1
|
Scarcella S, Brambilla L, Quetti L, Rizzuti M, Melzi V, Galli N, Sali L, Costamagna G, Comi GP, Corti S, Gagliardi D. Unveiling amyotrophic lateral sclerosis complexity: insights from proteomics, metabolomics and microbiomics. Brain Commun 2025; 7:fcaf114. [PMID: 40161216 PMCID: PMC11952287 DOI: 10.1093/braincomms/fcaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Amyotrophic lateral sclerosis is the most common motor neuron disease and manifests as a clinically and genetically heterogeneous neurodegenerative disorder mainly affecting the motor systems. To date, despite promising results and accumulating knowledge on the pathomechanisms of amyotrophic lateral sclerosis, a specific disease-modifying treatment is still not available. In vitro and in vivo disease models coupled with multiomics techniques have helped elucidate the pathomechanisms underlying this disease. In particular, omics approaches are powerful tools for identifying new potential disease biomarkers that may be particularly useful for diagnosis, prognosis and assessment of treatment response. In turn, these findings could support physicians in stratifying patients into clinically relevant subgroups for the identification of the best therapeutic targets. Here, we provide a comprehensive review of the most relevant literature highlighting the importance of proteomics approaches in determining the role of pathogenic misfolded/aggregated proteins and the molecular mechanisms involved in the pathogenesis and progression of amyotrophic lateral sclerosis. In addition, we explored new findings arising from metabolomic and lipidomic studies, which can aid to elucidate the intricate metabolic alterations underlying amyotrophic lateral sclerosis pathology. Moreover, we integrated these insights with microbiomics data, providing a thorough understanding of the interplay between metabolic dysregulation and microbial dynamics in disease progression. Indeed, a greater integration of these multiomics data could lead to a deeper understanding of disease mechanisms, supporting the development of specific therapies for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Simone Scarcella
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Costamagna
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
2
|
Ghezzi A, Gianferrari G, Baldassarri E, Zucchi E, Martinelli I, Vacchiano V, Bonan L, Zinno L, Nuredini A, Canali E, Gizzi M, Terlizzi E, Medici D, Sette E, Currò Dossi M, Morresi S, Santangelo M, Patuelli A, Longoni M, De Massis P, Ferro S, Fini N, Simonini C, Carra S, Zamboni G, Mandrioli J. Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case-Control Study. Genes (Basel) 2025; 16:309. [PMID: 40149460 PMCID: PMC11942173 DOI: 10.3390/genes16030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES C9ORF72 expansion is associated with significant phenotypic heterogeneity. This study aimed to characterize the clinical features of C9ALS patients from the Emilia Romagna ALS registry (ERRALS) and compare them with non-mutated ALS (nmALS) patients matched for sex, age at onset, and diagnostic delay, sourced from the same register. METHODS In total, 67 C9ALS patients were compared to 201 nmALS. Clinical data, phenotype, and prognostic factors were analyzed in the two groups and within the C9ALS group after stratification by sex. RESULTS C9ALS patients displayed a higher disease progression rate and shorter times to gastrostomy and invasive ventilation, despite no differences in overall survival. Female C9ALS had a more severe bulbar and upper motor neuron involvement compared to males. Cognitive and behavioral symptoms were more common in the C9ALS group, and the former was an independent prognostic factor. Prevalences of, autoimmune diseases, and dyslipidemia were significantly higher among C9ALS patients. CONCLUSIONS In our dataset, we show an overall increased disease progression rate in C9ALS patients and hint at sex-specific discrepancies in some phenotypical characteristics. We also suggest a possible clinically relevant involvement of C9ORF72 expansion in metabolism and autoimmunity.
Collapse
Affiliation(s)
- Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Elisa Baldassarri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Ilaria Martinelli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Luigi Bonan
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40126 Bologna, Italy;
| | - Lucia Zinno
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.Z.); (A.N.)
| | - Andi Nuredini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.Z.); (A.N.)
| | - Elena Canali
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Matteo Gizzi
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy;
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy;
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Fidenza, Italy;
| | - Elisabetta Sette
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy;
| | | | - Simonetta Morresi
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | | | - Alberto Patuelli
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy; (A.P.); (M.L.)
| | - Marco Longoni
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy; (A.P.); (M.L.)
| | | | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy;
| | - Nicola Fini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Cecilia Simonini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| |
Collapse
|
3
|
Ou K, Jia Q, Li D, Li S, Li XJ, Yin P. Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington's disease. Transl Neurodegener 2025; 14:4. [PMID: 39838446 PMCID: PMC11748355 DOI: 10.1186/s40035-025-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure. Gene therapy, which aims to modify or express specific proteins for neuroprotection or correction, is considered a powerful tool in managing neurodegenerative conditions. To date, antisense oligonucleotide (ASO) drugs targeting the pathological genes associated with ALS and HD have shown promising results in numerous animal studies and several clinical trials. This review provides a comprehensive overview of the development, mechanisms of action, limitations, and clinical applications of ASO drugs in neurodegenerative diseases, with a specific focus on ALS and HD therapeutic strategies.
