1
|
Pettinato F, Marzà V, Ciantia F, Romanello G, Cocuzza MD, Fichera M, Rizzo R, Barone R. Acute neurological regression following fever as presenting sign of pontocerebellar hypoplasia type 2D ( SEPSECS mutation). Biomed Rep 2025; 22:67. [PMID: 40017499 PMCID: PMC11865714 DOI: 10.3892/br.2025.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/10/2024] [Indexed: 03/01/2025] Open
Abstract
Pontocerebellar hypoplasia type 2D (PCH2D) is caused by mutations in the gene encoding O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SEPSECS; chromosome 4p15.2). This is a key enzyme in the biosynthesis of selenoproteins, which act in maintaining antioxidant systems. To date, 26 patients with PCH2D have been reported, all with neurological involvement characterized by progressive pontocerebellar and cerebral atrophy. The present study reports on a patient with compound heterozygosity in the SEPSECS gene, including a novel missense variant, c.440G>A (p.Ser147Asn). The patient exhibited acute neurological regression following a vaccination-related fever, which is reminiscent of primary mitochondrial disease. In addition, the patient displayed severe spastic tetraparesis, convergent strabismus and postnatal onset of microcephaly, as well as recurrent blood lactate elevation. Brain MRI showed multiple alterations in the peri/supraventricular and subcortical white matter and progressive pontocerebellar and cerebral atrophy. A review of the clinical spectrum associated with SEPSECS mutations was conducted and the first report on a patient with SEPSECS mutations of acute neurological regression following a catabolic stressor at the onset of PCH2D was provided. This study broadens the genetic background of PCH2D and associated PCH2D phenotype, supporting the causal link between selenoprotein biosynthesis deficiency and mitochondrial disorders.
Collapse
Affiliation(s)
- Fabio Pettinato
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Viviana Marzà
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Fiorella Ciantia
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Giorgia Romanello
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Maria Donatella Cocuzza
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, I-95124 Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, I-94018 Troina, Italy
| | - Renata Rizzo
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Rita Barone
- Child and Adolescent Neurology and Psychiatric Section, Azienda Ospedaliera Universitaria Policlinico ‘G.Rodolico-San Marco’, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, I-94018 Troina, Italy
| |
Collapse
|
2
|
Gerard A, Mizerik E, Mohila CA, AlAwami S, Hunter JV, Kearney DL, Lalani SR, Scaglia F. Intracranial calcifications simulating Aicardi-Goutières syndrome in PARS2-related mitochondrial disease. Am J Med Genet A 2024:e63589. [PMID: 38469956 DOI: 10.1002/ajmg.a.63589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
PARS2 encodes an aminoacyl-tRNA synthetase that catalyzes the ligation of proline to mitochondrial prolyl-tRNA molecules. Diseases associated with PARS2 primarily affect the central nervous system, causing early infantile developmental epileptic encephalopathies (EIDEE; DEE75; MIM #618437) with infantile-onset neurodegeneration. Dilated cardiomyopathy has also been reported in the affected individuals. About 10 individuals to date have been described with pathogenic biallelic variants in PARS2. While many of the reported individuals succumbed to the disease in the first two decades of life, autopsy findings have not yet been reported. Here, we describe neuropathological findings in a deceased male with evidence of intracranial calcifications in the basal ganglia, thalamus, cerebellum, and white matter, similar to Aicardi-Goutières syndrome. This report describes detailed autopsy findings in a child with PARS2-related mitochondrial disease and provides plausible evidence that intracranial calcifications may be a previously unrecognized feature of this disorder.
