1
|
Reecher HM, Park SE, Ailion A, Berl MM, Hennrick H, Gabriel M, Boyer K, Cooper C, Decrow AM, Duong P, Hodges E, Loblein H, Marshall D, McNally K, Patrick KE, Romain J, Sepeta L, Zaccariello M, Koop JI. Association of the cognitive lateralization rating Index with surgical variables of a national cohort of pediatric patients with epilepsy. Epilepsy Behav 2025; 168:110404. [PMID: 40239615 DOI: 10.1016/j.yebeh.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Surgery is a standard treatment for medically refractory epilepsy, and many factors contribute to determining surgical approaches. The Cognitive Lateralization Rating Index (CLRI) quantifies the degree of dysfunction evident and can suggest atypical neuroanatomical functional organization if dominant skills remain despite left-hemisphere seizure foci (i.e., 'atypically-organized'). We sought to elucidate associations between surgical rate, intent, and procedure type based on CLRI categories. METHODS Frequencies and descriptive statistics were run in addition to X2 test of independence and ANOVA evaluating CLRI versus surgical variables. 3-category CLRI included: dominant, non-dominant hemisphere, and non-lateralized dysfunction. 4-catgeory CLRI included the additional 'atypically organized' category. RESULTS Of 179 patients with CLRI scores, 139 were offered surgery (78%). Left-hemisphere seizure foci were observed in 51% of patients. There was no relationship between surgery offered and 3-category CLRI (X2 (2, 179) = 0.28, p = 0.88); however, inclusion of atypical organization, was related to surgery offered (X2 (3, 179) = 7.34, p = 0.06). We observed no significant difference between rates of curative or palliative-intent surgery in 3-category (X2 (2, 92) = 0.97, p = 0.62) or 4-category CLRI (X2 (3, 92) = 2.36, p = 0.50). Results trended towards curative procedures (58.7%) with no significant difference between rates of procedures amongst CLRI groups. There was no statistically significant difference between pre- and postoperative cognitive results. CONCLUSION Not considering atypical organization may lead to overestimating surgical risk in patients with left-hemisphere seizure foci. While significant differences between surgical offerance, intent, or procedure were not observed, results trended towards significance once consideration of atypical organization was included. Further investigation of these variables in addition to surgical and cognitive outcomes is warranted.
Collapse
Affiliation(s)
- Hope M Reecher
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sydney E Park
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alyssa Ailion
- Boston Children's Hospital, Boston, MA, United States
| | - Madison M Berl
- Children's National Hospital, Washington, DC, United States
| | | | - Marsha Gabriel
- Cook Children's Health Care System, Fort Worth, TX, United States
| | - Katrina Boyer
- Boston Children's Hospital, Boston, MA, United States
| | - Crystal Cooper
- Cook Children's Health Care System, Fort Worth, TX, United States
| | - Amanda Max Decrow
- Atrium Health Levine Children's Hospital, Charlotte, NC, United States
| | - Priscilla Duong
- Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Elise Hodges
- University of Michigan, Ann Arbor, MI, United States
| | - Hayley Loblein
- Children's National Hospital, Washington, DC, United States
| | | | - Kelly McNally
- Nationwide Children's Hospital, Columbus, OH, United States
| | | | - Jonathan Romain
- Children's Hospital of Orange County, Orange, CA, United States
| | - Leigh Sepeta
- Children's National Hospital, Washington, DC, United States
| | | | - Jennifer I Koop
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Eriksson MH, Prentice F, Piper RJ, Wagstyl K, Adler S, Chari A, Booth J, Moeller F, Das K, Eltze C, Cooray G, Perez Caballero A, Menzies L, McTague A, Shavel-Jessop S, Tisdall MM, Cross JH, Martin Sanfilippo P, Baldeweg T. Long-term neuropsychological trajectories in children with epilepsy: does surgery halt decline? Brain 2024; 147:2791-2802. [PMID: 38643018 PMCID: PMC11292899 DOI: 10.1093/brain/awae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 04/22/2024] Open
Abstract
Neuropsychological impairments are common in children with drug-resistant epilepsy. It has been proposed that epilepsy surgery might alleviate these impairments by providing seizure freedom; however, findings from prior studies have been inconsistent. We mapped long-term neuropsychological trajectories in children before and after undergoing epilepsy surgery, to measure the impact of disease course and surgery on functioning. We performed a retrospective cohort study of 882 children who had undergone epilepsy surgery at Great Ormond Street Hospital (1990-2018). We extracted patient information and neuropsychological functioning [obtained from IQ tests (domains: full-scale IQ, verbal IQ, performance IQ, working memory and processing speed) and tests of academic attainment (reading, spelling and numeracy)] and investigated changes in functioning using regression analyses. We identified 500 children (248 females) who had undergone epilepsy surgery [median age at surgery = 11.9 years, interquartile range = (7.8, 15.0)] and neuropsychological assessment. These children