Collapse
Affiliation(s)
- Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Lee I, Garret MA, Wuu J, Harrington EA, Berry JD, Miller TM, Harms M, Benatar M, Shneider N. Body mass index is lower in asymptomatic C9orf72 expansion carriers but not in SOD1 pathogenic variant carriers compared to gene negatives. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:672-679. [PMID: 39192497 PMCID: PMC11496032 DOI: 10.1080/21678421.2024.2396831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Objective: To examine the relationship between body mass index (BMI) and genotype among pre-symptomatic carriers of different pathogenic variants associated with amyotrophic lateral sclerosis. Methods: C9orf72+ carriers, SOD1+ carriers, and pathogenic variant negative controls (Gene-Negatives) were included from 3 largely independent cohorts: ALS Families Project (ALS-Families); Dominantly inherited ALS (DIALS); and Pre-symptomatic Familial ALS (Pre-fALS). First reported (ALS-Families) or measured (DIALS and Pre-fALS) weight and height were used to calculate BMI. Age at weight measurement, self-reported sex (male vs. female), and highest education (high school or below vs. college education vs. graduate school or above) were extracted. The associations between BMI and genotype in each cohort were examined with multivariable linear regression models, adjusted for age, sex, and education. Results: A total of 223 C9orf72+ carriers, 135 SOD1+ carriers, and 191 Gene-Negatives were included, deriving from ALS-Families (n = 114, median age 46, 37% male), DIALS (n = 221, median age 46, 30% male), and Pre-fALS (n = 214, median age 44, 39% male). Adjusting for age, sex, and education, the mean BMI of C9orf72+ carriers was lower than Gene-Negatives by 2.4 units (95% confidence interval [CI] = 0.3-4.6, p = 0.02) in ALS-Families; 2.7 units (95% CI = 0.9-4.4, p = 0.003) in DIALS; and 1.9 units (95% CI = 0.5-4.2, p = 0.12) in Pre-fALS. There were no significant differences in BMI between SOD1+ carriers and Gene-Negatives in any of the 3 cohorts. Conclusions: Compared to Gene-Negatives, average BMI is lower in asymptomatic C9orf72+ carriers across 3 cohorts while no significant difference was found between Gene-Negatives and SOD1+ carriers.
Collapse
Affiliation(s)
- Ikjae Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Mark A. Garret
- Sean M. Healey & AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | | | - James D. Berry
- Sean M. Healey & AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Matthew Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Neil Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
5
|
Babu S, Nicholson KA, Rothstein JD, Swenson A, Sampognaro PJ, Pant P, Macklin EA, Spruill S, Paganoni S, Gendron TF, Prudencio M, Petrucelli L, Nix D, Landrette S, Nkrumah E, Fandrick K, Edwards J, Young PR. Apilimod dimesylate in C9orf72 amyotrophic lateral sclerosis: a randomized phase 2a clinical trial. Brain 2024; 147:2998-3008. [PMID: 38606777 DOI: 10.1093/brain/awae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Apilimod dimesylate is a first-in-class phosphoinositide kinase, FYVE-type zinc finger-containing (PIKfyve) inhibitor with a favourable clinical safety profile and has demonstrated activity in preclinical C9orf72 and TDP-43 amyotrophic lateral sclerosis (ALS) models. In this ALS clinical trial, the safety, tolerability, CNS penetrance and modulation of pharmacodynamic target engagement biomarkers were evaluated. This phase 2a, randomized, double-blind, placebo-controlled, biomarker-end-point clinical trial was conducted in four US centres (ClinicalTrials.gov NCT05163886). Participants with C9orf72 repeat expansions were randomly assigned (2:1) to receive twice-daily oral treatment with 125 mg apilimod dimesylate capsules or matching placebo for 12 weeks, followed by a 12-week open-label extension. Safety was measured as the occurrence of treatment-emergent or serious adverse events attributable to the study drug and tolerability at trial completion or treatment over 12 weeks. Changes from baseline in plasma and CSF and concentrations of apilimod dimesylate and its active metabolites and of pharmacodynamic biomarkers of PIKfyve inhibition [soluble glycoprotein nonmetastatic melanoma protein B (sGPNMB) upregulation] and disease-specific CNS target engagement [poly(GP)] were measured. Between 16 December 2021 and 7 July 2022, 15 eligible participants were enrolled. There were no drug-related serious adverse events reported in the trial. Fourteen (93%) participants completed the double-blind period with 99% dose compliance [n = 9 (90%) apilimod dimesylate; n = 5 (100%) placebo]. At Week 12, apilimod dimesylate was measurable in CSF at 1.63 ng/ml [standard deviation (SD): 0.937]. At Week 12, apilimod dimesylate increased plasma sGPNMB by >2.5-fold (P < 0.001), indicating PIKfyve inhibition, and lowered CSF poly(GP) protein levels by 73% (P < 0.001), indicating CNS tissue-level proof of mechanism. Apilimod dimesylate met prespecified key safety and biomarker end-points in this phase 2a trial and demonstrated CNS penetrance and pharmacodynamic target engagement. Apilimod dimesylate was observed to result in the greatest reduction in CSF poly(GP) levels observed to date in C9orf72 clinical trials.
Collapse
Affiliation(s)
- Suma Babu
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Katharine A Nicholson
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Sanofi, Cambridge, MA 02139, USA
| | - Jeffrey D Rothstein
- Department of Neurology, Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Swenson
- Department of Neurology, University of Iowa, Iowa city, IA 52242, USA
| | - Paul J Sampognaro
- Neuromuscular Division, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pravin Pant
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Macklin
- Biostatistics Center at Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Susan Spruill
- Applied Statistics and Consulting, Spruce Pine, NC 28777, USA
| | - Sabrina Paganoni
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rajabi D, Khanmohammadi S, Rezaei N. The role of long noncoding RNAs in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:533-547. [PMID: 38452377 DOI: 10.1515/revneuro-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a poor prognosis leading to death. The diagnosis and treatment of ALS are inherently challenging due to its complex pathomechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides involved in different cellular processes, incisively gene expression. In recent years, more studies have been conducted on lncRNA classes and interference in different disease pathologies, showing their promising contribution to diagnosing and treating neurodegenerative diseases. In this review, we discussed the role of lncRNAs like NEAT1 and C9orf72-as in ALS pathogenesis mechanisms caused by mutations in different genes, including TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), superoxide dismutase type 1 (SOD1). NEAT1 is a well-established lncRNA in ALS pathogenesis; hence, we elaborate on its involvement in forming paraspeckles, stress response, inflammatory response, and apoptosis. Furthermore, antisense lncRNAs (as-lncRNAs), a key group of transcripts from the opposite strand of genes, including ZEB1-AS1 and ATXN2-AS, are discussed as newly identified components in the pathology of ALS. Ultimately, we review the current standing of using lncRNAs as biomarkers and therapeutic agents and the future vision of further studies on lncRNA applications.
