1
|
Zheng W, Zhang X, Chen J, Luan X, Wang J, Zhang L, Liu K, Zhao Y, Xu Z. The Effect of Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex on the Amyotrophic Lateral Sclerosis Patients With Cognitive Impairment: A Double-Blinded, Randomized, and Sham Control Trial. CNS Neurosci Ther 2025; 31:e70316. [PMID: 40099804 PMCID: PMC11915350 DOI: 10.1111/cns.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. A large number of ALS patients have cognitive impairment. In this double-blinded, randomized, and sham-controlled study, we aimed to investigate the effect of repetitive transcranial magnetic stimulation (rTMS) on ALS patients with cognitive impairment. METHODS A total of 90 ALS patients with cognitive impairment were recruited from two cohorts; 80 participants were randomly assigned in a 1:1 ratio to receive 10 Hz rTMS or sham treatment on the bilateral dorsolateral prefrontal cortices (DLPFC) for 4 consecutive weeks. The patients were assessed by ECAS and ALSFRS-R scales. The Zarit care burden scale was administered to caregivers of ALS patients. The primary outcome measured was the rate of decline in the total ECAS score between pretreatment, 6 months post-treatment, and 12 months post-treatment. Secondary outcomes included the group difference in the slope of the Zarit score, ALSFRS-R total score, and the neurofilament light chain plasma levels. RESULTS The ECAS total score in the intention-to-treat population significantly changed from 79.74 ± 6.39 to 81.98 ± 6.51 and 79.22 ± 6.50 with rTMS intervention at the 6-month and 12-month follow-ups, respectively (p = 0.031, p = 0.042). The Zarit score also significantly decreased from 57.65 ± 3.42 to 52.24 ± 3.34 and 56.42 ± 3.41 at the 3-month and 6-month post-treatment time points, respectively (p = 0.003, p = 0.014). No significant differences were observed between the groups for other secondary endpoints. However, there was a trend of decreasing NF-L level rates in the treatment group over the first 6 months' follow-up. CONCLUSIONS rTMS could yield short-term positive effects on the ALS patients subgroup with cognitive impairment and alleviate caregivers' burden. No improvement was observed in the severity of ALS and ALS plasma biomarkers.
Collapse
Affiliation(s)
- Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Kun Liu
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
2
|
Vucic S, Pavey N, Menon P, Babayev M, Maslyukova A, Muraviev A, Kiernan MC. Neurophysiological assessment of cortical motor function: A direct comparison of methodologies. Clin Neurophysiol 2025; 170:14-21. [PMID: 39647177 DOI: 10.1016/j.clinph.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE Assessment of cortical function with threshold tracking transcranial magnetic stimulation (TT-TMS) has developed as a biomarker to inform disease pathophysiology, particularly in neurodegenerative disease and dementia. At present, a fully integrated testing system does not exist. To advance clinical utility, and to streamline software design to integrate with diagnostic approaches in an outpatient setting, the present series of studies assessed the effects of altering diagnostic paradigms to measure interstimulus interval (ISI) including serial ascending [T-SICIs] and parallel [T-SICIp] methodologies as measures of cortical motor function (the MagXite software). METHODS Cortical excitability was assessed in 30 healthy controls with a figure-of-eight coil, using an integrated approach compared to previously established experimental paradigms. Motor evoked responses were recorded over the contralateral abductor pollicis brevis muscle. Short interval intracortical inhibition (SICI) was recorded with each testing paradigm and validated in a healthy control cohort. RESULTS The integrated system determined a robust measure of T-SICIs between ISI 1-to-7 ms (16.6 ± 2.2 %) that was comparable to previously established testing paradigms (P = 0.34), but greater than T-SICIp (MagXite 10.7 ± 1.5 %, P = 0.016; Sydney TT-TMS 8.7 ± 1.4 %, P = 0.03). SICI peaks at ISI 1 and 2.5-to-3 ms were evident with both protocols. Significant correlations were evident between mean T-SICIs-MagXite and T-SICIp-MagXite (R = 0.599, P < 0.001). CONCLUSION The present series validates a fully integrated motor cortical functional assessment to provide reproducible measures of SICI, with data obtained for intracortical inhibition that is more prominent when assessed using the method of serial ascending order. SIGNIFICANCE An integrated system for transcranial magnetic stimulation of the human motor system has been validated for clinical practice, suitable for the assessment of cortical function in neurological disease in an outpatient clinic setting.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Hospital Rd, Concord West, 2139, Sydney, Australia.
