1
|
Simão S, Oliveira Santos M, Gromicho M, Pavão Martins I, De Carvalho M. Cognitive reserve as a modulator of cognitive decline and of behavioral symptoms in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:726-736. [PMID: 39101689 DOI: 10.1080/21678421.2024.2385684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) has heterogeneous manifestations ranging from motor neuron degeneration to cognitive and behavioral impairment. This study aims to clarify the interactions between cognition and behavioral symptoms with relevant disease predictors and with cognitive reserve (CR), quantified through education, physical activity, and occupation proxies. Methods: A prospective sample of 162 ALS patients and 61 controls were evaluated with the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) (dependent variable), a Cognitive Reserve Index questionnaire (CRIq) and demographic data (age and sex), and, for patients, clinical variables: disease duration, site of onset, the ALS Functional Rating Scale (ALSFRS), forced vital capacity (FVC), and gene mutation chromosome 9 open reading frame 72 (C9orf72) (independent variables). Multiple regression and mediation analyses were performed to predict cognitive and behavioral symptoms. Results: For the ALS group, the statistical model explained 38.8% of variance in ECAS total (p < 0.001), 59.4% of executive functions (p < 0.001), and 55% of behavioral symptoms (p < 0.001). For controls, it accounted for 52.8% of variance in ECAS total (p < 0.001). Interaction effects and mediation analysis showed CR is an ECAS total modulator, with a differential effect within groups (p < 0.001). Verbal fluency was the single best cognitive score to differentiate patients from controls (p = 0.004), and the gene mutation C9orf72 was found to be a behavioral symptom' predictor in patients (p = 0.009). Conclusion: This study supports the proposed concept that CR acts as a cognitive modulator in ALS patients and healthy individuals. Moreover, CR also modulates behavioral manifestations in ALS.
Collapse
Affiliation(s)
- Sara Simão
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
- Faculty of Medicine, Centre of Studies Egas Moniz, University of Lisbon, Lisbon, Portugal, and
| | - Marta Gromicho
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Isabel Pavão Martins
- Faculty of Medicine, Centre of Studies Egas Moniz, University of Lisbon, Lisbon, Portugal, and
- Department of Neurosciences and Mental Health, Hospital (ULS) de Santa Maria, Lisbon, Portugal
| | - Mamede De Carvalho
- Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
- Faculty of Medicine, Centre of Studies Egas Moniz, University of Lisbon, Lisbon, Portugal, and
- Department of Neurosciences and Mental Health, Hospital (ULS) de Santa Maria, Lisbon, Portugal
| |
Collapse
|
2
|
Palumbo F, Iazzolino B, Callegaro S, Canosa A, Manera U, Vasta R, Grassano M, Matteoni E, Cabras S, Pellegrino G, Salamone P, Peotta L, Casale F, Fuda G, Moglia C, Chio A, Calvo A. Disentangling the relationship between social cognition, executive functions and behaviour changes in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:722-729. [PMID: 38839275 DOI: 10.1136/jnnp-2023-332700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Social cognition (SC) deficits are included in the amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTDS) revised diagnostic criteria. However, the impact of SC assessment on cognitive classification and the cognitive-behavioural correlates of SC remain unclear. This cross-sectional study aimed to assess the impact of SC assessment on ALS-FTDS categorisation and explore the relationship of SC with executive functions (EF) and behaviour changes in a cohort of ALS patients. METHODS 121 patients and 56 healthy controls from the Turin ALS Centre underwent cognitive/behavioural testing, including the SC subdomains of facial emotion recognition, and cognitive and affective theory of mind (ToM). RESULTS Patients performed significantly worse than controls in all SC explored domains, and 45% of patients exhibited a deficit in at least one SC test, dissociated from the presence of EF deficits. In 13% of cases, the SC deficit was isolated and subclinical. SC assessment contributed to the attribution of cognitive impairment in 10% of patients. Through a statistical clustering approach, we found that ToM only partially overlaps with EF while behaviour changes are associated with emotional disorders (anxiety and depression). CONCLUSIONS SC is overall independent of EF in ALS, with ToM only partially associated with specific EF measures, and behaviour changes associated with emotional disorders. The influence of SC on cognitive categorisation and the frequent identification of a subclinical SC impairment have implications in a clinical setting, considering the substantial impact of cognitive impairment on disease burden and therapeutic choices.