Collapse
Affiliation(s)
- Darya Rajabi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| |
Collapse
|
7
|
Cantara S, Simoncelli G, Ricci C. Antisense Oligonucleotides (ASOs) in Motor Neuron Diseases: A Road to Cure in Light and Shade. Int J Mol Sci 2024; 25:4809. [PMID: 38732027 PMCID: PMC11083842 DOI: 10.3390/ijms25094809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA). The biggest success has been the ASO known as nusinersen, the first effective therapy for SMA, able to improve symptoms and slow disease progression. Another success is tofersen, an ASO designed to treat ALS patients with SOD1 gene mutations. Both ASOs have been approved by the FDA and EMA. On the other hand, ASO treatment in ALS patients with the C9orf72 gene mutation did not show any improvement in disease progression. The aim of this review is to provide an up-to-date overview of ASO research in MNDs, from preclinical studies to clinical trials and, where available, regulatory approval. We highlight the successes and failures, underline the strengths and limitations of the current ASO research, and suggest possible approaches that could lead to more effective treatments.
Collapse
Affiliation(s)
- Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| | - Giorgia Simoncelli
- Unit of Neurology and Clinical Neurophysiology, Department of Neurological and Motor Sciences, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
8
|
Lin CYR, Kuo SH, Opal P. Cognitive, Emotional, and Other Non-motor Symptoms of Spinocerebellar Ataxias. Curr Neurol Neurosci Rep 2024; 24:47-54. [PMID: 38270820 PMCID: PMC10922758 DOI: 10.1007/s11910-024-01331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE OF REVIEW Spinocerebellar ataxias (SCAs) are autosomal dominant degenerative syndromes that present with ataxia and brain stem abnormalities. This review describes the cognitive and behavioral symptoms of SCAs in the context of recent knowledge of the role of the cerebellum in higher intellectual function. RECENT FINDINGS Recent studies suggest that patients with spinocerebellar ataxia can display cognitive deficits even early in the disease. These have been given the term cerebellar cognitive affective syndrome (CCAS). CCAS can be tracked using newly developed rating scales. In addition, patients with spinocerebellar ataxia also display impulsive and compulsive behavior, depression, anxiety, fatigue, and sleep disturbances. This review stresses the importance of recognizing non-motor symptoms in SCAs. There is a pressing need for novel therapeutic interventions to address these symptoms given their deleterious impact on patients' quality of life.
Collapse
Affiliation(s)
- Chi-Ying R Lin
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Sheng-Han Kuo
- Department of Neurology and Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Puneet Opal
- Davee Department of Neurology and Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Ortega JA, Sasselli IR, Boccitto M, Fleming AC, Fortuna TR, Li Y, Sato K, Clemons TD, Mckenna ED, Nguyen TP, Anderson EN, Asin J, Ichida JK, Pandey UB, Wolin SL, Stupp SI, Kiskinis E. CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. SCIENCE ADVANCES 2023; 9:eadf7997. [PMID: 37948524 PMCID: PMC10637751 DOI: 10.1126/sciadv.adf7997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia patients with a hexanucleotide repeat expansion in C9ORF72 (C9-HRE) accumulate poly-GR and poly-PR aggregates. The pathogenicity of these arginine-rich dipeptide repeats (R-DPRs) is thought to be driven by their propensity to bind low-complexity domains of multivalent proteins. However, the ability of R-DPRs to bind native RNA and the significance of this interaction remain unclear. Here, we used computational and experimental approaches to characterize the physicochemical properties of R-DPRs and their interaction with RNA. We find that poly-GR predominantly binds ribosomal RNA (rRNA) in cells and exhibits an interaction that is predicted to be energetically stronger than that for associated ribosomal proteins. Critically, modified rRNA "bait" oligonucleotides restore poly-GR-associated ribosomal deficits and ameliorate poly-GR toxicity in patient neurons and Drosophila models. Our work strengthens the hypothesis that ribosomal function is impaired by R-DPRs, highlights a role for direct rRNA binding in mediating ribosomal dysfunction, and presents a strategy for protecting against C9-HRE pathophysiological mechanisms.
