1
|
Horie K, Salvadó G, Koppisetti RK, Janelidze S, Barthélemy NR, He Y, Sato C, Gordon BA, Jiang H, Benzinger TLS, Stomrud E, Holtzman DM, Mattsson-Carlgren N, Morris JC, Palmqvist S, Ossenkoppele R, Schindler SE, Hansson O, Bateman RJ. Plasma MTBR-tau243 biomarker identifies tau tangle pathology in Alzheimer's disease. Nat Med 2025:10.1038/s41591-025-03617-7. [PMID: 40164726 DOI: 10.1038/s41591-025-03617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Insoluble tau aggregates within neurofibrillary tangles are a defining neuropathological feature of Alzheimer's disease (AD) and closely correlate with clinical symptoms. Although tau pathology can be assessed using tau positron emission tomography, a more accessible biomarker is needed for diagnosis, prognosis and tracking treatment effects. Here we present a new plasma tau species, the endogenously cleaved, microtubule-binding region containing residue 243 (eMTBR-tau243), which specifically reflects tau tangle pathology. Across the AD spectrum in three different cohorts (n = 108, 55 and 739), plasma eMTBR-tau243 levels were significantly elevated at the mild cognitive impairment stage and increased further in dementia. Plasma eMTBR-tau243 showed strong associations with tau positron emission tomography binding (β = 0.72, R2 = 0.56) and cognitive performance (β = 0.60, R2 = 0.40), outperforming other plasma tau (%p-tau217 and %p-tau205) biomarkers. These results suggest that plasma eMTBR-tau243 may be useful for estimating the tauopathy load in AD, thereby improving the diagnostic evaluation of AD in clinical practice and monitoring the efficacy of tau-targeted therapies in clinical trials.
Collapse
Affiliation(s)
- Kanta Horie
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Eisai Inc., Nutley, NJ, USA.
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rama K Koppisetti
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Nicolas R Barthélemy
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yingxin He
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chihiro Sato
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | - Randall J Bateman
- The Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Qi C, Lövestam S, Murzin AG, Peak-Chew S, Franco C, Bogdani M, Latimer C, Murrell JR, Cullinane PW, Jaunmuktane Z, Bird TD, Ghetti B, Scheres SHW, Goedert M. Tau filaments with the Alzheimer fold in human MAPT mutants V337M and R406W. Nat Struct Mol Biol 2025:10.1038/s41594-025-01498-5. [PMID: 40044789 DOI: 10.1038/s41594-025-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/23/2025] [Indexed: 03/12/2025]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are the most common forms of early-onset dementia. Unlike AD, FTD begins with behavioral changes before the development of cognitive impairment. Dominantly inherited mutations in MAPT, the microtubule-associated protein tau gene, give rise to cases of FTD and parkinsonism linked to chromosome 17. These individuals develop abundant filamentous tau inclusions in brain cells in the absence of β-amyloid deposits. Here, we used cryo-electron microscopy to determine the structures of tau filaments from the brains of human MAPT mutants V337M and R406W. Both amino acid substitutions gave rise to tau filaments with the Alzheimer fold, which consisted of paired helical filaments in all V337M and R406W cases and of straight filaments in two V337M cases. We also identified another assembly of the Alzheimer fold into triple tau filaments in a V337M case. Filaments assembled from recombinant tau (297-391) with substitution V337M had the Alzheimer fold and showed an increased rate of assembly.