Collapse
Affiliation(s)
- Francesca Palumbo
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Barbara Iazzolino
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Stefano Callegaro
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Enrico Matteoni
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Sara Cabras
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Giorgio Pellegrino
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Paolina Salamone
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Laura Peotta
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Federico Casale
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Giuseppe Fuda
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Adriano Chio
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Turin, Turin, Italy
- SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
3
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Calvo A, Moglia C, Canosa A, Manera U, Vasta R, Grassano M, Daviddi M, De Mattei F, Matteoni E, Gallone S, Brunetti M, Sbaiz L, Cabras S, Peotta L, Palumbo F, Iazzolino B, Mora G, Chiò A. High Frequency of Cognitive and Behavioral Impairment in Amyotrophic Lateral Sclerosis Patients with SOD1 Pathogenic Variants. Ann Neurol 2024; 96:150-158. [PMID: 38568044 DOI: 10.1002/ana.26928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE While the cognitive-behavioral characteristics of amyotrophic lateral sclerosis (ALS) patients carrying C9orf72 pathological repeat expansion have been extensively studied, our understanding of those carrying SOD1 variants is mostly based on case reports. The aim of this paper is to extensively explore the cognitive-behavioral characteristics of a cohort of ALS patients carrying pathogenetic variants of SOD1 gene, comparing them to patients without pathogenetic variants of 46 ALS-related genes (wild-type [WT]-ALS) and healthy controls. METHODS All ALS patients seen at the Turin ALS expert center in the 2009-2021 period who underwent both cognitive/behavioral and extensive genetic testing were eligible to be included in the study. Only patients with SOD1 pathogenetic variants (n = 28) (SOD1-ALS) and WT-ALS (n = 829) were enrolled in the study. A series of 129 controls was also included. RESULTS Among the 28 SOD1-ALS patients, 16 (57.1%) had normal cognitive function, 5 (17.9%) isolated cognitive impairment (ALSci) (17.9%), 6 (21.4%) isolated behavioral impairment (ALSbi), 1 (3.6%) cognitive and behavioral impairment (ALScbi), and no one ALS-FTD. SOD1-ALS performed worse than controls in all explored domains, in particular Social Cognition and Language domains. SOD1-ALS patients had similar scores in all tests compared to WT-ALS, except the Story-based Empathy Task (SET), where they performed worse. INTERPRETATION Cognitive-behavioral impairment is much more common in SOD1 patients than previously assumed. SOD1-ALS are characterized by a more frequent impairment of Social Cognition and, less markedly, of Language domains. These findings have relevant implication both in the clinical and in the research setting, also considering recently approved treatment for SOD1-ALS. ANN NEUROL 2024;96:150-158.
Collapse
Affiliation(s)
- Andrea Calvo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Cristina Moglia
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Antonio Canosa
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Umberto Manera
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Rosario Vasta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Maurizio Grassano
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Margherita Daviddi
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Filippo De Mattei
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Salvatore Gallone
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maura Brunetti
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Luca Sbaiz
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Sara Cabras
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Laura Peotta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Francesca Palumbo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Barbara Iazzolino
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Gabriele Mora
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
5
|
Sellier C, Corcia P, Vourc'h P, Dupuis L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Rev Neurol (Paris) 2024; 180:417-428. [PMID: 38609750 DOI: 10.1016/j.neurol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.
Collapse
Affiliation(s)
- C Sellier
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France
| | - P Corcia
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Centre constitutif de coordination SLA, CHU de Bretonneau, 2, boulevard Tonnelle, 37044 Tours cedex 1, France
| | - P Vourc'h
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Service de biochimie et biologie moléculaire, CHU de Tours, Tours, France
| | - L Dupuis
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Stanziano M, Fedeli D, Manera U, Ferraro S, Medina Carrion JP, Palermo S, Sciortino P, Cogoni M, Agosta F, Basaia S, Filippi M, Grisoli M, Valentini MC, De Mattei F, Canosa A, Calvo A, Bruzzone MG, Chiò A, Nigri A, Moglia C. Resting-state fMRI functional connectome of C9orf72 mutation status. Ann Clin Transl Neurol 2024; 11:686-697. [PMID: 38234062 DOI: 10.1002/acn3.51989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.