Collapse
Affiliation(s)
- Juan A. Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona 08907, Spain
| | - Ivan R. Sasselli
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Marco Boccitto
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrew C. Fleming
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R. Fortuna
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kohei Sato
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. Mckenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao P. Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jesus Asin
- Department of Statistical Methods, School of Engineering, University of Zaragoza, Zaragoza 50018, Spain
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Sandra L. Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samuel I. Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Morón-Oset J, Fischer LKS, Jauré N, Zhang P, Jahn AJ, Supèr T, Pahl A, Isaacs AM, Grönke S, Partridge L. Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity. Acta Neuropathol Commun 2023; 11:140. [PMID: 37644512 PMCID: PMC10463776 DOI: 10.1186/s40478-023-01634-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
G4C2 hexanucleotide repeat expansions in a non-coding region of the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G4C2 insertion length is variable, and patients can carry up to several thousand repeats. Dipeptide repeat proteins (DPRs) translated from G4C2 transcripts are thought to be a main driver of toxicity. Experiments in model organisms with relatively short DPRs have shown that arginine-rich DPRs are most toxic, while polyGlycine-Alanine (GA) DPRs cause only mild toxicity. However, GA is the most abundant DPR in patient brains, and experimental work in animals has generally relied on the use of low numbers of repeats, with DPRs often tagged for in vivo tracking. Whether repeat length or tagging affect the toxicity of GA has not been systematically assessed. Therefore, we generated Drosophila fly lines expressing GA100, GA200 or GA400 specifically in adult neurons. Consistent with previous studies, expression of GA100 and GA200 caused only mild toxicity. In contrast, neuronal expression of GA400 drastically reduced climbing ability and survival of flies, indicating that long GA DPRs can be highly toxic in vivo. This toxicity could be abolished by tagging GA400. Proteomics analysis of fly brains showed a repeat-length-dependent modulation of the brain proteome, with GA400 causing earlier and stronger changes than shorter GA proteins. PolyGA expression up-regulated proteins involved in ER to Golgi trafficking, and down-regulated proteins involved in insulin signalling. Experimental down-regulation of Tango1, a highly conserved regulator of ER-to Golgi transport, partially rescued GA400 toxicity, suggesting that misregulation of this process contributes to polyGA toxicity. Experimentally increasing insulin signaling also rescued GA toxicity. In summary, our data show that long polyGA proteins can be highly toxic in vivo, and that they may therefore contribute to ALS/FTD pathogenesis in patients.
Collapse
Affiliation(s)
- Javier Morón-Oset
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | | | - Nathalie Jauré
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Annika Julia Jahn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tessa Supèr
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - André Pahl
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
12
|
Mori K, Gotoh S, Uozumi R, Miyamoto T, Akamine S, Kawabe Y, Tagami S, Ikeda M. RNA Dysmetabolism and Repeat-Associated Non-AUG Translation in Frontotemporal Lobar Degeneration/Amyotrophic Lateral Sclerosis due to C9orf72 Hexanucleotide Repeat Expansion. JMA J 2023; 6:9-15. [PMID: 36793534 PMCID: PMC9908409 DOI: 10.31662/jmaj.2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023] Open
Abstract
Neuropathological features of frontotemporal dementia and amyotrophic lateral sclerosis (ALS) due to C9orf72 GGGGCC hexanucleotide repeat expansion include early dipeptide repeats, repeat RNA foci, and subsequent TDP-43 pathologies. Since the discovery of the repeat expansion, extensive studies have elucidated the disease mechanism of how the repeat causes neurodegeneration. In this review, we summarize our current understanding of abnormal repeat RNA metabolism and repeat-associated non-AUG translation in C9orf72 frontotemporal lobar degeneration/ALS. For repeat RNA metabolism, we specifically focus on the role of hnRNPA3, the repeat RNA-binding protein, and the EXOSC10/RNA exosome complex, an intracellular RNA-degrading enzyme. In addition, the mechanism of repeat-associated non-AUG translation inhibition via TMPyP4, a repeat RNA-binding compound, is discussed.
Collapse
Affiliation(s)
- Kohji Mori
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shiho Gotoh
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Uozumi
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tesshin Miyamoto
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Seifukai Ibaraki Hospital, Ibaraki, Japan
| | - Shoshin Akamine
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Kawabe
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Minoh Neuropsychiatric Hospital, Minoh, Japan
| | - Shinji Tagami
- Minoh Neuropsychiatric Hospital, Minoh, Japan,Health and Counseling Center, Osaka University, Toyonaka, Japan
| | - Manabu Ikeda
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
13
|
Chen X, Zhou L, Cui C, Sun J. Evolving markers in amyotrophic lateral sclerosis. Adv Clin Chem 2023. [DOI: 10.1016/bs.acc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
14
|
Loza MI, Hmeljak J, Bountra C, Audia JE, Chowdhury S, Weiman S, Merchant K, Blanco MJ. Collaboration and knowledge integration for successful brain therapeutics - lessons learned from the pandemic. Dis Model Mech 2022; 15:286134. [PMID: 36541917 PMCID: PMC9844134 DOI: 10.1242/dmm.049755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brain diseases are a major cause of death and disability worldwide and contribute significantly to years of potential life lost. Although there have been considerable advances in biological mechanisms associated with brain disorders as well as drug discovery paradigms in recent years, these have not been sufficiently translated into effective treatments. This Special Article expands on Keystone Symposia's pre- and post-pandemic panel discussions on translational neuroscience research. In the article, we discuss how lessons learned from the COVID-19 pandemic can catalyze critical progress in translational research, with efficient collaboration bridging the gap between basic discovery and clinical application. To achieve this, we must place patients at the center of the research paradigm. Furthermore, we need commitment from all collaborators to jointly mitigate the risk associated with the research process. This will require support from investors, the public sector and pharmaceutical companies to translate disease mechanisms into world-class drugs. We also discuss the role of scientific publishing in supporting these models of open innovation. Open science journals can now function as hubs to accelerate progress from discovery to treatments, in neuroscience in particular, making this process less tortuous by bringing scientists together and enabling them to exchange data, tools and knowledge effectively. As stakeholders from a broad range of scientific professions, we feel an urgency to advance brain disease therapies and encourage readers to work together in tackling this challenge.