| | - Nathan Pavey
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Hospital Rd, Concord West, 2139, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Hospital Rd, Concord West, 2139, Sydney, Australia
| | | | | | | | - Matthew C Kiernan
- Neuroscience Research Australia, 139 Barker Street, Randwick, 2031, Sydney, Australia; University of NSW and Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Area Health Service, Sydney, Australia
| |
Collapse
|
3
|
Donaghy R, Pioro EP. Neurophysiologic Innovations in ALS: Enhancing Diagnosis, Monitoring, and Treatment Evaluation. Brain Sci 2024; 14:1251. [PMID: 39766450 PMCID: PMC11674262 DOI: 10.3390/brainsci14121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease of both upper motor neurons (UMNs) and lower motor neurons (LMNs) leading invariably to decline in motor function. The clinical exam is foundational to the diagnosis of the disease, and ordinal severity scales are used to track its progression. However, the lack of objective biomarkers of disease classification and progression delay clinical trial enrollment, muddle inclusion criteria, and limit accurate assessment of drug efficacy. Ultimately, biomarker evidence of therapeutic target engagement will support, and perhaps supplant, more traditional clinical trial outcome measures. Electrophysiology tools including nerve conduction study and electromyography (EMG) have already been established as diagnostic biomarkers of LMN degeneration in ALS. Additional understanding of the motor manifestations of disease is provided by motor unit number estimation, electrical impedance myography, and single-fiber EMG techniques. Dysfunction of UMN and non-motor brain areas is being increasingly assessed with transcranial magnetic stimulation, high-density electroencephalography, and magnetoencephalography; less common autonomic and sensory nervous system dysfunction in ALS can also be characterized. Although most of these techniques are used to explore the underlying disease mechanisms of ALS in research settings, they have the potential on a broader scale to noninvasively identify disease subtypes, predict progression rates, and assess physiologic engagement of experimental therapies.
Collapse
Affiliation(s)
- Ryan Donaghy
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Erik P. Pioro
- Djavad Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Pavey NA, Menon P, Peterchev AV, Kiernan MC, Vucic S. Abnormalities of cortical stimulation strength-duration time constant in amyotrophic lateral sclerosis. Clin Neurophysiol 2024; 164:161-167. [PMID: 38901111 PMCID: PMC11345808 DOI: 10.1016/j.clinph.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVES Strength-duration time constant (SDTC) may now be determined for cortical motor neurones, with activity mediated by transient Na+ conductances. The present study determined whether cortical SDTC is abnormal and linked to the pathogenesis of amyotrophic lateral sclerosis. METHODS Cortical SDTC and rheobase were estimated from 17 ALS patients using a controllable pulse parameter transcranial magnetic stimulation (cTMS) device. Resting motor thresholds (RMTs) were determined at pulse widths (PW) of 30, 45, 60, 90 and 120 µs and M-ratio of 0.1, using a figure-of-eight coil applied to the primary motor cortex. RESULTS SDTC was significantly reduced in ALS patients (150.58 ± 9.98 µs; controls 205.94 ± 13.7 µs, P < 0.01). The reduced SDTC correlated with a rate of disease progression (Rho = -0.440, P < 0.05), ALS functional rating score (ALSFRS-R) score (Rho = 0.446, P < 0.05), and disease duration (R = 0.428, P < 0.05). The degree of change in SDTC was greater in patients with cognitive abnormalities as manifested by an abnormal total Edinburgh Cognitive ALS Screen score (140.5 ± 28.7 µs, P < 0.001) and ALS-specific subscore (141.7 ± 33.2 µs, P = 0.003). CONCLUSIONS Cortical SDTC reduction was associated with a more aggressive ALS phenotype, or with more prominent cognitive impairment. SIGNIFICANCE An increase in transient Na+ conductances may account for the reduction in SDTC, linked to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Nathan A Pavey
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Angel V Peterchev
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | | | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia.