Collapse
Affiliation(s)
- Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Davide Fedeli
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Umberto Manera
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Stefania Ferraro
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jean P Medina Carrion
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Sara Palermo
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Paola Sciortino
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maurizio Cogoni
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Maria C Valentini
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Filippo De Mattei
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Maria G Bruzzone
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| | - Anna Nigri
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| |
Collapse
|
7
|
Moglia C, Calvo A, Canosa A, Manera U, Vasta R, Di Pede F, Daviddi M, Matteoni E, Brunetti M, Sbaiz L, Cabras S, Gallone S, Grassano M, Peotta L, Palumbo F, Mora G, Iazzolino B, Chio A. Cognitive and Behavioral Features of Patients With Amyotrophic Lateral Sclerosis Who Are Carriers of the TARDBP Pathogenic Variant. Neurology 2024; 102:e208082. [PMID: 38261982 PMCID: PMC10962913 DOI: 10.1212/wnl.0000000000208082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES TARDBP patients are considered particularly prone to cognitive involvement, but no systematic studies of cognitive impairment in TARDBP patients are available. The aim of this article was to depict in depth the cognitive-behavioral characteristics of a cohort of patients with amyotrophic lateral sclerosis (ALS) carrying TARDBP pathogenetic variants followed by an ALS referral center. METHODS We enrolled all patients with ALS seen at the Turin ALS expert center in the 2009-2021 period who underwent extensive genetic testing and a neuropsychological battery encompassing executive function, verbal memory, language, visual memory, visuoconstructive abilities, attention/working memory, psychomotor speed, nonverbal intelligence, cognitive flexibility, social cognition, and behavior. Tests were compared with the Mann-Whitney U test on age-corrected, sex-corrected, and education-corrected scores. Cognition was classified as normal (ALS-CN); isolated cognitive impairment (ALSci), that is, evidence of executive and/or language dysfunction; isolated behavioral impairment (ALSbi), that is, identification of apathy; cognitive and behavioral impairment (ALScbi), that is, evidence meeting the criteria for both ALSci and ALSbi; and frontotemporal dementia (ALS-FTD). RESULTS This study includes 33 patients with TARDBP pathogenetic variants (TARDBP-ALS) (median age 61 years [interquartile range (IQR) 53-67], 8 female [24.2%]) and 928 patients with ALS not carrying the pathogenic variant (WT-ALS) (median age 67 years [IQR 59-74], 386 female [41.6%]). TARDBP-ALS cases were also compared with 129 matched controls (median age 66 years [IQR 57.5-71.5], 55 female [42.6%]). TARDBP-ALS and WT-ALS patients were cognitively classified as ALS-CN (54% vs 58.8%, respectively), ALSci (21.2% vs 18.3%), ALSci (9.1% vs 9.5%), ALScbi (6.1% vs 6.0%), and ALS-FTD (9.1 vs 6.7%), with no significant difference (p = 0.623). Compared with controls, TARDBP-ALS had a worse performance in executive functions, visual memory, visuoconstructive abilities, verbal fluency, and the apathy behavioral component of FrSBe. The scores of performed tests, including all Edinburgh Cognitive and Behavioral ALS Screen subdomains, were similar in TARDBP-ALS and WT-ALS. DISCUSSION TARDBP-ALS patients were significantly more impaired than controls in most examined domains but do not show any specific pattern of cognitive impairment compared with WT-ALS. Our findings are relevant both clinically, considering the effect of cognitive impairment on patients' decision-making and caregivers' burden, and in designing clinical trials for the treatment of patients carrying TARDBP pathogenetic variants.
