1
|
Richmond RV, Mageswary U, Ali A, Taib F, Koo TH, Yusof A, Hamid IJA, Zhao F, Rahman NNNA, Hasan TH, Zhang H, Liong MT. Therapeutic Potential of Bifidobacterium longum subsp. infantis B8762 on Gut and Respiratory Health in Infant. Int J Mol Sci 2025; 26:1323. [PMID: 39941091 PMCID: PMC11818524 DOI: 10.3390/ijms26031323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Respiratory tract and gastrointestinal infections in pediatric populations are major public health concerns. Addressing these challenges necessitates effective preventative and therapeutic strategies. This study assessed the efficacy of the probiotic Bifidobacterium longum subsp. infantis B8762 (0.5 × 1010 CFU) in reducing the duration and frequency of these infections in young children. In a randomized trial, 115 eligible children were assigned to either the probiotic (n = 57; 3.51 ± 0.48 months old) or placebo (n = 58; 2.78 ± 0.51 months old) group, with daily consumption for 4 weeks. The probiotic group demonstrated a lower duration of infections than the placebo group (p < 0.05). The probiotic group also showed fewer clinical visits due to respiratory and gastrointestinal problems as compared to the placebo group (p = 0.009 & p = 0.004, respectively). Oral swab samples revealed that the placebo group had higher levels of pro-inflammatory cytokine TNF-α after 4 weeks (p = 0.033), while the probiotic group demonstrated a balanced cytokine response, indicating modulation of the immune system. Genomic analysis showed that B8762 harbors various genes for the synthesis of proteins and vitamins crucial for the gut health of children. Both the clinical and genomic findings suggested that B8762 offered a therapeutic effect on gut and respiratory health in children, highlighting its potential in managing common pediatric infections.
Collapse
Affiliation(s)
- Rocky Vester Richmond
- Department of Pediactric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Uma Mageswary
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Adli Ali
- Department of Pediactric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Fahisham Taib
- Pediatric & Palliative Care, Hospital Universiti Sains Malaysia, Kota Bharu 16150, Malaysia; (F.T.); (T.H.K.)
| | - Thai Hau Koo
- Pediatric & Palliative Care, Hospital Universiti Sains Malaysia, Kota Bharu 16150, Malaysia; (F.T.); (T.H.K.)
| | - Azianey Yusof
- Kepala Batas Health Clinic, Ministry of Health Malaysia, Putrajaya 13200, Malaysia;
| | | | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China (H.Z.)
| | | | - Taufiq Hidayat Hasan
- IIUM Medical Centre, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China (H.Z.)
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
2
|
Ciapaite J, van Roermund CWT, Bosma M, Gerrits J, Houten SM, IJlst L, Waterham HR, van Karnebeek CDM, Wanders RJA, Zwartkruis FJT, Jans JJ, Verhoeven-Duif NM. Maintenance of cellular vitamin B 6 levels and mitochondrial oxidative function depend on pyridoxal 5'-phosphate homeostasis protein. J Biol Chem 2023; 299:105047. [PMID: 37451483 PMCID: PMC10463200 DOI: 10.1016/j.jbc.2023.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Carlo W T van Roermund
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Johan Gerrits
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lodewijk IJlst
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D M van Karnebeek
- United for Metabolic Diseases, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ronald J A Wanders
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith J Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| |
Collapse
|
3
|
Mastrangelo M, Gasparri V, Bernardi K, Foglietta S, Ramantani G, Pisani F. Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review. CHILDREN 2023; 10:children10030553. [PMID: 36980111 PMCID: PMC10047402 DOI: 10.3390/children10030553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence:
| | - Valentina Gasparri
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Katerina Bernardi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Foglietta
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children’s Hospital Zurich and University of Zurich, 8032 Zurich, Switzerland
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
4
|
Yang MT, Chou IC, Wang HS. Role of vitamins in epilepsy. Epilepsy Behav 2023; 139:109062. [PMID: 36577336 DOI: 10.1016/j.yebeh.2022.109062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Epilepsy is a chronic neurological disorder that presents as recurrent, unprovoked seizures. Pharmacotherapy is the main treatment for epilepsy, but at least 30% of patients with epilepsy have pharmacoresistant epilepsy. Therefore, non-pharmacological treatments are still required. In addition to electrophysiological aberrations contributing to epileptogenesis and pathophysiology in epilepsy, neuroinflammation, oxidative stress, and metabolic derangement have been investigated as drug targets in the treatment of epilepsy. Vitamins have antioxidant, anti-inflammatory, and immunomodulatory effects, which can be beneficial for the treatment of epilepsy. Herein, we comprehensively review the role of vitamins in epilepsy. Certain epilepsies are vitamin-dependent or vitamin-responsive. Most studies on vitamins in epilepsy are of low evidence level or limited to animal studies. Nevertheless, vitamin supplementation should be considered in epilepsy therapy. Additionally, certain anti-seizure medications may alter the serum levels of certain vitamins. Monitoring the serum levels of vitamins and supplementing vitamins when needed are suggested during the follow-up of patients with epilepsy.