| |
Collapse
|
5
|
Pavey N, Hannaford A, van den Bos M, Kiernan MC, Menon P, Vucic S. Distinct neuronal circuits mediate cortical hyperexcitability in amyotrophic lateral sclerosis. Brain 2024; 147:2344-2356. [PMID: 38374770 DOI: 10.1093/brain/awae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Cortical hyperexcitability is an important pathophysiological mechanism in amyotrophic lateral sclerosis (ALS), reflecting a complex interaction of inhibitory and facilitatory interneuronal processes that evolves in the degenerating brain. The advances in physiological techniques have made it possible to interrogate progressive changes in the motor cortex. Specifically, the direction of transcranial magnetic stimulation (TMS) stimulus within the primary motor cortex can be utilized to influence descending corticospinal volleys and to thereby provide information about distinct interneuronal circuits. Cortical motor function and cognition was assessed in 29 ALS patients with results compared to healthy volunteers. Cortical dysfunction was assessed using threshold-tracking TMS to explore alterations in short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), the index of excitation and stimulus response curves using a figure-of-eight coil with the coil oriented relative to the primary motor cortex in a posterior-anterior, lateral-medial and anterior-posterior direction. Mean SICI, between interstimulus interval of 1-7 ms, was significantly reduced in ALS patients compared to healthy controls when assessed with the coil oriented in posterior-anterior (P = 0.044) and lateral-medial (P = 0.005) but not the anterior-posterior (P = 0.08) directions. A significant correlation between mean SICI oriented in a posterior-anterior direction and the total Edinburgh Cognitive and Behavioural ALS Screen score (Rho = 0.389, P = 0.037) was evident. In addition, the mean SICF, between interstimulus interval 1-5 ms, was significantly increased in ALS patients when recorded with TMS coil oriented in posterior-anterior (P = 0.035) and lateral-medial (P < 0.001) directions. In contrast, SICF recorded with TMS coil oriented in the anterior-posterior direction was comparable between ALS and controls (P = 0.482). The index of excitation was significantly increased in ALS patients when recorded with the TMS coil oriented in posterior-anterior (P = 0.041) and lateral-medial (P = 0.003) directions. In ALS patients, a significant increase in the stimulus response curve gradient was evident compared to controls when recorded with TMS coil oriented in posterior-anterior (P < 0.001), lateral-medial (P < 0.001) and anterior-posterior (P = 0.002) directions. The present study has established that dysfunction of distinct interneuronal circuits mediates the development of cortical hyperexcitability in ALS. Specifically, complex interplay between inhibitory circuits and facilitatory interneuronal populations, that are preferentially activated by stimulation in posterior-to-anterior or lateral-to-medial directions, promotes cortical hyperexcitability in ALS. Mechanisms that underlie dysfunction of these specific cortical neuronal circuits will enhance understanding of the pathophysiological processes in ALS, with the potential to uncover focussed therapeutic targets.