Collapse
Affiliation(s)
- Cristina Moglia
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Andrea Calvo
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Antonio Canosa
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Umberto Manera
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Rosario Vasta
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Francesca Di Pede
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Margherita Daviddi
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Enrico Matteoni
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Maura Brunetti
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Luca Sbaiz
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Sara Cabras
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Salvatore Gallone
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Maurizio Grassano
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Laura Peotta
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Francesca Palumbo
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Gabriele Mora
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Barbara Iazzolino
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| | - Adriano Chio
- From the Rita Levi Montalcini' Department of Neuroscience (C.M., A. Calvo, A. Canosa, U.M., R.V., F.D.P., M.D., E.M., M.B., S.C., M.G., L.P., F.F.P., G.M., B.I., A. Chio), University of Torino; Neurology 1 (C.M., A. Calvo, A. Canosa, U.M., L.S., S.G., A. Chio), Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino; and Institute of Cognitive Sciences and Technologies (A. Canosa, A. Chio), National Research Council, Rome, Italy
| |
Collapse
|
8
|
Lombardi M, Corrado L, Piola B, Comi C, Cantello R, D’Alfonso S, Mazzini L, De Marchi F. Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review. Genes (Basel) 2023; 14:2039. [PMID: 38002982 PMCID: PMC10671725 DOI: 10.3390/genes14112039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mutations in the 43 kDa transactive-response (TAR)-DNA-binding protein (TARDBP) are associated with 2-5% of familial Amyotrophic Lateral Sclerosis (ALS) cases. TAR DNA-Binding Protein 43 (TDP-43) is an RNA/DNA-binding protein involved in several cellular mechanisms (e.g., transcription, pre-mRNA processing, and splicing). Many ALS-linked TARDBP mutations have been described in the literature, but few phenotypic data on monogenic TARDBP-mutated ALS are available. In this paper, (1) we describe the clinical features of ALS patients carrying mutations in the TARDBP gene evaluated at the Tertiary ALS Center at Maggiore della Carità University Hospital, Novara, Italy, from 2010 to 2020 and (2) present the results of our review of the literature on this topic, analyzing data obtained for 267 patients and highlighting their main clinical and demographic features.
Collapse
Affiliation(s)
- Michele Lombardi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.L.); (R.C.); (L.M.)
| | - Lucia Corrado
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (B.P.); (S.D.)
| | - Beatrice Piola
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (B.P.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, S. Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Roberto Cantello
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.L.); (R.C.); (L.M.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (L.C.); (B.P.); (S.D.)
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.L.); (R.C.); (L.M.)
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.L.); (R.C.); (L.M.)
| |
Collapse
|
9
|
Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat Rev Neurol 2023; 19:655-667. [PMID: 37828358 DOI: 10.1038/s41582-023-00878-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS-FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS-FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.
Collapse
Affiliation(s)
- Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
White LM, Boardman J, Lilleker J, Chaouch A, Kargwell H, Ealing J, Hamdalla H. Phenotypical differences of C9ORF72 gene-positive and negative amyotrophic lateral sclerosis: a comparative case series. J Med Genet 2023; 60:1016-1020. [PMID: 37173134 DOI: 10.1136/jmg-2022-109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Hexanucleotide repeat expansions of C9ORF72 account for a significant proportion of autosomal dominant neurodegenerative diseases in the amyotrophic lateral sclerosis (ALS)-frontotemporal dementia spectrum. In the absence of a family history, clinical identification of such patients remains difficult. We aimed to identify differences in demographics and clinical presentation between patients with C9ORF72 gene-positive ALS (C9pALS) versus C9ORF72 gene-negative ALS (C9nALS), to aid identification of these patients in the clinic and examine differences in outcomes including survival. METHODS We retrospectively reviewed the clinical presentations of 32 patients with C9pALS and compared their characteristics with a cohort of 46 patients with C9nALS from the same tertiary neurosciences centre. RESULTS Patients with C9pALS more commonly presented with mixed upper and lower motor signs (C9pALS 87.5%, C9nALS 65.2%; p=0.0352), but less frequently presented with purely upper motor neuron signs (C9pALS 3.1%, C9nALS 21.7%; p=0.0226). The C9pALS cohort had a higher frequency of cognitive impairment (C9pALS 31.3%, C9nALS 10.9%; p=0.0394) and bulbar disease (C9pALS 56.3%, C9nALS 28.3%; p=0.0186). There were no differences between cohorts in age at diagnosis, gender, limb weakness, respiratory symptoms, presentation with predominantly lower motor neuron signs or overall survival. DISCUSSION Analysis of this ALS clinic cohort at a UK tertiary neurosciences centre adds to the small but growing understanding of the unique clinical features of patients with C9pALS. In the age of precision medicine with expanding opportunities to manage genetic diseases with disease-modifying therapies, clinical identification of such patients is increasingly important as focused therapeutic strategies become available.
