE, Parker JK, Hummel T. Prevalence and correlates of parosmia and phantosmia among smell disorders. Chem Senses 2021; 46:bjab046. [PMID: 34698820 PMCID: PMC8633731 DOI: 10.1093/chemse/bjab046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among those many individuals who experience a reduced odor sensitivity (hyposmia/anosmia), some individuals also have disorders that lead to odor distortion, such as parosmia (i.e. distorted odor with a known source), or odor phantoms (i.e. odor sensation without an odor source). We surveyed a large population with at least one olfactory disorder (N = 2031) and found that odor distortions were common (46%), with respondents reporting either parosmia (19%), phantosmia (11%), or both (16%). In comparison to respondents with hyposmia or anosmia, respondents with parosmia were more likely to be female, young, and suffering from post-viral olfactory loss (P < 0.001), while respondents with phantosmia were more likely to be middle-aged (P < 0.01) and experiencing symptoms caused by head trauma (P < 0.01). In addition, parosmia, compared to phantosmia or anosmia/hyposmia, was most prevalent 3 months to a year after olfactory symptom onset (P < 0.001), which coincides with the timeline of physiological recovery. Finally, we observed that the frequency and duration of distortions negatively affects the quality of life, with parosmia showing a higher range of severity than phantosmia (P < 0.001). Previous research often grouped these distortions together, but our results show that they have distinct patterns of demographics, medical history, and loss in quality of life.
Collapse
Affiliation(s)
- Robert Pellegrino
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Joel D Mainland
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Christof Koch
- MindScope Program, Allen Institute, Seattle, Washington, USA.
| |
Collapse
|
18
|
Differential functional connectivity underlying asymmetric reward-related activity in human and nonhuman primates. Proc Natl Acad Sci U S A 2020; 117:28452-28462. [PMID: 33122437 PMCID: PMC7668182 DOI: 10.1073/pnas.2000759117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The orbitofrontal cortex (OFC) is a key brain region involved in complex cognitive functions such as reward processing and decision making. Neuroimaging studies have reported unilateral OFC response to reward-related variables; however, those studies rarely discussed this observation. Nevertheless, some lesion studies suggest that the left and right OFC contribute differently to cognitive processes. We hypothesized that the OFC asymmetrical response to reward could reflect underlying hemispherical difference in OFC functional connectivity. Using resting-state and reward-related functional MRI data from humans and from rhesus macaques, we first identified an asymmetrical response of the lateral OFC to reward in both species. Crucially, the subregion showing the highest reward-related asymmetry (RRA) overlapped with the region showing the highest functional connectivity asymmetry (FCA). Furthermore, the two types of asymmetries were found to be significantly correlated across individuals. In both species, the right lateral OFC was more connected to the default mode network compared to the left lateral OFC. Altogether, our results suggest a functional specialization of the left and right lateral OFC in primates.
Collapse
|
19
|
Fox KCR, Parvizi J. Fidelity of first-person reports following intracranial neuromodulation of the human brain: An empirical assessment of sham stimulation in neurosurgical patients. Brain Stimul 2020; 14:77-79. [PMID: 33130019 PMCID: PMC8720563 DOI: 10.1016/j.brs.2020.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Kieran C R Fox
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA.
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
21
|
Peter MG, Mårtensson G, Postma EM, Nordin LE, Westman E, Boesveldt S, Lundström JN. Morphological changes in secondary, but not primary, sensory cortex in individuals with life-long olfactory sensory deprivation. Neuroimage 2020; 218:117005. [DOI: 10.1016/j.neuroimage.2020.117005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
|
22
|
Fox KCR, Shi L, Baek S, Raccah O, Foster BL, Saha S, Margulies DS, Kucyi A, Parvizi J. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat Hum Behav 2020; 4:1039-1052. [PMID: 32632334 DOI: 10.1038/s41562-020-0910-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Intracranial electrical stimulation (iES) of the human brain has long been known to elicit a remarkable variety of perceptual, motor and cognitive effects, but the functional-anatomical basis of this heterogeneity remains poorly understood. We conducted a whole-brain mapping of iES-elicited effects, collecting first-person reports following iES at 1,537 cortical sites in 67 participants implanted with intracranial electrodes. We found that intrinsic network membership and the principal gradient of functional connectivity strongly predicted the type and frequency of iES-elicited effects in a given brain region. While iES in unimodal brain networks at the base of the cortical hierarchy elicited frequent and simple effects, effects became increasingly rare, heterogeneous and complex in heteromodal and transmodal networks higher in the hierarchy. Our study provides a comprehensive exploration of the relationship between the hierarchical organization of intrinsic functional networks and the causal modulation of human behaviour and experience with iES.