Collapse
Affiliation(s)
- Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University Children's Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Tramonti A, Ghatge MS, Babor JT, Musayev FN, di Salvo ML, Barile A, Colotti G, Giorgi A, Paredes SD, Donkor AK, Al Mughram MH, de Crécy‐Lagard V, Safo MK, Contestabile R. Characterization of the Escherichia coli pyridoxal 5'-phosphate homeostasis protein (YggS): Role of lysine residues in PLP binding and protein stability. Protein Sci 2022; 31:e4471. [PMID: 36218140 PMCID: PMC9601805 DOI: 10.1002/pro.4471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
The pyridoxal 5'-phosphate (PLP) homeostasis protein (PLPHP) is a ubiquitous member of the COG0325 family with apparently no catalytic activity. Although the actual cellular role of this protein is unknown, it has been observed that mutations of the PLPHP encoding gene affect the activity of PLP-dependent enzymes, B6 vitamers and amino acid levels. Here we report a detailed characterization of the Escherichia coli ortholog of PLPHP (YggS) with respect to its PLP binding and transfer properties, stability, and structure. YggS binds PLP very tightly and is able to slowly transfer it to a model PLP-dependent enzyme, serine hydroxymethyltransferase. PLP binding to YggS elicits a conformational/flexibility change in the protein structure that is detectable in solution but not in crystals. We serendipitously discovered that the K36A variant of YggS, affecting the lysine residue that binds PLP at the active site, is able to bind PLP covalently. This observation led us to recognize that a number of lysine residues, located at the entrance of the active site, can replace Lys36 in its PLP binding role. These lysines form a cluster of charged residues that affect protein stability and conformation, playing an important role in PLP binding and possibly in YggS function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Mohini S. Ghatge
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jill T. Babor
- Department of Microbiology and Cell ScienceUniversity of FloridaGainsvilleFloridaUSA
| | - Faik N. Musayev
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Anna Barile
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Gianni Colotti
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Alessandra Giorgi
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Steven D. Paredes
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Akua K. Donkor
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mohammed H. Al Mughram
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Valérie de Crécy‐Lagard
- Department of Microbiology and Cell ScienceUniversity of FloridaGainsvilleFloridaUSA
- Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Martin K. Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Roberto Contestabile
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| |
Collapse
|
6
|
The Conserved Family of the Pyridoxal Phosphate-Binding Protein (PLPBP) and Its Cyanobacterial Paradigm PipY. Life (Basel) 2022; 12:life12101622. [PMID: 36295057 PMCID: PMC9605639 DOI: 10.3390/life12101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The PLPBP family of pyridoxal phosphate-binding proteins has a high degree of sequence conservation and is represented in all three domains of life. PLPBP members, of which a few representatives have been studied in different contexts, are single-domain proteins with no known enzymatic activity that exhibit the fold type III of PLP-holoenzymes, consisting in an α/β barrel (TIM-barrel), where the PLP cofactor is solvent-exposed. Despite the constant presence of cofactor PLP (a key catalytic element in PLP enzymes), PLPBP family members appear to have purely regulatory functions affecting the homeostasis of vitamin B6 vitamers and amino/keto acids. Perturbation of these metabolites and pleiotropic phenotypes have been reported in bacteria and zebrafish after PLPBP gene inactivation as well as in patients with vitamin B6-dependent epilepsy that results from loss-of-function mutations at the PLPBP. Here, we review information gathered from diverse studies and biological systems, emphasizing the structural and functional conservation of the PLPBP members and discussing the informative nature of model systems and experimental approaches. In this context, the relatively high level of structural and functional characterization of PipY from Synechococcus elongatus PCC 7942 provides a unique opportunity to investigate the PLPBP roles in the context of a signaling pathway conserved in cyanobacteria.
Collapse
|
7
|
Chad L, Anderson J, Cagliero D, Hayeems RZ, Ly LG, Szuto A. Rapid Genetic Testing in Pediatric and Neonatal Critical Care: A Scoping Review of Emerging Ethical Issues. Hosp Pediatr 2022; 12:e347-e359. [PMID: 36161483 DOI: 10.1542/hpeds.2022-006654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Rapid genome-wide sequencing (rGWS) is being increasingly used to aid in prognostication and decision-making for critically ill newborns and children. Although its feasibility in this fast-paced setting has been described, this new paradigm of inpatient genetic care raises new ethical challenges. OBJECTIVE A scoping review was performed to (1) identify salient ethical issues in this area of practice; and (2) bring attention to gaps and ethical tensions that warrant more deliberate exploration. METHODS Data sources, Ovid Medline and Cochrane Central Register of Controlled Trials, were searched up to November 2021. Articles included were those in English relating to rGWS deployed rapidly in a critical care setting. Publications were examined for ethical themes and were further characterized as including a superficial or in-depth discussion of that theme. New themes were inductively identified as they emerged. RESULTS Ninety-nine studies, published in 2012 or thereafter, met inclusion criteria. Themes identified elaborated upon established ethical principles related to beneficence and nonmaleficence (ie, clinical utility, medical uncertainty, impact on family, and data security) autonomy (ie, informed consent), and justice (ie, resource allocation and disability rights). Many themes were only narrowly discussed. CONCLUSIONS The application of rGWS in neonatal and pediatric acute care is inherently tied to ethically charged issues, some of which are reported here. Attention to the ethical costs and benefits of rGWS is not always discussed, with important gaps and unanswered questions that call for ongoing focus on these ethical considerations in this next application of acute care genomics.
Collapse
Affiliation(s)
- Lauren Chad
- Divisions of Clinical and Metabolic Genetics
- Departments of Bioethics
- Departments of Paediatrics
| | | | | | - Robin Z Hayeems
- Child Health Evaluative Sciences, Hospital for Sick Children Research Institute,Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto,Toronto, Ontario, Canada
| | - Linh G Ly
- Neonatology
- Departments of Paediatrics
| | - Anna Szuto
- Genetic Counselling, Hospital for Sick Children,Toronto, Ontario, Canada
- Molecular Genetics
| |
Collapse
|