Collapse
Affiliation(s)
- Laura Michelle White
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | | | - James Lilleker
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
- Centre for Musculoskeletal Research, The University of Manchester School of Biological Sciences, Manchester, UK
| | - Amina Chaouch
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | - Haga Kargwell
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | - John Ealing
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| | - Hisham Hamdalla
- Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, UK
| |
Collapse
|
11
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
12
|
Nigri A, Umberto M, Stanziano M, Ferraro S, Fedeli D, Medina Carrion JP, Palermo S, Lequio L, Denegri F, Agosta F, Filippi M, Valentini MC, Canosa A, Calvo A, Chiò A, Bruzzone MG, Moglia C. C9orf72 ALS mutation carriers show extensive cortical and subcortical damage compared to matched wild-type ALS patients. Neuroimage Clin 2023; 38:103400. [PMID: 37068310 PMCID: PMC10130353 DOI: 10.1016/j.nicl.2023.103400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE C9orf72 mutation carriers with different neurological phenotypes show cortical and subcortical atrophy in multiple different brain regions, even in pre-symptomatic phases. Despite there is a substantial amount of knowledge, small sample sizes, clinical heterogeneity, as well as different choices of image analysis may hide anatomical abnormalities that are unique to amyotrophic lateral sclerosis (ALS) patients with this genotype or that are indicative of the C9orf72-specific trait overlain in fronto-temporal dementia patients. METHODS Brain structural and resting state functional magnetic imaging was obtained in 24 C9orf72 positive (ALSC9+) ALS patients paired for burden disease with 24 C9orf72 negative (ALSC9-) ALS patients. A comprehensive structural evaluation of cortical thickness and subcortical volumes between ALSC9+ and ALSC9- patients was performed while a region of interest (ROI)-ROI analysis of functional connectivity was implemented to assess functional alterations among abnormal cortical and subcortical regions. Results were corrected for multiple comparisons. RESULTS Compared to ALSC9- patients, ALSC9+ patients exhibited extensive disease-specific patterns of thalamo-cortico-striatal atrophy, supported by functional alterations of the identified abnormal regions. Cortical thinning was most pronounced in posterior areas and extended to frontal regions. Bilateral atrophy of the mediodorsal and pulvinar nuclei was observed, emphasizing a focal rather than global thalamus atrophy. Volume loss in a large portion of bilateral caudate and left putamen was reported. The marked reduction of functional connectivity observed between the left posterior thalamus and almost all the atrophic cortical regions support the central role of the thalamus in the pathogenic mechanism of C9orf72-mediated disease. CONCLUSIONS These findings constitute a coherent and robust picture of ALS patients with C9orf72-mediated disease, unveiling a specific structural and functional characterization of thalamo-cortico-striatal circuit alteration. Our study introduces new evidence in the characterization of the pathogenic mechanisms of C9orf72 mutation.
Collapse
Affiliation(s)
- Anna Nigri
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Manera Umberto
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy; ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy.