showed declines in all domains of neuropsychological functioning in the time leading up to surgery (all P-values ≤0.001; e.g. βFSIQ = -1.9, SEFSIQ = 0.3, PFSIQ < 0.001). Children lost on average one to four points per year, depending on the domain considered; 27%-43% declined by ≥10 points from their first to their last preoperative assessment. At the time of presurgical evaluation, most children (46%-60%) scored one or more standard deviations below the mean (<85) on the different neuropsychological domains; 37% of these met the threshold for intellectual disability (full-scale IQ < 70). On a group level, there was no change in performance from pre- to postoperative assessment on any of the domains (all P-values ≥0.128). However, children who became seizure free through surgery showed higher postoperative neuropsychological performance (e.g. rrb-FSIQ = 0.37, P < 0.001). These children continued to demonstrate improvements in neuropsychological functioning over the course of their long-term follow-up (e.g. βFSIQ = 0.9, SEFSIQ = 0.3, PFSIQ = 0.004). Children who had discontinued antiseizure medication treatment at 1-year follow-up showed an 8- to 13-point advantage in postoperative working memory, processing speed and numeracy, and greater improvements in verbal IQ, working memory, reading and spelling (all P-values ≤0.034) over the postoperative period compared with children who were seizure free and still receiving antiseizure medication. In conclusion, by providing seizure freedom and the opportunity for antiseizure medication cessation, epilepsy surgery might not only halt but reverse the downward trajectory that children with drug-resistant epilepsy display in neuropsychological functioning. To halt this decline as soon as possible or, potentially, to prevent it from occurring in the first place, children with focal epilepsy should be considered for epilepsy surgery as early as possible after diagnosis.
Collapse
Affiliation(s)
- Maria H Eriksson
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Rory J Piper
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Konrad Wagstyl
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sophie Adler
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Aswin Chari
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - John Booth
- Data Research, Innovation and Virtual Environments Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Krishna Das
- Department of Neurology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Christin Eltze
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Gerald Cooray
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Solna 171 77, Sweden
| | - Ana Perez Caballero
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Amy McTague
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Sara Shavel-Jessop
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Martin M Tisdall
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - J Helen Cross
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
- Young Epilepsy, Lingfield, RH7 6PW, UK
| | - Patricia Martin Sanfilippo
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Department of Neuropsychology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| |
Collapse
|
3
|
Feng X, Piper RJ, Prentice F, Clayden JD, Baldeweg T. Functional brain connectivity in children with focal epilepsy: A systematic review of functional MRI studies. Seizure 2024; 117:164-173. [PMID: 38432080 DOI: 10.1016/j.seizure.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Epilepsy is increasingly recognised as a brain network disorder and many studies have investigated functional connectivity (FC) in children with epilepsy using functional MRI (fMRI). This systematic review of fMRI studies, published up to November 2023, investigated profiles of FC changes and their clinical relevance in children with focal epilepsy compared to healthy controls. A literature search in PubMed and Web of Science yielded 62 articles. We categorised the results into three groups: 1) differences in correlation-based FC between patients and controls; 2) differences in other FC measures between patients and controls; and 3) associations between FC and disease variables (for example, age of onset), cognitive and seizure outcomes. Studies revealed either increased or decreased FC across multiple brain regions in children with focal epilepsy. However, findings lacked consistency: conflicting FC alterations (decreased and increased FC) co-existed within or between brain regions across all focal epilepsy groups. The studies demonstrated overall that 1) interhemispheric connections often displayed abnormal connectivity and 2) connectivity within and between canonical functional networks was decreased, particularly for the default mode network. Focal epilepsy disrupted FC in children both locally (e.g., seizure-onset zones, or within-brain subnetworks) and globally (e.g., whole-brain network architecture). The wide variety of FC study methodologies limits clinical application of the results. Future research should employ longitudinal designs to understand the evolution of brain networks during the disease course and explore the potential of FC biomarkers for predicting cognitive and postsurgical seizure outcomes.