Collapse
Affiliation(s)
- Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Pharmacology Department, School of Pharmacy, University of Santiago de Compostela, Health Research Institute (IDIS), Kærtor Foundation, 15706 Santiago de Compostela, Spain,Authors for correspondence (; ; )
| | - Julija Hmeljak
- Disease Models & Mechanisms, The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Chas Bountra
- Dorothy Crowfoot Hodgkin Building, Dorothy Hodgkin Road, University of Oxford, Oxford OX1 3QU, UK
| | - James E. Audia
- Flare Therapeutics, 215 1st Street, Cambridge, MA, 02142, USA
| | - Sohini Chowdhury
- The Michael J. Fox Foundation for Parkinson's Research, 111 West 33 Street, New York, NY 10120, USA
| | - Shannon Weiman
- Keystone Symposia, 160 U.S. Highway 6, Suite 201, PO Box 1630, Silverthorne, CO 80498, USA
| | - Kalpana Merchant
- Northwestern University, 303 E Chicago Ave., Chicago, IL 60611, USA,Authors for correspondence (; ; )
| | - Maria-Jesus Blanco
- Atavistik Bio, 38 Sidney Street, Cambridge MA 02139, USA,Authors for correspondence (; ; )
| |
Collapse
|
15
|
Sista SRS, Shelly S, Oskarsson B, Rubin DI, Martinez-Thompson JM, Parra-Cantu C, Staff NP, Laughlin RS. Clinical and electrophysiological findings in C9ORF72 ALS. Muscle Nerve 2022; 66:270-275. [PMID: 35727129 DOI: 10.1002/mus.27665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disorder of motor neurons in which the cause is mostly unknown. Early identification of genetic ALS cases, of which C9ORF72 (C9ALS) is the most frequent, can have important implications for evaluation, prognosis, and therapeutics. Here, we aimed to characterize the clinical and electrophysiological hallmarks of C9ALS and investigate differences from C9ORF72 negative ALS (non-C9ALS). METHODS We retrospectively reviewed clinical and electrodiagnostic (EDX) data for all genetically confirmed C9ALS cases seen between 1/1/2012 and 10/1/2020 who met Gold Coast criteria and compared them 1:1 with non-C9ALS patients within the same time frame. RESULTS A total of 99 C9ALS and 99 non-C9ALS cases were identified. Compared to non-C9ALS, C9ALS demonstrated higher prevalence in women, lesser racial variability, stronger family history of ALS, and higher frequency of upper motor neuron signs. EDX testing of C9ALS showed higher median sensory nerve and lower fibular compound muscle action potential amplitudes. DISCUSSION Although the differences between C9ALS and non-C9ALS reached statistical significance in certain nerve conduction parameters, they were not sufficient to discriminate between groups on a case-by-case basis. Genetic testing is required to identify C9ALS patients.
Collapse
Affiliation(s)
| | - Shahar Shelly
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neurology, Sheba Medical Center, Tel HaShomer, Sackler Faculty of Medicine, Tel Aviv University, Middle East, Israel
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Devon I Rubin
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
16
|
Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics 2022; 19:1145-1158. [PMID: 35653060 PMCID: PMC9587169 DOI: 10.1007/s13311-022-01247-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss. ALS is now associated with mutations in numerous genes, many of which cause disease in part through toxic gain-of-function mechanisms. Antisense oligonucleotides (ASOs) are small sequences of DNA that can reduce expression of a target gene at the post-transcriptional level, making them attractive for neutralizing mutant or toxic gene products. Advancements in the medicinal chemistries of ASOs have improved their pharmacodynamic profile to allow safe and effective delivery to the central nervous system. ASO therapies for ALS have rapidly developed over the last two decades, and ASOs that target SOD1, C9orf72, FUS, and ATXN2 are now in clinical trials for familial or sporadic forms of ALS. This review discusses the current state of ASO therapies for ALS, outlining their successes from preclinical development to early clinical trials.
Collapse
Affiliation(s)
- Benjamin D Boros
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA
| | - Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA
| | - Collin J Kreple
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA.
| |
Collapse
|
17
|
Fast Versus Slow Disease Progression in Amyotrophic Lateral Sclerosis – Clinical and Genetic Factors at the Edges of the Survival Spectrum. Neurobiol Aging 2022; 119:117-126. [DOI: 10.1016/j.neurobiolaging.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
18
|
Gene Therapy in Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11132066. [PMID: 35805149 PMCID: PMC9265980 DOI: 10.3390/cells11132066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since the discovery of Cu/Zn superoxide dismutase (SOD1) gene mutation, in 1993, as the first genetic abnormality in amyotrophic lateral sclerosis (ALS), over 50 genes have been identified as either cause or modifier in ALS and ALS/frontotemporal dementia (FTD) spectrum disease. Mutations in C9orf72, SOD1, TAR DNA binding protein 43 (TARDBP), and fused in sarcoma (FUS) genes are the four most common ones. During the last three decades, tremendous effort has been made worldwide to reveal biological pathways underlying the pathogenesis of these gene mutations in ALS/FTD. Accordingly, targeting etiologic genes (i.e., gene therapies) to suppress their toxic effects have been investigated widely. It includes four major strategies: (i) removal or inhibition of abnormal transcribed RNA using microRNA or antisense oligonucleotides (ASOs), (ii) degradation of abnormal mRNA using RNA interference (RNAi), (iii) decrease or inhibition of mutant proteins (e.g., using antibodies against misfolded proteins), and (iv) DNA genome editing with methods such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas). The promising results of these studies have led to the application of some of these strategies into ALS clinical trials, especially for C9orf72 and SOD1. In this paper, we will overview advances in gene therapy in ALS/FTD, focusing on C9orf72, SOD1, TARDBP, and FUS genes.