Collapse
Affiliation(s)
- Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Andrew Hannaford
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Mehdi van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2139, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2139, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| |
Collapse
|
6
|
Higashihara M, Pavey N, Menon P, van den Bos M, Shibuya K, Kuwabara S, Kiernan MC, Koinuma M, Vucic S. Reduction in short interval intracortical inhibition from the early stage reflects the pathophysiology in amyotrophic lateral sclerosis: A meta-analysis study. Eur J Neurol 2024; 31:e16281. [PMID: 38504632 PMCID: PMC11235657 DOI: 10.1111/ene.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Cortical hyperexcitability has been identified as a diagnostic and pathogenic biomarker of amyotrophic lateral sclerosis (ALS). Cortical excitability is assessed by transcranial magnetic stimulation (TMS), a non-invasive neurophysiological technique. The TMS biomarkers exhibiting highest sensitivity for cortical hyperexcitability in ALS remain to be elucidated. A meta-analysis was performed to determine the TMS biomarkers exhibiting the highest sensitivity for cortical hyperexcitability in ALS. METHODS A systematic literature review was conducted of all relevant studies published in the English language by searching PubMed, MEDLINE, Embase and Scopus electronic databases from 1 January 2006 to 28 February 2023. Inclusion criteria included studies reporting the utility of threshold tracking TMS (serial ascending method) in ALS and controls. RESULTS In total, more than 2500 participants, incorporating 1530 ALS patients and 1102 controls (healthy, 907; neuromuscular, 195) were assessed with threshold tracking TMS across 25 studies. Significant reduction of mean short interval intracortical inhibition (interstimulus interval 1-7 ms) exhibited the highest standardized mean difference with moderate heterogeneity (-0.994, 95% confidence interval -1.12 to -0.873, p < 0.001; Q = 38.61, p < 0.05; I2 = 40%). The reduction of cortical silent period duration along with an increase in motor evoked potential amplitude and intracortical facilitation also exhibited significant, albeit smaller, standardized mean differences. CONCLUSION This large meta-analysis study disclosed that mean short interval intracortical inhibition reduction exhibited the highest sensitivity for cortical hyperexcitability in ALS. Combined findings from this meta-analysis suggest that research strategies aimed at understanding the cause of inhibitory interneuronal circuit dysfunction could enhance understanding of ALS pathogenesis.
Collapse
Affiliation(s)
- Mana Higashihara
- Department of NeurologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Nathan Pavey
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Parvathi Menon
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Mehdi van den Bos
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Kazumoto Shibuya
- Neurology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Satoshi Kuwabara
- Neurology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Matthew C. Kiernan
- Neuroscience Resarch AustraliaUniversity of New South WalesSydneyNew South WalesAustralia
- Department of NeurologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Masayoshi Koinuma
- Faculty of Pharmaceutical SciencesTeikyo Heisei UniversityTokyoJapan
- Healthy Aging Innovation CenterTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Steve Vucic
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Huang X, Wu J, Zhang N, Teng J, Yang Q, Zhang Y, Yin T, Zhou W, Fan D, Ye S. Smell loss is associated with cognitive impairment in amyotrophic lateral sclerosis patients. CNS Neurosci Ther 2024; 30:e14851. [PMID: 38978196 PMCID: PMC11230928 DOI: 10.1111/cns.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Smell loss significantly impacts the quality of life in patients. However, there is limited research on smell loss in individuals with amyotrophic lateral sclerosis (ALS), and the correlation between smell loss and cognitive impairment is unclear. This study aimed to investigate the correlation between smell loss and cognition impairment in ALS patients. METHODS The study included 216 ALS patients. The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and smell identification test specifically for the Chinese population (CSIT) were administered to evaluate participants' cognitive and olfactory function, respectively. RESULTS After covarying for age, sex, BMI, education level, degree of hunger, dietary bias, eagerness for food, stress, smoking status, alcohol consumption, and upper respiratory tract infection (URTI) or rhinitis, CSIT scores were significantly correlated with ECAS scores (r = 0.162, p = 0.028), especially the ALS-specific scores (r = 0.158, p = 0.031). Even after excluding patients with URTI or rhinitis, the results were similar. CSIT scores were significantly correlated with ECAS scores (r = 0.224, p = 0.011), especially the ALS-specific scores (r = 0.205, p = 0.019). CONCLUSION In patients with ALS, smell loss is significantly correlated with cognitive impairment, particularly frontotemporal dysfunction. Cognitive dysfunction may lead to worse olfactory performance in ALS patients.