Collapse
Affiliation(s)
- Xiyu Feng
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Rory J Piper
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom
| | - Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Jonathan D Clayden
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom.
| |
Collapse
|
4
|
Hassanzadeh E, Hornak A, Hassanzadeh M, Warfield SK, Pearl PL, Bolton J, Suarez R, Stone S, Stufflebeam S, Ailion AS. Comparison of fMRI language laterality with and without sedation in pediatric epilepsy. Neuroimage Clin 2023; 38:103448. [PMID: 37285796 PMCID: PMC10250119 DOI: 10.1016/j.nicl.2023.103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Functional MRI is an essential component of presurgical language mapping. In clinical settings, young children may be sedated for the MRI with the functional stimuli presented passively. Research has found that sedation changes language activation in healthy adults and children. However, there is limited research comparing sedated and unsedated functional MRI in pediatric epilepsy patients. We compared language activation patterns in children with epilepsy who received sedation for functional MRI to the ones who did not. We retrospectively identified the patients with focal epilepsy who underwent presurgical functional MRI including Auditory Descriptive Decision Task at Boston Children's Hospital from 2014 to 2022. Patients were divided into sedated and awake groups, based on their sedation status during functional MRI. Auditory Descriptive Decision Task stimuli were presented passively to the sedated group per clinical protocol. We extracted language activation maps contrasted against a control task (reverse speech) in the Frontal and Temporal language regions and calculated separate language laterality indexes for each region. We considered positive laterality indexes as left dominant, negative laterality indexes as right dominant, and absolute laterality indexes <0.2 as bilateral. We defined 2 language patterns: typical (i.e., primarily left-sided) and atypical. Typical pattern required at least one left dominant region (either frontal or temporal) and no right dominant region. We then compared the language patterns between the sedated and awake groups. Seventy patients met the inclusion criteria, 25 sedated, and 45 awake. Using the Auditory Descriptive Decision Task paradigm, when adjusted for age, handedness, gender, and laterality of lesion in a weighted logistic regression model, the odds of the atypical pattern were 13.2 times higher in the sedated group compared to the awake group (Confidence Interval: 2.55-68.41, p-value < 0.01). Sedation may alter language activation patterns in pediatric epilepsy patients. Language patterns on sedated functional MRI with passive tasks may not represent language networks during wakefulness, sedation may differentially suppress some networks, or require a different task or method of analysis to capture the awake language network. Given the critical surgical implication of these findings, additional studies are needed to better understand how sedation impacts the functional MRI blood oxygenation level-dependent signal. Consistent with current practice, sedated functional MRI should be interpreted with greater caution and requires additional validation as well as research on post-surgical language outcomes.
Collapse
Affiliation(s)
- Elmira Hassanzadeh
- Neuroradiology, Massachusetts General Hospital, Harvard Medical School, 02116, USA.
| | - Alena Hornak
- Neurology, Boston Children's Hospital, Harvard Medical School, 02116, USA
| | | | - Simon K Warfield
- Radiology, Boston Children's Hospital, Harvard Medical School, 02116, USA
| | - Phillip L Pearl
- Neurology, Boston Children's Hospital, Harvard Medical School, 02116, USA
| | - Jeffrey Bolton
- Neurology, Boston Children's Hospital, Harvard Medical School, 02116, USA
| | - Ralph Suarez
- Radiology, Boston Children's Hospital, Harvard Medical School, 02116, USA
| | - Scellig Stone
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, 02116, USA
| | - Steve Stufflebeam
- Neuroradiology, Massachusetts General Hospital, Harvard Medical School, 02116, USA
| | - Alyssa S Ailion
- Neurology, Boston Children's Hospital, Harvard Medical School, 02116, USA
| |
Collapse
|
5
|
Sanders AFP, Harms MP, Kandala S, Marek S, Somerville LH, Bookheimer SY, Dapretto M, Thomas KM, Van Essen DC, Yacoub E, Barch DM. Age-related differences in resting-state functional connectivity from childhood to adolescence. Cereb Cortex 2023; 33:6928-6942. [PMID: 36724055 PMCID: PMC10233258 DOI: 10.1093/cercor/bhad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 02/02/2023] Open
Abstract
The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a large cross-sectional sample of children and adolescents (n = 628) aged 8-21 years from the Lifespan Human Connectome Project in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence for complex, non-linear differences in some brain systems during development.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63119, USA
| | - Leah H Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Psychological and Brain Sciences, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
6
|
Gholipour T, DeMarco A, You X, Englot DJ, Turkeltaub PE, Koubeissi MZ, Gaillard WD, Morgan VL. Functional anomaly mapping lateralizes temporal lobe epilepsy with high accuracy in individual patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.05.23285034. [PMID: 36798218 PMCID: PMC9934715 DOI: 10.1101/2023.02.05.23285034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mesial temporal lobe epilepsy (mTLE) is associated with variable dysfunction beyond the temporal lobe. We used functional anomaly mapping (FAM), a multivariate machine learning approach to resting state fMRI analysis to measure subcortical and cortical functional aberrations in patients with mTLE. We also examined the value of individual FAM in lateralizing the hemisphere of seizure onset in mTLE patients. Methods: Patients and controls were selected from an existing imaging and clinical database. After standard preprocessing of resting state fMRI, time-series were extracted from 400 cortical and 32 subcortical regions of interest (ROIs) defined by atlases derived from functional brain organization. Group-level aberrations were measured by contrasting right (RTLE) and left (LTLE) patient groups to controls in a support vector regression models, and tested for statistical reliability using permutation analysis. Individualized functional anomaly maps (FAMs) were generated by contrasting individual patients to the control group. Half of patients were used for training a classification model, and the other half for estimating the accuracy to lateralize mTLE based on individual FAMs. Results: Thirty-two right and 14 left mTLE patients (33 with evidence of hippocampal sclerosis on MRI) and 94 controls were included. At group levels, cortical regions affiliated with limbic and somatomotor networks were prominent in distinguishing RTLE and LTLE from controls. At individual levels, most TLE patients had high anomaly in bilateral mesial temporal and medial parietooccipital default mode regions. A linear support vector machine trained on 50% of patients could accurately lateralize mTLE in remaining patients (median AUC =1.0 [range 0.97-1.0], median accuracy = 96.87% [85.71-100Significance: Functional anomaly mapping confirms widespread aberrations in function, and accurately lateralizes mTLE from resting state fMRI. Future studies will evaluate FAM as a non-invasive localization method in larger datasets, and explore possible correlations with clinical characteristics and disease course.