Collapse
Affiliation(s)
- Chao Qi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | - Marika Bogdani
- Departments of Neurology and Pathology, University of Washington, Seattle, WA, USA
- Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Caitlin Latimer
- Departments of Neurology and Pathology, University of Washington, Seattle, WA, USA
- Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London, UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College, London, UK
- Queen Square Brain Bank for Neurological Disorders, Institute of Neurology, University College, London, UK
| | - Thomas D Bird
- Departments of Neurology and Pathology, University of Washington, Seattle, WA, USA
- Veterans Administration Puget Sound Health Care System, Seattle, WA, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
3
|
Gérard T, Colmant L, Malotaux V, Salman Y, Huyghe L, Quenon L, Boyer E, Dricot L, Ivanoiu A, Lhommel R, Hanseeuw B. Tau PET Imaging With [ 18F]MK-6240: Limited Affinity for Primary Tauopathies and High Specificity for Alzheimer's Disease. Eur J Neurol 2025; 32:e70068. [PMID: 39957301 PMCID: PMC11831001 DOI: 10.1111/ene.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Second-generation tau-PET tracers like [18F]MK-6240 are increasingly used both for diagnosing and quantifying Alzheimer's Disease (AD) tauopathy. However, while [18F]MK-6240 tau-PET has demonstrated excellent sensitivity for AD tauopathy, data assessing its specificity and binding in non-AD tauopathies are still scarce. METHODS Participants were assigned to exclusive categorical diagnoses based on their amyloid (Aβ) and cognitive status. We quantified mesiotemporal (MTL) and neocortical [18F]MK-6240 tau-PET signal in 28 Aβ- cognitively impaired (CI) patients presenting various non-AD neurodegenerative disorders. Tau-PET quantifications were compared with Aβ- cognitively unimpaired (CU) subjects (n = 51) and Aβ+ CI patients (n = 77). RESULTS Among the 28 Aβ- impaired subjects, only five presented significant and isolated mesiotemporal signal, most of them being suspected of primary age-related tauopathy (PART). Only two Aβ- impaired patients (7%) presented positive neocortical signal, both being diagnosed with fronto-temporal degeneration (FTD). The Tau-PET results of all the remaining Aβ- patients were comparable to the CU population, including eight other FTD patients. Importantly, 4R-only tauopathies (CBD and PSP) and sv-PPA were negative. CONCLUSION [18F]MK-6240 tau-PET has a special affinity for tauopathies involving 3R/4R paired helical filaments: AD, PART (Aβ- subjects with MTL-restricted tau-PET signal) and some forms of FTD while most primary tauopathies do not exhibit significant cortical signal. Positive neocortical scans are therefore highly specific for AD tauopathy. Based on those and previous results, we propose a diagnostic flowchart for MCI subjects suspected of AD or another tauopathy which may significantly reduce the need for amyloid PET or CSF measurement.
Collapse
Affiliation(s)
- Thomas Gérard
- Nuclear Medicine DepartmentCliniques Universitaires Saint LucBrusselsBelgium
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
| | - Lise Colmant
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
- Neurology DepartmentCliniques Universitaires Saint LucBrusselsBelgium
| | - Vincent Malotaux
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
| | - Yasmine Salman
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
| | - Lara Huyghe
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
| | - Lisa Quenon
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
- Neurology DepartmentCliniques Universitaires Saint LucBrusselsBelgium
| | - Emilien Boyer
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
- Neurology DepartmentCliniques Universitaires Saint LucBrusselsBelgium
| | - Laurence Dricot
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
- Neurology DepartmentCliniques Universitaires Saint LucBrusselsBelgium
| | - Adrian Ivanoiu
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
- Neurology DepartmentCliniques Universitaires Saint LucBrusselsBelgium
| | - Renaud Lhommel
- Nuclear Medicine DepartmentCliniques Universitaires Saint LucBrusselsBelgium
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
| | - Bernard Hanseeuw
- Institute of NeurosciencesUniversité Catholique de LouvainBrusselsBelgium
- Neurology DepartmentCliniques Universitaires Saint LucBrusselsBelgium
- WELBIO DepartmentWEL Research InstituteWavreBelgium
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Risacher SL. Neuroimaging in Dementia. Continuum (Minneap Minn) 2024; 30:1761-1789. [PMID: 39620843 DOI: 10.1212/con.0000000000001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This article captures the current literature regarding the use of neuroimaging measures to study neurodegenerative diseases, including early- and late-onset Alzheimer disease, vascular cognitive impairment, frontotemporal lobar degeneration disorders, dementia with Lewy bodies, and Parkinson disease dementia. In particular, the article highlights significant recent changes in novel therapeutics now available for the treatment of Alzheimer disease and in defining neurodegenerative disease using biological frameworks. Studies summarized include those using structural and functional MRI (fMRI) techniques, as well as metabolic and molecular emission tomography imaging (ie, positron emission tomography [PET] and single-photon emission computerized tomography [SPECT]). LATEST DEVELOPMENTS Neuroimaging measures are considered essential biomarkers for the detection and diagnosis of most neurodegenerative diseases. The recent approval of anti-amyloid antibody therapies has highlighted the importance of MRI and PET techniques in treatment eligibility and monitoring for associated side effects. Given the success of the initial biomarker-based classification system for Alzheimer disease (the amyloid, tau, neurodegeneration [A/T/N] framework), researchers in vascular cognitive impairment have created similar techniques for biomarker-based diagnosis. Further, the A/T/N framework for Alzheimer disease has been updated to include several pathologic targets for biomarker detection. ESSENTIAL POINTS Neurodegenerative diseases have a major health impact on millions of patients around the world. Neuroimaging biomarkers are rapidly becoming major diagnostic tools for the detection, monitoring, and treatment of neurodegenerative diseases. This article educates readers about the current literature surrounding the use of neuroimaging tools in neurodegenerative diseases along with recent important developments in the field.