| | - Stefania Ferraro
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy; School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Davide Fedeli
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | | | - Sara Palermo
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Laura Lequio
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Italy
| | - Federica Denegri
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Italy; Neurology Unit, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Italy; Neurology Unit, Italy; Neurorehabilitation Unit, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| |
Collapse
|
13
|
Solca F, Aiello EN, Torre S, Carelli L, Ferrucci R, Verde F, Ticozzi N, Silani V, Monti A, Poletti B. Prevalence and determinants of language impairment in non-demented amyotrophic lateral sclerosis patients. Eur J Neurol 2023; 30:606-611. [PMID: 36445001 PMCID: PMC10108014 DOI: 10.1111/ene.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed at estimating the prevalence of language impairment (LI) in a large, clinic-based cohort of non-demented amyotrophic lateral sclerosis (ALS) patients and assessing its underpinnings at motor and non-motor levels. METHODS Non-demented ALS patients (N = 348) underwent the Edinburgh Cognitive and Behavioural ALS Screen (ECAS), as well as an assessment of behavioural/psychiatric and motor-functional features. The prevalence of LI was estimated based on the proportion of patients showing a performance below the age- and education-adjusted cut-off on the ECAS-Language. Multiple regression models were run to assess the determinants of language functioning and impairment. RESULTS The prevalence of LI was 22.7%. 46.6% of the variance of ECAS-Language scores remained unexplained, with only the ECAS-Executive positively predicting them (p < 0.001; η2 = 0.07). Similarly, only a lower score on the ECAS-Executive predicted a higher probability of a below cut-off ECAS-Language performance (p < 0.001). Spelling and Naming tasks were the major drivers of ECAS-Language performance. CONCLUSIONS This study suggests that, in non-demented ALS patients, LI occurs in ≈23% of cases, is significantly driven by executive dysfunction but, at the same time, partially independent of it and is not associated with other motor or non-motor features.
Collapse
Affiliation(s)
- Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Carelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milano, Italy
- ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari Center', Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari Center', Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari Center', Università degli Studi di Milano, Milan, Italy
| | - Alessia Monti
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
14
|
Motor, cognitive and behavioural profiles of C9orf72 expansion-related amyotrophic lateral sclerosis. J Neurol 2023; 270:898-908. [PMID: 36308529 PMCID: PMC9886586 DOI: 10.1007/s00415-022-11433-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) individuals carrying the hexanucleotide repeat expansion (HRE) in the C9orf72 gene (C9Pos) have been described as presenting distinct features compared to the general ALS population (C9Neg). We aim to identify the phenotypic traits more closely associated with the HRE and analyse the role of the repeat length as a modifier factor. METHODS We studied a cohort of 960 ALS patients (101 familial and 859 sporadic cases). Motor phenotype was determined using the MRC scale, the lower motor neuron score (LMNS) and the Penn upper motor neuron score (PUMNS). Neuropsychological profile was studied using the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), the Frontal Behavioral Inventory (FBI), the Beck Depression Inventory-II (BDI-II) and the State-Trait Anxiety Inventory (STAI). A two-step PCR protocol and Southern blotting were performed to determine the presence and the size of C9orf72 HRE, respectively. RESULTS C9orf72 HRE was detected in 55/960 ALS patients. C9Pos patients showed a younger onset, higher odds of bulbar onset, increased burden of UMN signs, reduced survival and higher frequency of concurrent dementia. We found an inverse correlation between the HRE length and the performance at ECAS ALS-specific tasks (P = 0.031). Patients also showed higher burden of behavioural disinhibition (P = 1.6 × 10-4), lower degrees of depression (P = 0.015) and anxiety (P = 0.008) compared to C9Neg cases. CONCLUSIONS Our study provides an extensive characterization of motor, cognitive and behavioural features of C9orf72-related ALS, indicating that the C9orf72 HRE size may represent a modifier of the cognitive phenotype.