Collapse
|
19
|
Su WM, Gu XJ, Duan QQ, Jiang Z, Gao X, Shang HF, Chen YP. Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis. BMC Med 2022; 20:209. [PMID: 35754054 PMCID: PMC9235235 DOI: 10.1186/s12916-022-02411-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The time of survival in patients with amyotrophic lateral sclerosis (ALS) varies greatly, and the genetic factors that contribute to the survival of ALS are not well studied. There is a lack of a comprehensive study to elucidate the role of genetic factors in the survival of ALS. METHODS The published studies were systematically searched and obtained from PubMed, EMBASE, and the Cochrane Library without any language restrictions from inception to Oct 27, 2021. A network meta-analysis for ALS causative/risk genes and a systematic review and pairwise meta-analysis for other genetic modifiers were conducted. The PROSPERO registration number: CRD42022311646. RESULTS A total of 29,764 potentially relevant references were identified, and 71 papers were eligible for analysis based on pre-decided criteria, including 35 articles in network meta-analysis for 9 ALS causative/risk genes, 17 articles in pairwise meta-analysis for four genetic modifiers, and 19 articles described in the systematic review. Variants in three genes, including ATXN2 (HR: 3.6), C9orf72 (HR: 1.6), and FUS (HR:1.8), were associated with short survival of ALS, but such association was not identified in SOD1, TARDBP, TBK1, NEK1, UBQLN2, and CCNF. In addition, UNC13A rs12608932 CC genotype and ZNF521B rs2275294 C allele also caused a shorter survival of ALS; however, APOE ε4 allele and KIFAP3 rs1541160 did not be found to have any effect on the survival of ALS. CONCLUSIONS Our study summarized and contrasted evidence for prognostic genetic factors in ALS and would help to understand ALS pathogenesis and guide clinical trials and drug development.
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xia Gao
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
Liu Y, Andreucci A, Iwamoto N, Yin Y, Yang H, Liu F, Bulychev A, Hu XS, Lin X, Lamore S, Patil S, Mohapatra S, Purcell-Estabrook E, Taborn K, Dale E, Vargeese C. Preclinical evaluation of WVE-004, aninvestigational stereopure oligonucleotide forthe treatment of C9orf72-associated ALS or FTD. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:558-570. [PMID: 35592494 PMCID: PMC9092894 DOI: 10.1016/j.omtn.2022.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
A large hexanucleotide (G4C2) repeat expansion in the first intronic region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Several mechanisms have been proposed to explain how the repeat expansion drives disease, and we hypothesize that a variant-selective approach, in which transcripts affected by the repeat expansion are preferentially decreased, has the potential to address most of them. We report a stereopure antisense oligonucleotide, WVE-004, that executes this variant-selective mechanism of action. WVE-004 dose-dependently and selectively reduces repeat-containing transcripts in patient-derived motor neurons carrying a C9orf72-repeat expansion, as well as in the spinal cord and cortex of C9 BAC transgenic mice. In mice, selective transcript knockdown was accompanied by substantial decreases in dipeptide-repeat proteins, which are pathological biomarkers associated with the repeat expansion, and by preservation of healthy C9orf72 protein expression. These in vivo effects were durable, persisting for at least 6 months. These data support the advancement of WVE-004 as an investigational stereopure antisense oligonucleotide targeting C9orf72 for the treatment of C9orf72-associated ALS or FTD.
Collapse
Affiliation(s)
- Yuanjing Liu
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Amy Andreucci
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Naoki Iwamoto
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Hailin Yang
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Fangjun Liu
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Alexey Bulychev
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Xiao Shelley Hu
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Xuena Lin
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Sarah Lamore
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Saurabh Patil
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | | | | | - Kristin Taborn
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - Chandra Vargeese
- Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Krishnan G, Raitcheva D, Bartlett D, Prudencio M, McKenna-Yasek DM, Douthwright C, Oskarsson BE, Ladha S, King OD, Barmada SJ, Miller TM, Bowser R, Watts JK, Petrucelli L, Brown RH, Kankel MW, Gao FB. Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nat Commun 2022; 13:2799. [PMID: 35589711 PMCID: PMC9119980 DOI: 10.1038/s41467-022-30387-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
GGGGCC repeat expansion in C9ORF72, which can be translated in both sense and antisense directions into five dipeptide repeat (DPR) proteins, including poly(GP), poly(GR), and poly(GA), is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we developed sensitive assays that can detect poly(GA) and poly(GR) in the cerebrospinal fluid (CSF) of patients with C9ORF72 mutations. CSF poly(GA) and poly(GR) levels did not correlate with age at disease onset, disease duration, or rate of decline of ALS Functional Rating Scale, and the average levels of these DPR proteins were similar in symptomatic and pre-symptomatic patients with C9ORF72 mutations. However, in a patient with C9ORF72-ALS who was treated with antisense oligonucleotide (ASO) targeting the aberrant C9ORF72 transcript, CSF poly(GA) and poly(GR) levels decreased approximately 50% within 6 weeks, indicating they may serve as sensitive fluid-based biomarkers in studies directed against the production of GGGGCC repeat RNAs or DPR proteins.
Collapse
Affiliation(s)
- Gopinath Krishnan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Daniel Bartlett
- Biomarkers, Clinical Sciences Biogen, Cambridge, MA, 02142, USA
| | | | - Diane M McKenna-Yasek
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Catherine Douthwright
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Shafeeq Ladha
- Departments of Neurology and Translational Neuroscience, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350W Thomas Road, Phoenix, AZ, 85013, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Timothy M Miller
- Department of Neurology, Washington University, Saint Louis, MI, 63110, USA
| | - Robert Bowser
- Departments of Neurology and Translational Neuroscience, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350W Thomas Road, Phoenix, AZ, 85013, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mark W Kankel
- Neuromuscular & Movement Disorders, Biogen, Cambridge, MA, 02142, USA.
- Apple Tree Partners (ATP) Research Labs, Branford, CT, 06405, USA.