Collapse
|
5
|
Pozzi FE, Aprea V, Giovannelli G, Lattuada F, Crivellaro C, Bertola F, Castelnovo V, Canu E, Filippi M, Appollonio I, Ferrarese C, Agosta F, Tremolizzo L. Clinical and neuroimaging characterization of the first frontotemporal dementia family carrying the MAPT p.K298E mutation. Neurogenetics 2024; 25:215-223. [PMID: 38592608 PMCID: PMC11249401 DOI: 10.1007/s10048-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.Based on the genotype-phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.
Collapse
Affiliation(s)
- Federico Emanuele Pozzi
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
| | - Vittoria Aprea
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | - Francesca Lattuada
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nuclear Medicine Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Cinzia Crivellaro
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nuclear Medicine Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesca Bertola
- Medical Genetics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Aguero C, Dhaynaut M, Amaral AC, Moon SH, Neelamegam R, Scapellato M, Carazo-Casas C, Kumar S, El Fakhri G, Johnson K, Frosch MP, Normandin MD, Gómez-Isla T. Head-to-head comparison of [ 18F]-Flortaucipir, [ 18F]-MK-6240 and [ 18F]-PI-2620 postmortem binding across the spectrum of neurodegenerative diseases. Acta Neuropathol 2024; 147:25. [PMID: 38280071 PMCID: PMC10822013 DOI: 10.1007/s00401-023-02672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
We and others have shown that [18F]-Flortaucipir, the most validated tau PET tracer thus far, binds with strong affinity to tau aggregates in Alzheimer's (AD) but has relatively low affinity for tau aggregates in non-AD tauopathies and exhibits off-target binding to neuromelanin- and melanin-containing cells, and to hemorrhages. Several second-generation tau tracers have been subsequently developed. [18F]-MK-6240 and [18F]-PI-2620 are the two that have garnered most attention. Our recent data indicated that the binding pattern of [18F]-MK-6240 closely parallels that of [18F]-Flortaucipir. The present study aimed at the direct comparison of the autoradiographic binding properties and off-target profile of [18F]-Flortaucipir, [18F]-MK-6240 and [18F]-PI-2620 in human tissue specimens, and their potential binding to monoamine oxidases (MAO). Phosphor-screen and high resolution autoradiographic patterns of the three tracers were studied in the same postmortem tissue material from AD and non-AD tauopathies, cerebral amyloid angiopathy, synucleopathies, transactive response DNA-binding protein 43 (TDP-43)-frontotemporal lobe degeneration and controls. Our results show that the three tracers show nearly identical autoradiographic binding profiles. They all strongly bind to neurofibrillary tangles in AD but do not seem to bind to a significant extent to tau aggregates in non-AD tauopathies pointing to their limited utility for the in vivo detection of non-AD tau lesions. None of them binds to lesions containing β-amyloid, α-synuclein or TDP-43 but they all show strong off-target binding to neuromelanin and melanin-containing cells, as well as weaker binding to areas of hemorrhage. The autoradiographic binding signals of the three tracers are only weakly displaced by competing concentrations of selective MAO-B inhibitor deprenyl but not by MAO-A inhibitor clorgyline suggesting that MAO enzymes do not appear to be a significant binding target of any of them. These findings provide relevant insights for the correct interpretation of the in vivo behavior of these three tau PET tracers.
Collapse
Affiliation(s)
- Cinthya Aguero
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ana C Amaral
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
| | - S-H Moon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Margaret Scapellato
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
| | - Carlos Carazo-Casas
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
| | - Sunny Kumar
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith Johnson
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Teresa Gómez-Isla
- MassGeneral Institute for NeuroDegenerative Disease, Charlestown, MA, USA.