Collapse
|
15
|
Factors predicting disease progression in C9ORF72 ALS patients. J Neurol 2023; 270:877-890. [PMID: 36280624 DOI: 10.1007/s00415-022-11426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To unveil clinical features, comorbidities, disease progression and prognostic factors in a population-based cohort of ALS patients carrying C9ORF72 expansion (C9 + ALS). METHODS This is a retrospective observational study on ALS patients residing in Emilia Romagna and Piedmont-Valle D'Aosta regions whose data are available through population based registers. We analysed patients who underwent genetic testing, focusing on C9 + ALS subgroup. RESULTS Among 2204 genotyped patients of the two registers, 150 were C9 + ALS. In comparison with patients without mutation, a higher proportion of family history (12.85 vs 68%, p < 0.001) and frontotemporal dementia (3.93% vs 10.67%, p < 0.001) was detected in C9 + ALS. C9 + ALS presented a faster disease progression as measured by monthly decline in ALS Functional Rating Scale-Revised (1.86 ± 3.30 vs 1.45 ± 2.35, p < 0.01) and in forced vital capacity (5.90 ± 5.24 vs 2.97 ± 3.47, p < 0.01), a shorter diagnostic delay (8.93 ± 6.74 vs 12.68 ± 12.86 months, p < 0.01) and earlier onset (58.91 ± 9.02 vs 65.04 ± 11.55 years, p < 0.01). Consistently, they reached death or tracheostomy earlier than other patients (31 vs 37 months, HR = 1.52, 95% C.I. 1.27-1.82, p < 0.001). With respect to other genotyped patients, C9 + ALS patients did not present a significantly higher prevalence of concomitant diseases. Independent prognostic factors of survival of C9 + ALS included sex, age, progression rate, presence of frontotemporal dementia and thyroid disorders, with the latter being associated with prolonged ALS survival (43 vs 29 months, HR = 0.42, 95% C.I. 0.24-0.74, p = 0.003). CONCLUSION Even in the context of a more aggressive disease, C9 + ALS had a longer survival in presence of thyroid disorders. This finding may suggest protective pathogenic pathways in C9 + ALS to be explored, looking for therapeutic strategies to slow disease course.
Collapse
|
16
|
Calvo A, Canosa A, Moglia C, Manera U, Grassano M, Vasta R, Palumbo F, Cugnasco P, Gallone S, Brunetti M, De Marchi F, Arena V, Pagani M, Dalgard C, Scholz SW, Chia R, Corrado L, Dalfonso S, Mazzini L, Traynor BJ, Chio A. Clinical and Metabolic Signature of UNC13A rs12608932 Variant in Amyotrophic Lateral Sclerosis. Neurol Genet 2022; 8:e200033. [PMID: 36313067 PMCID: PMC9608390 DOI: 10.1212/nxg.0000000000200033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Background and Objectives To characterize the clinical and cognitive behavioral phenotype and brain 18F-2-fluoro-2-deoxy-d-glucose-PET (18F-FDG-PET) metabolism of patients with amyotrophic lateral sclerosis (ALS) carrying the rs12608932 variant of the UNC13A gene. Methods The study population included 1,409 patients with ALS without C9orf72, SOD1, TARDBP, and FUS mutations identified through a prospective epidemiologic ALS register. Control participants included 1,012 geographically matched, age-matched, and sex-matched participants. Clinical and cognitive differences between patients carrying the C/C rs12608932 genotype and those carrying the A/A + A/C genotype were assessed. A subset of patients underwent 18F-FDG-PET. Results The C/C genotype was associated with an increased risk of ALS (odds ratio: 1.54, 95% confidence interval 1.18–2.01, p = 0.001). Patients with the C/C genotype were older, had more frequent bulbar onset, and manifested a higher rate of weight loss. In addition, they showed significantly reduced performance in the letter fluency test, fluency domain of Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and story-based empathy task (reflecting social cognition). Patients with the C/C genotype had a shorter survival (median survival time, C/C 2.25 years, interquartile range [IQR] 1.33–3.92; A/A + C/C: 2.90 years, IQR 1.74–5.41; p = 0.0001). In Cox multivariable analysis, C/C genotype resulted to be an independent prognostic factor. Finally, patients with a C/C genotype had a specific pattern of hypometabolism on brain 18F-FDG-PET extending to frontal and precentral areas of the right hemisphere. Discussion C/C rs12608932 genotype of UNC13A is associated with a specific motor and cognitive/behavioral phenotype, which reflects on 18F-FDG-PET findings. Our observations highlight the importance of adding the rs12608932 variant in UNC13A to the ALS genetic panel to refine the individual prognostic prediction and reduce heterogeneity in clinical trials.