Collapse
Affiliation(s)
- Xin Huang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Jieying Wu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Jinghong Teng
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Qiong Yang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Tielun Yin
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Department of Neurology, Yan'an Hospital of Traditional Chinese Medicine, Yan'an, China
| |
Collapse
|
8
|
Vucic S, de Carvalho M, Bashford J, Alix JJP. Contribution of neurophysiology to the diagnosis and monitoring of ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:87-118. [PMID: 38802184 DOI: 10.1016/bs.irn.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Mamede de Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosciences, CHULN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - James Bashford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Moreno-Roco J, del Valle L, Jiménez D, Acosta I, Castillo JL, Dharmadasa T, Kiernan MC, Matamala JM. Diagnostic utility of transcranial magnetic stimulation for neurodegenerative disease: a critical review. Dement Neuropsychol 2024; 17:e20230048. [PMID: 38189033 PMCID: PMC10768644 DOI: 10.1590/1980-5764-dn-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 01/09/2024] Open
Abstract
Neurodegenerative diseases pose significant challenges due to their impact on brain structure, function, and cognition. As life expectancy rises, the prevalence of these disorders is rapidly increasing, resulting in substantial personal, familial, and societal burdens. Efforts have been made to optimize the diagnostic and therapeutic processes, primarily focusing on clinical, cognitive, and imaging characterization. However, the emergence of non-invasive brain stimulation techniques, specifically transcranial magnetic stimulation (TMS), offers unique functional insights and diagnostic potential. TMS allows direct evaluation of brain function, providing valuable information inaccessible through other methods. This review aims to summarize the current and potential diagnostic utility of TMS in investigating neurodegenerative diseases, highlighting its relevance to the field of cognitive neuroscience. The findings presented herein contribute to the growing body of research focused on improving our understanding and management of these debilitating conditions, particularly in regions with limited resources and a pressing need for innovative approaches.
Collapse
Affiliation(s)
- Javier Moreno-Roco
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Lucía del Valle
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Daniel Jiménez
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Hospital del Salvador, Servicio de Neurología, Santiago, Chile
| | - Ignacio Acosta
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Hospital del Salvador, Servicio de Neurología, Santiago, Chile
| | - José Luis Castillo
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Thanuja Dharmadasa
- University of Melbourne, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- The Royal Melbourne Hospital, Department of Neurology, Parkville, Victoria, Australia
- University of Sydney, Brain and Mind Centre, Sydney, Australia
| | - Matthew C. Kiernan
- University of Sydney, Brain and Mind Centre, Sydney, Australia
- Royal Prince Alfred Hospital, Department of Neurology, Sydney, AustraliaArgento
| | - José Manuel Matamala
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Neurociencias, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Santiago, Chile
| |
Collapse
|
10
|
Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat Rev Neurol 2023; 19:655-667. [PMID: 37828358 DOI: 10.1038/s41582-023-00878-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS-FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS-FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.
Collapse
Affiliation(s)
- Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
12
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 442] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
14
|
Redondo-Camós M, Cattaneo G, Alviarez-Schulze V, Delgado-Gallén S, España-Irla G, Solana-Sanchez J, Perellón-Alfonso R, Albu S, Tormos JM, Pascual-Leone A, Bartres-Faz D. Long-interval intracortical inhibition in primary motor cortex related to working memory in middle-aged adults. Front Psychol 2022; 13:998062. [PMID: 36248602 PMCID: PMC9559215 DOI: 10.3389/fpsyg.2022.998062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Excitability of the primary motor cortex measured with TMS has been associated with cognitive dysfunctions in patient populations. However, only a few studies have explored this relationship in healthy adults, and even fewer have considered the role of biological sex. Methods Ninety-seven healthy middle-aged adults (53 male) completed a TMS protocol and a neuropsychological assessment. Resting Motor Threshold (RMT) and Long-Interval Intracortical Inhibition (LICI) were assessed in the left motor cortex and related to attention, episodic memory, working memory, reasoning, and global cognition composite scores to evaluate the relationship between cortical excitability and cognitive functioning. Results In the whole sample, there was a significant association between LICI and cognition; specifically, higher motor inhibition was related to better working memory performance. When the sample was broken down by biological sex, LICI was only associated with working memory, reasoning, and global cognition in men. No associations were found between RMT and cognitive functions. Conclusion Greater intracortical inhibition, measured by LICI, could be a possible marker of working memory in healthy middle-aged adults, and biological sex plays a critical role in this association.