- Department of Neurology, Massachusetts General Hospital, WACC Suite 715, 15th Parkman St., Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Costoya-Sánchez A, Moscoso A, Silva-Rodríguez J, Pontecorvo MJ, Devous MD, Aguiar P, Schöll M, Grothe MJ. Increased Medial Temporal Tau Positron Emission Tomography Uptake in the Absence of Amyloid-β Positivity. JAMA Neurol 2023; 80:1051-1061. [PMID: 37578787 PMCID: PMC10425864 DOI: 10.1001/jamaneurol.2023.2560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Importance An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aβ pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aβ PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aβ PET and tau PET biomarker profiles (A+ TMTL-). Exposures Tau and Aβ PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures Cross-sectional and longitudinal measures for tau and Aβ PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aβ42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aβ accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aβ accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aβ biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Michael J. Pontecorvo
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Michael D. Devous
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Pablo Aguiar
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Michel J. Grothe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
10
|
Giannini LA, Mol MO, Rajicic A, van Buuren R, Sarkar L, Arezoumandan S, Ohm DT, Irwin DJ, Rozemuller AJ, van Swieten JC, Seelaar H. Presymptomatic and early pathological features of MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:126. [PMID: 37533060 PMCID: PMC10394953 DOI: 10.1186/s40478-023-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Early pathological features of frontotemporal lobar degeneration (FTLD) due to MAPT pathogenic variants (FTLD-MAPT) are understudied, since early-stage tissue is rarely available. Here, we report unique pathological data from three presymptomatic/early-stage MAPT variant carriers (FTLD Clinical Dementia Rating [FTLD-CDR] = 0-1). We examined neuronal degeneration semi-quantitatively and digitally quantified tau burden in 18 grey matter (9 cortical, 9 subcortical) and 13 white matter (9 cortical, 4 subcortical) regions. We compared presymptomatic/early-stage pathology to an intermediate/end-stage cohort (FTLD-CDR = 2-3) with the same variants (2 L315R, 10 P301L, 6 G272V), and developed a clinicopathological staging model for P301L and G272V variants. The 68-year-old presymptomatic L315R carrier (FTLD-CDR = 0) had limited tau burden morphologically similar to L315R end-stage carriers in middle frontal, antero-inferior temporal, amygdala, (para-)hippocampus and striatum, along with age-related Alzheimer's disease neuropathological change. The 59-year-old prodromal P301L carrier (FTLD-CDR = 0.5) had highest tau burden in anterior cingulate, anterior temporal, middle/superior frontal, and fronto-insular cortex, and amygdala. The 45-year-old early-stage G272V carrier (FTLD-CDR = 1) had highest tau burden in superior frontal and anterior cingulate cortex, subiculum and CA1. The severity and distribution of tau burden showed some regional variability between variants at presymptomatic/early-stage, while neuronal degeneration, mild-to-moderate, was similarly distributed in frontotemporal regions. Early-stage tau burden and neuronal degeneration were both less severe than in intermediate-/end-stage cases. In a subset of regions (10 GM, 8 WM) used for clinicopathological staging, clinical severity correlated strongly with neuronal degeneration (rho = 0.72, p < 0.001), less strongly with GM tau burden (rho = 0.57, p = 0.006), and did not with WM tau burden (p = 0.9). Clinicopathological staging showed variant-specific patterns of early tau pathology and progression across stages. These unique data demonstrate that tau pathology and neuronal degeneration are present already at the presymptomatic/early-stage of FTLD-MAPT, though less severely compared to intermediate/end-stage disease. Moreover, early pathological patterns, especially of tau burden, differ partly between specific MAPT variants.
Collapse
Affiliation(s)
- Lucia Aa Giannini
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Ana Rajicic
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Renee van Buuren
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lana Sarkar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Annemieke Jm Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, location VUmc, Amsterdam, 1081 HZ, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
11
|
Horie K, Salvadó G, Barthélemy NR, Janelidze S, Li Y, He Y, Saef B, Chen CD, Jiang H, Strandberg O, Pichet Binette A, Palmqvist S, Sato C, Sachdev P, Koyama A, Gordon BA, Benzinger TLS, Holtzman DM, Morris JC, Mattsson-Carlgren N, Stomrud E, Ossenkoppele R, Schindler SE, Hansson O, Bateman RJ. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer's disease. Nat Med 2023; 29:1954-1963. [PMID: 37443334 PMCID: PMC10427417 DOI: 10.1038/s41591-023-02443-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Aggregated insoluble tau is one of two defining features of Alzheimer's disease. Because clinical symptoms are strongly correlated with tau aggregates, drug development and clinical diagnosis need cost-effective and accessible specific fluid biomarkers of tau aggregates; however, recent studies suggest that the fluid biomarkers currently available cannot specifically track tau aggregates. We show that the microtubule-binding region (MTBR) of tau containing the residue 243 (MTBR-tau243) is a new cerebrospinal fluid (CSF) biomarker specific for insoluble tau aggregates and compared it to multiple other phosphorylated tau measures (p-tau181, p-tau205, p-tau217 and p-tau231) in two independent cohorts (BioFINDER-2, n = 448; and Knight Alzheimer Disease Research Center, n = 219). MTBR-tau243 was most strongly associated with tau-positron emission tomography (PET) and cognition, whereas showing the lowest association with amyloid-PET. In combination with p-tau205, MTBR-tau243 explained most of the total variance in tau-PET burden (0.58 ≤ R2 ≤ 0.75) and the performance in predicting cognitive measures (0.34 ≤ R2 ≤ 0.48) approached that of tau-PET (0.44 ≤ R2 ≤ 0.52). MTBR-tau243 levels longitudinally increased with insoluble tau aggregates, unlike CSF p-tau species. CSF MTBR-tau243 is a specific biomarker of tau aggregate pathology, which may be utilized in interventional trials and in the diagnosis of patients. Based on these findings, we propose to revise the A/T/(N) criteria to include MTBR-tau243 as representing insoluble tau aggregates ('T').