Collapse
Affiliation(s)
- Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Francesca Palumbo
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Paolo Cugnasco
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Salvatore Gallone
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Fabiola De Marchi
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Arena
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Marco Pagani
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Clifton Dalgard
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Sonja W Scholz
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Ruth Chia
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Lucia Corrado
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Sandra Dalfonso
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Letizia Mazzini
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Bryan J Traynor
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Adriano Chio
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
17
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 444] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
18
|
Chio A, Moglia C, Canosa A, Manera U, Grassano M, Vasta R, Palumbo F, Gallone S, Brunetti M, Barberis M, De Marchi F, Dalgard C, Chia R, Mora G, Iazzolino B, Peotta L, Traynor B, Corrado L, D'Alfonso S, Mazzini L, Calvo A. Exploring the phenotype of Italian patients with ALS with intermediate ATXN2 polyQ repeats. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329376. [PMID: 36008116 PMCID: PMC9606535 DOI: 10.1136/jnnp-2022-329376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To detect the clinical characteristics of patients with amyotrophic lateral sclerosis (ALS) carrying an intermediate ATXN2 polyQ number of repeats in a large population-based series of Italian patients with ALS. METHODS The study population includes 1330 patients with ALS identified through the Piemonte and Valle d'Aosta Register for ALS, diagnosed between 2007 and 2019 and not carrying C9orf72, SOD1, TARDBP and FUS mutations. Controls were 1274 age, sex and geographically matched Italian subjects, identified through patients' general practitioners. RESULTS We found 42 cases and 4 controls with≥31 polyQ repeats, corresponding to an estimated OR of 10.4 (95% CI 3.3 to 29.0). Patients with≥31 polyQ repeats (ATXN2+) compared with those without repeat expansion (ATXN2-) had more frequently a spinal onset (p=0.05), a shorter diagnostic delay (p=0.004), a faster rate of ALSFRS-R progression (p=0.004) and King's progression (p=0.004), and comorbid frontotemporal dementia (7 (28.0%) vs 121 (13.4%), p=0.037). ATXN2+ patients had a 1-year shorter survival (ATXN2+ patients 1.82 years, 95% CI 1.08 to 2.51; ATXN2- 2.84 years, 95% CI 1.67 to 5.58, p=0.0001). ATXN2 polyQ intermediate repeats was independently related to a worse outcome in Cox multivariable analysis (p=0.006). CONCLUSIONS In our population-based cohort, ATXN2+ patients with ALS have a distinctive phenotype, characterised by a more rapid disease course and a shorter survival. In addition, ATXN2+ patients have a more severe impairment of cognitive functions. These findings have relevant implications on clinical practice, including the possibility of refining the individual prognostic prediction and improving the design of ALS clinical trials, in particular as regards as those targeted explicitly to ATXN2.
Collapse
Affiliation(s)
- Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maurizio Grassano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Rosario Vasta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Francesca Palumbo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Salvatore Gallone
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maura Brunetti
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Marco Barberis
- Genetics, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Fabiola De Marchi
- Neurology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Gabriele Mora
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Barbara Iazzolino
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Laura Peotta
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
| | - Bryan Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins, Baltimore, Maryland, USA
| | - Lucia Corrado
- Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Italy
| | - Letizia Mazzini
- Neurology, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Italy
- Neurology 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
19
|
Pasetto L, Grassano M, Pozzi S, Luotti S, Sammali E, Migazzi A, Basso M, Spagnolli G, Biasini E, Micotti E, Cerovic M, Carli M, Forloni G, De Marco G, Manera U, Moglia C, Mora G, Traynor BJ, Chiò A, Calvo A, Bonetto V. Defective cyclophilin A induces TDP-43 proteinopathy: implications for amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2021; 144:3710-3726. [PMID: 34972208 PMCID: PMC8719849 DOI: 10.1093/brain/awab333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
Abstract
Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Maurizio Grassano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Silvia Pozzi
- CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Eliana Sammali
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Manuela Basso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Edoardo Micotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Milica Cerovic
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Mirjana Carli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gianluigi Forloni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Giovanni De Marco
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Gabriele Mora
- Department of Neurorehabilitation, ICS Maugeri IRCCS, Milano, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Valentina Bonetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| |
Collapse
|