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
22
|
How can we define the presymptomatic C9orf72 disease in 2022? An overview on the current definitions of preclinical and prodromal phases. Rev Neurol (Paris) 2022; 178:426-436. [PMID: 35525633 DOI: 10.1016/j.neurol.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Repeat expansions in C9orf72 gene are the main genetic cause of frontotemporal dementia, amyotrophic lateral sclerosis and related phenotypes. With the advent of disease-modifying treatments, the presymptomatic disease phase is getting increasing interest as an ideal time window in which innovant therapeutic approaches could be administered. Recommendations issued from international study groups distinguish between a preclinical disease stage, during which lesions accumulate in absence of any symptoms or signs, and a prodromal stage, marked by the appearance the first subtle cognitive, behavioral, psychiatric and motor signs, before the full-blown disease. This paper summarizes the current definitions and criteria for these stages, in particular focusing on how fluid-based, neuroimaging and cognitive biomarkers can be useful to monitor disease trajectory across the presymptomatic phase, as well as to detect the earliest signs of clinical conversion. Continuous advances in the knowledge of C9orf72 pathophysiology, and the integration of biomarkers in the clinical evaluation of mutation carriers will allow a better diagnostic definition of C9orf72 disease spectrum from the earliest stages, with relevant impact on the possibility of disease prevention.
Collapse
|
23
|
Benussi A, Alberici A, Samra K, Russell LL, Greaves CV, Bocchetta M, Ducharme S, Finger E, Fumagalli G, Galimberti D, Jiskoot LC, Le Ber I, Masellis M, Nacmias B, Rowe JB, Sanchez-Valle R, Seelaar H, Synofzik M, Rohrer JD, Borroni B. Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimers Dement 2021; 18:1408-1423. [PMID: 34874596 DOI: 10.1002/alz.12485] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
The presymptomatic stages of frontotemporal dementia (FTD) are still poorly defined and encompass a long accrual of progressive biological (preclinical) and then clinical (prodromal) changes, antedating the onset of dementia. The heterogeneity of clinical presentations and the different neuropathological phenotypes have prevented a prior clear description of either preclinical or prodromal FTD. Recent advances in therapeutic approaches, at least in monogenic disease, demand a proper definition of these predementia stages. It has become clear that a consensus lexicon is needed to comprehensively describe the stages that anticipate dementia. The goal of the present work is to review existing literature on the preclinical and prodromal phases of FTD, providing recommendations to address the unmet questions, therefore laying out a strategy for operationalizing and better characterizing these presymptomatic disease stages.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute and Douglas Research Centre, McGill University, Montreal, Québec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Giorgio Fumagalli
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy.,University of Milan, Milan, Italy
| | - Lize C Jiskoot
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Isabelle Le Ber
- Paris Brain Institute - Institut du Cerveau - ICM, Sorbonne Université, Inserm U1127, CNRS UMR, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, and IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
24
|
Saracino D, Dorgham K, Camuzat A, Rinaldi D, Rametti-Lacroux A, Houot M, Clot F, Martin-Hardy P, Jornea L, Azuar C, Migliaccio R, Pasquier F, Couratier P, Auriacombe S, Sauvée M, Boutoleau-Bretonnière C, Pariente J, Didic M, Hannequin D, Wallon D, Colliot O, Dubois B, Brice A, Levy R, Forlani S, Le Ber I. Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: from tailored references to clinical applications. J Neurol Neurosurg Psychiatry 2021; 92:1278-1288. [PMID: 34349004 PMCID: PMC8606463 DOI: 10.1136/jnnp-2021-326914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Neurofilament light chain (NfL) is a promising biomarker in genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We evaluated plasma neurofilament light chain (pNfL) levels in controls, and their longitudinal trajectories in C9orf72 and GRN cohorts from presymptomatic to clinical stages. METHODS We analysed pNfL using Single Molecule Array (SiMoA) in 668 samples (352 baseline and 316 follow-up) of C9orf72 and GRN patients, presymptomatic carriers (PS) and controls aged between 21 and 83. They were longitudinally evaluated over a period of >2 years, during which four PS became prodromal/symptomatic. Associations between pNfL and clinical-genetic variables, and longitudinal NfL changes, were investigated using generalised and linear mixed-effects models. Optimal cut-offs were determined using the Youden Index. RESULTS pNfL levels increased with age in controls, from ~5 to~18 pg/mL (p<0.0001), progressing over time (mean annualised rate of change (ARC): +3.9%/year, p<0.0001). Patients displayed higher levels and greater longitudinal progression (ARC: +26.7%, p<0.0001), with gene-specific trajectories. GRN patients had higher levels than C9orf72 (86.21 vs 39.49 pg/mL, p=0.014), and greater progression rates (ARC:+29.3% vs +24.7%; p=0.016). In C9orf72 patients, levels were associated with the phenotype (ALS: 71.76 pg/mL, FTD: 37.16, psychiatric: 15.3; p=0.003) and remarkably lower in slowly progressive patients (24.11, ARC: +2.5%; p=0.05). Mean ARC was +3.2% in PS and +7.3% in prodromal carriers. We proposed gene-specific cut-offs differentiating patients from controls by decades. CONCLUSIONS This study highlights the importance of gene-specific and age-specific references for clinical and therapeutic trials in genetic FTD/ALS. It supports the usefulness of repeating pNfL measurements and considering ARC as a prognostic marker of disease progression. TRIAL REGISTRATION NUMBERS NCT02590276 and NCT04014673.