Collapse
Grants
- P30 AG066444 NIA NIH HHS
- R01 AG070941 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- P01 AG026276 NIA NIH HHS
- P30 NS048056 NINDS NIH HHS
- S10 OD025214 NIH HHS
- The Tracy Family SILQ Center established by the Tracy Family, Richard Frimel and Gary Werths, GHR Foundation, David Payne, and the Willman Family brought together by The Foundation for Barnes-Jewish Hospital.
- Eisai industry grant
- The European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie action grant agreement No 101061836, from Greta och Johan Kocks research grants and, travel grants from the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- The Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the Swedish Brain Foundation (FO2021-0293), The Parkinson foundation of Sweden (1280/20), the Cure Alzheimer’s fund, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, the Skåne University Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government under the ALF agreement (2018-Projekt0279)
- The Knight ADRC developmental project
Collapse
Affiliation(s)
- Kanta Horie
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Eisai Inc., Nutley, NJ, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Nicolas R Barthélemy
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yingxin He
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Saef
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles D Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Chihiro Sato
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Randall J Bateman
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Chu M, Jiang D, Liu L, Nie B, Cui B, Wang Y, Rosa-Neto P, Wu L. Altered Anterior Insular Metabolic Connectivity in Asymptomatic MAPT P301L Carriers. J Alzheimers Dis 2023:JAD221035. [PMID: 37182866 DOI: 10.3233/jad-221035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The insula is the predominant brain region impaired in behavior variant frontotemporal dementia (bvFTD). However, structural and functional changes in the sub-insula in the asymptomatic stage of bvFTD are unknown. OBJECTIVE To describe structural and functional changes in insula subregions in asymptomatic carriers of the P301L mutation of the microtubule-associated protein tau (MAPT) gene and patients with bvFTD. METHODS Six asymptomatic MAPT P301L mutation carriers and 12 MAPT negative control subjects of the same pedigree were enrolled, along with 30 patients with a clinical diagnosis of bvFTD and 30 matched controls. All subjects underwent hybrid positron emission tomography/magnetic resonance imaging. Atlas-based parcellation using a fine-grained Brainnetome Atlas was conducted to assess gray matter (GM) volume, metabolism, and metabolic connectivity in the sub-insula (region of interest). RESULTS There was no significant GM atrophy or hypometabolism in insula subregions in asymptomatic MAPT P301L carriers, although decreased metabolic connectivity between vIa-middle temporal gyrus, vIa-temporal poles, dIa-middle temporal gyrus and dIa-temporal poles; and increased connectivity between vIa-orbitofrontal, vIa-dorsal lateral superior frontal gyrus, and dIa-orbitofrontal and dIa-dorsal lateral superior frontal gyrus were observed. Patients with bvFTD had significant atrophy and hypometabolism in all insula subregions and decreased metabolic connectivity in the whole brain, including vIa/dIa-middle temporal and vIa/dIa-temporal poles. The standardized uptake value ratios of vIa and dIa were negatively associated with behavioral disinhibition scale scores. CONCLUSION Metabolic connectivity is altered in vIa and dIa subregions of the sub-insula in MAPT P301L mutation carriers before the occurrence of atrophy, hypometabolism, and clinical symptoms.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing
| | - Bo Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Montreal, Canada