Collapse
|
7
|
DiNuzzo M, Mascali D, Bussu G, Moraschi M, Guidi M, Macaluso E, Mangia S, Giove F. Hemispheric functional segregation facilitates target detection during sustained visuospatial attention. Hum Brain Mapp 2022; 43:4529-4539. [PMID: 35695003 PMCID: PMC9491284 DOI: 10.1002/hbm.25970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/10/2022] Open
Abstract
Visuospatial attention is strongly lateralized, with the right hemisphere commonly exhibiting stronger activation and connectivity patterns than the left hemisphere during attentive processes. However, whether such asymmetry influences inter‐hemispheric information transfer and behavioral performance is not known. Here we used a region of interest (ROI) and network‐based approach to determine steady‐state fMRI functional connectivity (FC) in the whole cerebral cortex during a leftward/rightward covert visuospatial attention task. We found that the global FC topology between either ROIs or networks was independent on the attended side. The side of attention significantly modulated FC strength between brain networks, with leftward attention primarily involving the connections of the right visual network with dorsal and ventral attention networks in both the left and right hemisphere. High hemispheric functional segregation significantly correlated with faster target detection response times (i.e., better performance). Our findings suggest that the dominance of the right hemisphere in visuospatial attention is associated with an hemispheric functional segregation that is beneficial for behavioral performance.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università Gabriele D'Annunzio, Chieti, Italy
| | - Giorgia Bussu
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Marta Moraschi
- Unità Operativa di Radioterapia Oncologica, Università Campus Bio-Medico, Rome, Italy
| | - Maria Guidi
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | | | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
8
|
Martin KC, Seydell-Greenwald A, Berl MM, Gaillard WD, Turkeltaub PE, Newport EL. A Weak Shadow of Early Life Language Processing Persists in the Right Hemisphere of the Mature Brain. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:364-385. [PMID: 35686116 PMCID: PMC9169899 DOI: 10.1162/nol_a_00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Studies of language organization show a striking change in cerebral dominance for language over development: We begin life with a left hemisphere (LH) bias for language processing, which is weaker than that in adults and which can be overcome if there is a LH injury. Over development this LH bias becomes stronger and can no longer be reversed. Prior work has shown that this change results from a significant reduction in the magnitude of language activation in right hemisphere (RH) regions in adults compared to children. Here we investigate whether the spatial distribution of language activation, albeit weaker in magnitude, still persists in homotopic RH regions of the mature brain. Children aged 4-13 (n = 39) and young adults (n = 14) completed an auditory sentence comprehension fMRI (functional magnetic resonance imaging) task. To equate neural activity across the hemispheres, we applied fixed cutoffs for the number of active voxels that would be included in each hemisphere for each participant. To evaluate homotopicity, we generated left-right flipped versions of each activation map, calculated spatial overlap between the LH and RH activity in frontal and temporal regions, and tested for mean differences in the spatial overlap values between the age groups. We found that, in children as well as in adults, there was indeed a spatially intact shadow of language activity in the right frontal and temporal regions homotopic to the LH language regions. After a LH stroke in adulthood, recovering early-life activation in these regions might assist in enhancing recovery of language abilities.
Collapse
Affiliation(s)
- Kelly C. Martin
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | - Madison M. Berl
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Children’s National Hospital, Washington, DC
| | - William D. Gaillard
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Children’s National Hospital, Washington, DC
| | - Peter E. Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | - Elissa L. Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|