Collapse
Affiliation(s)
- Dario Saracino
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Aramis Project Team, Inria Paris Research Centre, Paris, France
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Agnès Camuzat
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,EPHE, PSL Research University, Paris, France
| | - Daisy Rinaldi
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Armelle Rametti-Lacroux
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris Brain Institute-Institut du Cerveau (ICM), FRONTlab, Paris, France
| | - Marion Houot
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Centre of Excellence of Neurodegenerative Disease (CoEN), ICM, CIC Neurosciences, Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Fabienne Clot
- UF de Neurogénétique Moléculaire et Cellulaire, Département de Génétique, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - Philippe Martin-Hardy
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Carole Azuar
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris Brain Institute-Institut du Cerveau (ICM), FRONTlab, Paris, France
| | - Raffaella Migliaccio
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris Brain Institute-Institut du Cerveau (ICM), FRONTlab, Paris, France
| | - Florence Pasquier
- Univ Lille, Inserm U1171, CHU Lille, DistAlz, LiCEND, CNR-MAJ, Lille, France
| | | | - Sophie Auriacombe
- CMRR Nouvelle Aquitaine, Institut des Maladies Neurodégénératives Clinique (IMNc), CHU de Bordeaux Hôpital Pellegrin, Bordeaux, France
| | - Mathilde Sauvée
- CMRR de l'Arc Alpin, POLE PRéNeLE, CHU Grenoble Alpes, Grenoble, France
| | | | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France.,Toulouse NeuroImaging Centre (ToNIC), Inserm, UPS, University of Toulouse, Toulouse, France
| | - Mira Didic
- APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France.,Institut de Neurosciences des Systèmes (INS), Aix-Marseille University, Inserm, Marseille, France
| | - Didier Hannequin
- Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - David Wallon
- Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | | | | | - Olivier Colliot
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Aramis Project Team, Inria Paris Research Centre, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris Brain Institute-Institut du Cerveau (ICM), FRONTlab, Paris, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard Levy
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris Brain Institute-Institut du Cerveau (ICM), FRONTlab, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France .,Reference Centre for Rare or Early Dementias, IM2A, Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris Brain Institute-Institut du Cerveau (ICM), FRONTlab, Paris, France
| |
Collapse
|
25
|
Bizot F, Vulin A, Goyenvalle A. Current Status of Antisense Oligonucleotide-Based Therapy in Neuromuscular Disorders. Drugs 2021; 80:1397-1415. [PMID: 32696107 DOI: 10.1007/s40265-020-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuromuscular disorders include a wide range of diseases affecting the peripheral nervous system, which are primarily characterized by progressive muscle weakness and wasting. While there were no effective therapies until recently, several therapeutic approaches have advanced to clinical trials in the past few years. Among these, the antisense technology aiming at modifying RNA processing and function has remarkably progressed and a few antisense oligonucleotides (ASOs) have now been approved. Despite these recent clinical successes, several ASOs have also failed and clinical programs have been suspended, in most cases when the route of administration was systemic, highlighting the existing challenges notably with respect to effective ASO delivery. In this review we summarize the recent advances and current status of antisense based-therapies for neuromuscular disorders, using successful as well as unsuccessful examples to highlight the variability of outcomes depending on the target tissue and route of administration. We describe the different ASO-mediated therapeutic approaches, including splice-switching applications, steric-blocking strategies and targeted gene knock-down mediated by ribonuclease H recruitment. In this overview, we discuss the merits and challenges of the current ASO technology, and discuss the future of ASO development.
Collapse
Affiliation(s)
- Flavien Bizot
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France
| | - Adeline Vulin
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France. .,LIA BAHN, Centre scientifique de Monaco, Monaco, Monaco.
| |
Collapse
|
26
|
van der Ende EL, Jackson JL, White A, Seelaar H, van Blitterswijk M, Van Swieten JC. Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J Neurol Neurosurg Psychiatry 2021; 92:502-509. [PMID: 33452054 PMCID: PMC8053328 DOI: 10.1136/jnnp-2020-325377] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Since the discovery of the C9orf72 repeat expansion as the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis, it has increasingly been associated with a wider spectrum of phenotypes, including other types of dementia, movement disorders, psychiatric symptoms and slowly progressive FTD. Prompt recognition of patients with C9orf72-associated diseases is essential in light of upcoming clinical trials. The striking clinical heterogeneity associated with C9orf72 repeat expansions remains largely unexplained. In contrast to other repeat expansion disorders, evidence for an effect of repeat length on phenotype is inconclusive. Patients with C9orf72-associated diseases typically have very long repeat expansions, containing hundreds to thousands of GGGGCC-repeats, but smaller expansions might also have clinical significance. The exact threshold at which repeat expansions lead to neurodegeneration is unknown, and discordant cut-offs between laboratories pose a challenge for genetic counselling. Accurate and large-scale measurement of repeat expansions has been severely hindered by technical difficulties in sizing long expansions and by variable repeat lengths across and within tissues. Novel long-read sequencing approaches have produced promising results and open up avenues to further investigate this enthralling repeat expansion, elucidating whether its length, purity, and methylation pattern might modulate clinical features of C9orf72-related diseases.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Adrianna White
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - John C Van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
27
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
28
|
Clinical Update on C9orf72: Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:67-76. [PMID: 33433869 DOI: 10.1007/978-3-030-51140-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of C9orf72 gene has led to important scientific progresses and has considerably changed our clinical practice. However, a decade after C9orf72 discovery, some important clinical questions remain unsolved. The reliable cutoff for the pathogenic repeat number and the implication of intermediate alleles in frontotemporal dementia, amyotrophic lateral sclerosis, or in other diseases are still uncertain. The occurrence of an anticipation phenomenon - at the clinical and molecular levels - in C9orf72 kindreds is still debated as well, and the factors driving age at onset and phenotype variability are largely unknown. All these questions have a significant impact not only in clinical practice for diagnosis and genetic counseling but also in a research context for the initiation of therapeutic trials. In this chapter, we will address all those issues and summarize the recent updates about clinical aspects of C9orf72 disease, focusing on both the common and the less typical phenotypes.
Collapse
|