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Liu L, Chu M, Nie B, Jiang D, Xie K, Cui Y, Liu L, Kong Y, Chen Z, Nan H, Rosa-Neto P, Wu L. Altered metabolic connectivity within the limbic cortico-striato-thalamo-cortical circuit in presymptomatic and symptomatic behavioral variant frontotemporal dementia. Alzheimers Res Ther 2023; 15:3. [PMID: 36604747 PMCID: PMC9814421 DOI: 10.1186/s13195-022-01157-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) is predominantly considered a dysfunction in cortico-cortical transmission, with limited direct investigation of cortical-subcortical transmission. Thus, we aimed to characterize the metabolic connectivity between areas of the limbic cortico-striato-thalamic-cortical (CSTC) circuit in presymptomatic and symptomatic bvFTD patients. METHODS Thirty-three bvFTD patients and 33 unrelated healthy controls were recruited for this study. Additionally, six asymptomatic carriers of the MAPT P301L mutation were compared with 12 non-carriers who were all from the same family of bvFTD. Each participant underwent neuropsychological assessment, genetic testing, and a hybrid PET/MRI scan. Seed-based metabolic connectivity based on [18F]-fluorodeoxyglucose PET between the main components within the limbic CSTC circuit was explored according to the Oxford-GSK-Imanova Striatal Connectivity Atlas. RESULTS BvFTD patients exhibited reduced metabolic connectivity between the relays in the limbic CSTC circuit, which included the frontal region (ventromedial prefrontal cortex, orbitofrontal cortex, rectus gyrus, and anterior cingulate cortex), the limbic striatum, and thalamus compared to controls. In the bvFTD patients, the involvement of the limbic CSTC circuit was associated with the severity of behavior disruption, as measured by the frontal behavior inventory, the disinhibition subscale, and the apathy subscale. Notably, asymptomatic MAPT carriers had weakened frontostriatal connectivity but enhanced striatothalamus and thalamofrontal connectivity within the limbic CSTC circuit compared with noncarriers. CONCLUSION These findings suggested that aberrant metabolic connectivity within the limbic CSTC circuit is present in symptomatic and even asymptomatic stages of bvFTD. Thus, metabolic connectivity patterns could be used as a potential biomarker to detect the presymptomatic stage and track disease progression.
Collapse
Affiliation(s)
- Li Liu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Min Chu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Binbin Nie
- grid.418741.f0000 0004 0632 3097Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deming Jiang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Kexin Xie
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Yue Cui
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Lin Liu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China ,grid.452845.a0000 0004 1799 2077Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Kong
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Zhongyun Chen
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Haitian Nan
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Pedro Rosa-Neto
- grid.14709.3b0000 0004 1936 8649McGill Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal, H4H 1R3 Canada
| | - Liyong Wu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| |
Collapse
|
14
|
Finger E, Malik R, Bocchetta M, Coleman K, Graff C, Borroni B, Masellis M, Laforce R, Greaves CV, Russell LL, Convery RS, Bouzigues A, Cash DM, Otto M, Synofzik M, Rowe JB, Galimberti D, Tiraboschi P, Bartha R, Shoesmith C, Tartaglia MC, van Swieten JC, Seelaar H, Jiskoo LC, Sorbi S, Butler CR, Gerhard A, Sanchez-Valle R, de Mendonça A, Moreno F, Vandenberghe R, Le Ber I, Levin J, Pasquier F, Santana I, Rohrer JD, Ducharme S. Neurodevelopmental effects of genetic frontotemporal dementia in young adult mutation carriers. Brain 2022; 146:2120-2131. [PMID: 36458975 DOI: 10.1093/brain/awac446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
While frontotemporal dementia (frontotemporal dementia) has been considered a neurodegenerative disease that starts in mid-life or later, it is now clearly established that cortical and subcortical volume loss is observed more than a decade prior to symptom onset and progresses with aging. To test the hypothesis that genetic mutations causing frontotemporal dementia have neurodevelopmental consequences, we have examined the youngest adults in the GENFI cohort of pre-symptomatic frontotemporal dementia mutation carriers who are between the ages of 19 and 30y. Structural brain differences and improved performance on some cognitive tests was found for MAPT and GRN mutation carriers relative to familial non-carriers, while smaller volumes were observed in C9orf72 repeat expansion carriers at a mean age of 26y. The detection of such early differences supports potential advantageous neurodevelopmental consequences of some frontotemporal dementia causing genetic mutations. These results have implications for design of therapeutic interventions for frontotemporal dementia. Future studies at younger ages are needed to identify specific early pathophysiologic or compensatory processes in the neurodevelopmental period.