Collapse
Affiliation(s)
- Kieran C R Fox
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. .,School of Medicine, Stanford University, Stanford, CA, USA.
| | - Lin Shi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sori Baek
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Omri Raccah
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Brett L Foster
- Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Srijani Saha
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS), UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Aaron Kucyi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Liu A, Friedman D, Barron DS, Wang X, Thesen T, Dugan P. Forced conceptual thought induced by electrical stimulation of the left prefrontal gyrus involves widespread neural networks. Epilepsy Behav 2020; 104:106644. [PMID: 31951969 PMCID: PMC7172015 DOI: 10.1016/j.yebeh.2019.106644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Early accounts of forced thought were reported at the onset of a focal seizure, and characterized as vague, repetitive, and involuntary intellectual auras distinct from perceptual or psychic hallucinations or illusions. Here, we examine the neural underpinnings involved in conceptual thought by presenting a series of 3 patients with epilepsy reporting intrusive thoughts during electrical stimulation of the left lateral prefrontal cortex (PFC) during invasive surgical evaluation. We illustrate the widespread networks involved through two independent brain imaging modalities: resting state functional magnetic resonance imaging (fMRI) (rs-fMRI) and task-based meta-analytic connectivity modeling (MACM). METHODS We report the clinical and stimulation characteristics of three patients with left hemispheric language dominance who demonstrate forced thought with functional mapping. To examine the brain networks underlying this phenomenon, we used the regions of interest (ROI) centered at the active electrode pairs. We modeled functional networks using two approaches: (1) rs-fMRI functional connectivity analysis, representing 81 healthy controls and (2) meta-analytic connectivity modeling (MACM), representing 8260 healthy subjects. We also determined the overlapping regions between these three subjects' rs-fMRI and MACM networks through a conjunction analysis. RESULTS We identified that left PFC was associated with a large-scale functional network including frontal, temporal, and parietal regions, a network that has been associated with multiple cognitive functions including semantics, speech, attention, working memory, and explicit memory. CONCLUSIONS We illustrate the neural networks involved in conceptual thought through a unique patient population and argue that PFC supports this function through activation of a widespread network.
Collapse
Affiliation(s)
- Anli Liu
- NYU Langone Medical Center, Department of Neurology, United States of America.
| | - Daniel Friedman
- NYU Langone Medical Center, Department of Neurology, United States of America.
| | | | - Xiuyuan Wang
- NYU Langone Medical Center, Department of Neurology and Radiology, United States of America.
| | - Thomas Thesen
- NYU Langone Medical Center, Department of Neurology, United States of America.
| | - Patricia Dugan
- NYU Langone Medical Center, Department of Neurology, United States of America.
| |
Collapse
|
24
|
Yih J, Beam DE, Fox KCR, Parvizi J. Intensity of affective experience is modulated by magnitude of intracranial electrical stimulation in human orbitofrontal, cingulate and insular cortices. Soc Cogn Affect Neurosci 2019; 14:339-351. [PMID: 30843590 PMCID: PMC6537947 DOI: 10.1093/scan/nsz015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
The subjective and behavioral effects of intracranial electrical stimulation (iES) have been studied for decades, but there is a knowledge gap regarding the relationship between the magnitude of electric current and the type, intensity and valence of evoked subjective experiences. We report on rare iES data from 18 neurosurgical patients with implanted intracranial electrodes in the orbitofrontal cortex (OFC), the insula (INS) and the anterior portion of cingulate cortex (ACC). ACC stimulation elicited somatic and visceral sensations, whereas OFC stimulation predominantly elicited olfactory and gustatory responses, and INS stimulation elicited a mix of effects involving somatic and visceral sensations, olfaction and gustation. Further, we found striking evidence that the magnitude of electric current delivered intracranially correlated positively with the perceived intensity of subjective experience and the evoked emotional state, a relationship observed across all three regions. Finally, we observed that the majority of reported experiences were negatively valenced and unpleasant, especially those elicited by ACC stimulation. The present study provides novel case studies from the human brain confirming that these structures contribute causally to the creation of affective states and demonstrates a direct relationship between the magnitude of electrical stimulation of these structures and the qualia of elicited subjective experience. Summary: This study provides critical knowledge about the effect of electrical charge magnitude on the intensity of human subjective experiences and emotional states. We shed light on the fundamental relationship between the electrical (physical) state of cortical tissue and the modality and intensity of human (subjective) experience. As electroceutical interventions are increasingly employed to treat neurological and psychiatric disorders, these findings highlight the importance of electrical stimulation magnitude for eliciting specific changes in human subjective experience.
Collapse
Affiliation(s)
- Jennifer Yih
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Danielle E Beam
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kieran C R Fox
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Rao VR, Sellers KK, Wallace DL, Lee MB, Bijanzadeh M, Sani OG, Yang Y, Shanechi MM, Dawes HE, Chang EF. Direct Electrical Stimulation of Lateral Orbitofrontal Cortex Acutely Improves Mood in Individuals with Symptoms of Depression. Curr Biol 2018; 28:3893-3902.e4. [DOI: 10.1016/j.cub.2018.10.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/16/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022]
|