Collapse
Affiliation(s)
- María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Vanessa Alviarez-Schulze
- Departamento de Ciencias del Comportamiento, Escuela de Psicología, Universidad Metropolitana, Caracas, Venezuela
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sanchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergiu Albu
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - José M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Alvaro Pascual-Leone,
| | - David Bartres-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- David Bartres-Faz,
| |
Collapse
|
15
|
Helekar SA, Thonhoff J, John BS, Nguyen L, Rosenfield DB, Appel SH. Modulation of spontaneous motor unit potentials by a new motor cortical magnetic stimulation method in amyotrophic lateral sclerosis. J Neurol 2022; 269:5487-5496. [PMID: 35704101 DOI: 10.1007/s00415-022-11214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Patients with amyotrophic lateral sclerosis (ALS) show altered cortical excitability. In this study, we measure modulation of spontaneous motor unit potentials (sMUPs) in hand muscles by multifocal cortical stimulation with a newly developed wearable transcranial rotating permanent magnet stimulator (TRPMS). METHODS We conducted cross-sectional and longitudinal electromyographic assessments in 40 and 20 ALS patients, respectively, of the stimulation-induced peak increase in the count of sMUPs in two hand muscles modulated by unilateral TRPMS stimulation of the primary motor cortex. We measured peak sMUP counts during several short sessions consisting of 10 stimuli over 60 s and 30 s post-stimulation periods. The longitudinal component involved an initial assessment at an early stage of the disease and up to five follow-up assessments at least 3 months apart. RESULTS TRPMS stimulation produced no device-related adverse effects. It showed an inverted V-shaped modulation of the peak sMUP counts as a function of ALS functional rating scale revised scores. The ratios of ALS subjects showing peak sMUP count increases between early and intermediate stages (χ2 = 4.086, df = 1, p = 0.043) and intermediate and late stages (χ2 = 4.29, df = 1, p = 0.038) in cross-sectional data were significantly different. Longitudinal assessment also produced a significant (z = 2.31, p = 0.021) result, with all subjects showing a post-initial visit increase in peak sMUP counts. CONCLUSIONS These results are consistent with delayed onset of upper motor neuronal dysfunction with respect to onset of clinical features. However, the above results need to be confirmed in a larger sample of patients and with multiple lines of evidence.
Collapse
Affiliation(s)
- Santosh A Helekar
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, 77030, USA. .,Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Jason Thonhoff
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Blessy S John
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lisa Nguyen
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - David B Rosenfield
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Weill Cornell Medical College, New York, NY, 10065, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
16
|
Reyes-Leiva D, Dols-Icardo O, Sirisi S, Cortés-Vicente E, Turon-Sans J, de Luna N, Blesa R, Belbin O, Montal V, Alcolea D, Fortea J, Lleó A, Rojas-García R, Illán-Gala I. Pathophysiological Underpinnings of Extra-Motor Neurodegeneration in Amyotrophic Lateral Sclerosis: New Insights From Biomarker Studies. Front Neurol 2022; 12:750543. [PMID: 35115992 PMCID: PMC8804092 DOI: 10.3389/fneur.2021.750543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) lie at opposing ends of a clinical, genetic, and neuropathological continuum. In the last decade, it has become clear that cognitive and behavioral changes in patients with ALS are more frequent than previously recognized. Significantly, these non-motor features can impact the diagnosis, prognosis, and management of ALS. Partially overlapping neuropathological staging systems have been proposed to describe the distribution of TAR DNA-binding protein 43 (TDP-43) aggregates outside the corticospinal tract. However, the relationship between TDP-43 inclusions and neurodegeneration is not absolute and other pathophysiological processes, such as neuroinflammation (with a prominent role of microglia), cortical hyperexcitability, and synaptic dysfunction also play a central role in ALS pathophysiology. In the last decade, imaging and biofluid biomarker studies have revealed important insights into the pathophysiological