Collapse
Affiliation(s)
- Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rubina Malik
- Schulich School of Medicine & Dentistry, Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kristy Coleman
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden
- Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm Sweden
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lize C Jiskoo
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | | | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich; German Center for Neurodegenerative Diseases (DZNE), Munich; Munich Cluster of Systems Neurology, Munich, Germany
| | - Florence Pasquier
- Univ Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Liu L, Chu M, Nie B, Liu L, Xie K, Cui Y, Kong Y, Chen Z, Nan H, Chen K, Rosa-Neto P, Wu L. Reconfigured metabolism brain network in asymptomatic microtubule-associated protein tau mutation carriers: a graph theoretical analysis. Alzheimers Res Ther 2022; 14:52. [PMID: 35410286 PMCID: PMC8996677 DOI: 10.1186/s13195-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
Abstract
Background Studies exploring topological properties of the metabolic network during the presymptomatic stage of genetic frontotemporal dementia (FTD) are scarce. However, such knowledge is important for understanding brain function and disease pathogenesis. Therefore, we aimed to explore FTD-specific patterns of metabolism topology reconfiguration in microtubule-associated protein tau (MAPT) mutation carriers before the onset of symptoms. Methods Six asymptomatic carriers of the MAPT P301L mutation were compared with 12 non-carriers who all belonged to the same family of FTD. For comparison, we included 32 behavioral variant FTD (bvFTD) patients and 33 unrelated healthy controls. Each participant underwent neuropsychological assessments, genetic testing, and a hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) scan. Voxel-wise gray matter volumes and standardized uptake value ratios were calculated and compared for structural MRI and fluorodeoxyglucose (FDG)-PET, separately. The sparse inverse covariance estimation method (SICE) was applied to topological properties and metabolic connectomes of brain functional networks derived from 18F-FDG PET/MRI data. Independent component analysis was used to explore the metabolic connectivity of the salience (SN) and default mode networks (DMN). Results The asymptomatic MAPT carriers performed normal global parameters of the metabolism network, whereas bvFTD patients did not. However, we revealed lost hubs in the ventromedial prefrontal, orbitofrontal, and anterior cingulate cortices and reconfigured hubs in the anterior insula, precuneus, and posterior cingulate cortex in asymptomatic carriers compared with non-carriers, which overlapped with the comparisons between bvFTD patients and controls. Similarly, significant differences in local parameters of these nodes were present between asymptomatic carriers and non-carriers. The reduction in the connectivity of lost hub regions and the enhancement of connectivity between reconfigured hubs and components of the frontal cortex were marked during the asymptomatic stage. Metabolic connectivity within the SN and DMN was enhanced in asymptomatic carriers compared with non-mutation carriers but reduced in bvFTD patients relative to controls. Conclusions Our findings showed that metabolism topology reconfiguration, characterized by the earliest involvement of medial prefrontal areas and active compensation in task-related regions, was present in the presymptomatic phase of genetic FTD with MAPT mutation, which may be used as an imaging biomarker of increased risk of FTD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01000-z.
Collapse
|
16
|
Giannini LAA, Ohm DT, Rozemuller AJM, Dratch L, Suh E, van Deerlin VM, Trojanowski JQ, Lee EB, van Swieten JC, Grossman M, Seelaar H, Irwin DJ. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol 2022; 144:1065-1084. [PMID: 36066634 PMCID: PMC9995405 DOI: 10.1007/s00401-022-02487-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023]
Abstract
Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0-4) and separate burden of glial and neuronal tau inclusions (i.e. 0-3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Laynie Dratch
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John C van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Murray Grossman
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Harro Seelaar
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
McKenna MC, Lope J, Tan EL, Bede P. Pre-symptomatic radiological changes in frontotemporal dementia: propagation characteristics, predictive value and implications for clinical trials. Brain Imaging Behav 2022; 16:2755-2767. [PMID: 35920960 DOI: 10.1007/s11682-022-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Computational imaging and quantitative biomarkers offer invaluable insights in the pre-symptomatic phase of neurodegenerative conditions several years before clinical manifestation. In recent years, there has been a focused effort to characterize pre-symptomatic cerebral changes in familial frontotemporal dementias using computational imaging. Accordingly, a systematic literature review was conducted of original articles investigating pre-symptomatic imaging changes in frontotemporal dementia focusing on study design, imaging modalities, data interpretation, control cohorts and key findings. The review is limited to the most common genotypes: chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), or microtubule-associated protein tau (MAPT) genotypes. Sixty-eight studies were identified with a median sample size of 15 (3-141) per genotype. Only a minority of studies were longitudinal (28%; 19/68) with a median follow-up of 2 (1-8) years. MRI (97%; 66/68) was the most common imaging modality, and primarily grey matter analyses were conducted (75%; 19/68). Some studies used multimodal analyses 44% (30/68). Genotype-associated imaging signatures are presented, innovative study designs are highlighted, common methodological shortcomings are discussed and lessons for future studies are outlined. Emerging academic observations have potential clinical implications for expediting the diagnosis, tracking disease progression and optimising the timing of pharmaceutical trials.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland. .,Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
18
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
19
|
Zhou XY, Lu JY, Liu FT, Wu P, Zhao J, Ju ZZ, Tang YL, Shi QY, Lin HM, Wu JJ, Yen TC, Zuo CT, Sun YM, Wang J. In Vivo 18 F-APN-1607 Tau Positron Emission Tomography Imaging in MAPT Mutations: Cross-Sectional and Longitudinal Findings. Mov Disord 2021; 37:525-534. [PMID: 34842301 DOI: 10.1002/mds.28867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Yi Shi
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Mei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Schwarz CG, Knopman DS, Ramanan VK, Lowe VJ, Wiste HJ, Cogswell PM, Utianski RL, Senjem ML, Gunter JR, Vemuri P, Petersen RC, Jack CR. Longitudinally Increasing Elevated Asymmetric Flortaucipir Binding in a Cognitively Unimpaired Amyloid-Negative Older Individual. J Alzheimers Dis 2021; 85:59-64. [PMID: 34776445 PMCID: PMC8842786 DOI: 10.3233/jad-215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the case of a cognitively unimpaired 77-year-old man with elevated, asymmetric, and longitudinally increasing Flortaucipir tau PET despite normal (visually negative) amyloid PET. His atypical tau PET signal persisted and globally increased in a follow-up scan five years later. Across eight years of observations, temporoparietal atrophy was observed consistent with tau PET patterns, but he retained the cognitively unimpaired classification. Altogether, his atypical tau PET signal is not explained by any known risk factors or alternative pathologies, and other imaging findings were not remarkable. He remains enrolled for further observation.
Collapse
Affiliation(s)
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
21
|
Sato C, Mallipeddi N, Ghoshal N, Wright BA, Day GS, Davis AA, Kim AH, Zipfel GJ, Bateman RJ, Gabelle A, Barthélemy NR. MAPT R406W increases tau T217 phosphorylation in absence of amyloid pathology. Ann Clin Transl Neurol 2021; 8:1817-1830. [PMID: 34342183 PMCID: PMC8419397 DOI: 10.1002/acn3.51435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Tau hyperphosphorylation at threonine 217 (pT217) in cerebrospinal fluid (CSF) has recently been linked to early amyloidosis and could serve as a highly sensitive biomarker for Alzheimer’s disease (AD). However, it remains unclear whether other tauopathies induce pT217 modifications. To determine if pT217 modification is specific to AD, CSF pT217 was measured in AD and other tauopathies. Methods Using immunoprecipitation and mass spectrometry methods, we compared CSF T217 phosphorylation occupancy (pT217/T217) and amyloid‐beta (Aβ) 42/40 ratio in cognitively normal individuals and those with symptomatic AD, progressive supranuclear palsy, corticobasal syndrome, and sporadic and familial frontotemporal dementia. Results Individuals with AD had high CSF pT217/T217 and low Aβ42/40. In contrast, cognitively normal individuals and the majority of those with 4R tauopathies had low CSF pT217/T217 and normal Aβ 42/40. We identified a subgroup of individuals with increased CSF pT217/T217 and normal Aβ 42/40 ratio, most of whom were MAPT R406W mutation carriers. Diagnostic accuracies of CSF Aβ 42/40 and CSF pT217/T217, alone and in combination were compared. We show that CSF pT217/T217 × CSF Aβ 42/40 is a sensitive composite biomarker that can separate MAPT R406W carriers from cognitively normal individuals and those with other tauopathies. Interpretation MAPT R406W is a tau mutation that leads to 3R+4R tauopathy similar to AD, but without amyloid neuropathology. These findings suggest that change in CSF pT217/T217 ratio is not specific to AD and might reflect common downstream tau pathophysiology common to 3R+4R tauopathies.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nipun Mallipeddi
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Brenton A Wright
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory J Zipfel
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Center, University Hospital of Montpellier, Neurosciences Institute of Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|