underpinnings of extra-motor neurodegeneration in the ALS-FTLD continuum. In this review, we first summarize the clinical and pathophysiological correlates of extra-motor neurodegeneration in ALS. Next, we discuss the diagnostic and prognostic value of biomarkers in ALS and their potential to characterize extra-motor neurodegeneration. Finally, we debate about how biomarkers could improve the diagnosis and classification of ALS. Emerging imaging biomarkers of extra-motor neurodegeneration that enable the monitoring of disease progression are particularly promising. In addition, a growing arsenal of biofluid biomarkers linked to neurodegeneration and neuroinflammation are improving the diagnostic accuracy and identification of patients with a faster progression rate. The development and validation of biomarkers that detect the pathological aggregates of TDP-43 in vivo are notably expected to further elucidate the pathophysiological underpinnings of extra-motor neurodegeneration in ALS. Novel biomarkers tracking the different aspects of ALS pathophysiology are paving the way to precision medicine approaches in the ALS-FTLD continuum. These are essential steps to improve the diagnosis and staging of ALS and the design of clinical trials testing novel disease-modifying treatments.
Collapse
Affiliation(s)
- David Reyes-Leiva
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sonia Sirisi
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Janina Turon-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Noemi de Luna
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
- *Correspondence: Ignacio Illán-Gala
| |
Collapse
|
17
|
Maranzano A, Poletti B, Solca F, Torre S, Colombo E, Faré M, Ferrucci R, Carelli L, Verde F, Morelli C, Silani V, Ticozzi N. Upper motor neuron dysfunction is associated with the presence of behavioural impairment in patients with amyotrophic lateral sclerosis. Eur J Neurol 2022; 29:1402-1409. [PMID: 34989063 DOI: 10.1111/ene.15243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Increasing evidence shows that approximately half of patients with amyotrophic lateral sclerosis (ALS) display cognitive (ALSci) or behavioural (ALSbi) impairment, or both (ALScbi). The aim of our study was to assess whether the burden of upper and lower motor neuron involvement is associated with the presence of cognitive and behavioural impairment. METHODS A single-centre retrospective cohort of 110 Italian ALS patients was evaluated to assess correlations between motor and cognitive/behavioural phenotypes. Upper motor neuron regional involvement was measured with the Penn Upper Motor Neuron Score (PUMNS), whilst lower motor neuron signs were assessed using the Lower Motor Neuron Score. The Edinburgh Cognitive and Behavioural ALS Screen-Italian version and the Frontal Behaviour Inventory were administered to evaluate patients' cognitive and behavioural profiles. RESULTS The PUMNS at first visit was significantly higher in behaviourally impaired ALS patients (ALSbi and ALScbi) compared to behaviourally unimpaired individuals (ALS and ALSci) (9.9 vs. 6.9, p = 0.014). Concerning the different Frontal Behaviour Inventory subdomains, higher PUMNS correlated with the presence of apathy, emotive indifference, inflexibility, inattention, perseveration and aggressiveness. CONCLUSION To our knowledge, this is the first study showing that a clinical prominent upper motor neuron dysfunction is associated with a more significant behavioural impairment in ALS patients, suggesting the hypothesis of a preferential spreading of the pathology from the motor cortex to the ventromedial prefrontal and orbitofrontal cortex in this group of patients.
Collapse
Affiliation(s)
- Alessio Maranzano
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Federica Solca
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Silvia Torre
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Eleonora Colombo
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Matteo Faré
- Department of Neurology, Ospedale San Gerardo ASST, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberta Ferrucci
- 'Aldo Ravelli' Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, Università Degli Studi di Milano, Milan, Italy.,ASST Santi Paolo e Carlo, Neurology Clinic III, Milan, Italy.,Department of Neurology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Carelli
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Federico Verde
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Claudia Morelli
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|