Collapse
Affiliation(s)
- Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Carrie A Mohila
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah AlAwami
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, USA
| | - Debra L Kearney
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Schlüter A, Vélez-Santamaría V, Verdura E, Rodríguez-Palmero A, Ruiz M, Fourcade S, Planas-Serra L, Launay N, Guilera C, Martínez JJ, Homedes-Pedret C, Albertí-Aguiló MA, Zulaika M, Martí I, Troncoso M, Tomás-Vila M, Bullich G, García-Pérez MA, Sobrido-Gómez MJ, López-Laso E, Fons C, Del Toro M, Macaya A, Beltran S, Gutiérrez-Solana LG, Pérez-Jurado LA, Aguilera-Albesa S, de Munain AL, Casasnovas C, Pujol A. ClinPrior: an algorithm for diagnosis and novel gene discovery by network-based prioritization. Genome Med 2023; 15:68. [PMID: 37679823 PMCID: PMC10486091 DOI: 10.1186/s13073-023-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Valentina Vélez-Santamaría
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Juan José Martínez
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Christian Homedes-Pedret
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
- Neurology Department, Hospital Universitari General de Catalunya, Barcelona, Spain
| | - M Antonia Albertí-Aguiló
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Miren Zulaika
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Itxaso Martí
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Mónica Troncoso
- Pediatric Neurology Department, Central Campus, Hospital Clínico San Borja Arriarán, Universidad de Chile, Santiago, Chile
| | - Miguel Tomás-Vila
- Neuropediatrics Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
| | - M Asunción García-Pérez
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - María-Jesús Sobrido-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Coruña Institute of Biomedical Research (INIBIC), A Coruña, Spain
- Hospital Clínico Universitario, A Coruña, Spain
| | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Reina Sofía University Hospital, Córdoba, Spain
- Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Sant Joan de Déu University Hospital, Member of the ERN EpiCARE, Barcelona, Spain
- Sant Joan de Déu Research Institute, (IRSJD), Barcelona, Spain
| | - Mireia Del Toro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Facultat de Biologia, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, 08028, Spain
| | - Luis G Gutiérrez-Solana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Children's University Hospital Niño Jesús, Madrid, Spain
| | - Luis A Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Genetics Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Pediatrics Department, Navarra Health Service, Pamplona, Spain
- Navarrabiomed, Biomedical Research Center, Pamplona, Spain
| | - Adolfo López de Munain
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Neurology Department, Donostia University Hospital, San Sebastian, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Launay N, Ruiz M, Planas-Serra L, Verdura E, Rodríguez-Palmero A, Schlüter A, Goicoechea L, Guilera C, Casas J, Campelo F, Jouanguy E, Casanova JL, Boespflug-Tanguy O, Vazquez Cancela M, Gutiérrez-Solana LG, Casasnovas C, Area-Gomez E, Pujol A. RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia. J Clin Invest 2023; 133:e162836. [PMID: 37463447 DOI: 10.1172/jci162836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023] Open
Abstract
The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- Pediatric Neurology unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Leire Goicoechea
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades heoaticas y digestivas, ISCIII, Madrid, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Odile Boespflug-Tanguy
- CRMR Leukofrance Service de Neuropédiatrie, Hôpital Robert Debré AP-HP, Paris, France
- UMR1141 Neurodiderot Université de Paris Cité, Paris, France
| | | | - Luis González Gutiérrez-Solana
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Consulta de Neurodegenerativas, Sección de Neurología Pediátrica, Hospital, Infantil Universitario Niño Jesús, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, New York, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Henry OJ, Stödberg T, Båtelson S, Rasi C, Stranneheim H, Wedell A. Individualised human phenotype ontology gene panels improve clinical whole exome and genome sequencing analytical efficacy in a cohort of developmental and epileptic encephalopathies. Mol Genet Genomic Med 2023; 11:e2167. [PMID: 36967109 PMCID: PMC10337286 DOI: 10.1002/mgg3.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The majority of genetic epilepsies remain unsolved in terms of specific genotype. Phenotype-based genomic analyses have shown potential to strengthen genomic analysis in various ways, including improving analytical efficacy. METHODS We have tested a standardised phenotyping method termed 'Phenomodels' for integrating deep-phenotyping information with our in-house developed clinical whole exome/genome sequencing analytical pipeline. Phenomodels includes a user-friendly epilepsy phenotyping template and an objective measure for selecting which template terms to include in individualised Human Phenotype Ontology (HPO) gene panels. In a pilot study of 38 previously solved cases of developmental and epileptic encephalopathies, we compared the sensitivity and specificity of the individualised HPO gene panels with the clinical epilepsy gene panel. RESULTS The Phenomodels template showed high sensitivity for capturing relevant phenotypic information, where 37/38 individuals' HPO gene panels included the causative gene. The HPO gene panels also had far fewer variants to assess than the epilepsy gene panel. CONCLUSION We have demonstrated a viable approach for incorporating standardised phenotype information into clinical genomic analyses, which may enable more efficient analysis.
Collapse
Affiliation(s)
- Olivia J. Henry
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Tommy Stödberg
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Sofia Båtelson
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Chiara Rasi
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| | - Anna Wedell
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| |
Collapse
|
6
|
Zerem A, Libzon S, Ben Sira L, Meirson H, Hausman-Kedem M, Haviv N, Yosovich K, Mory A, Baris Feldman H, Lev D, Lerman-Sagie T, Fattal-Valevski A, Hacohen Y, Marom D. Utility of genetic testing in children with leukodystrophy. Eur J Paediatr Neurol 2023; 45:29-35. [PMID: 37267771 DOI: 10.1016/j.ejpn.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Leukodystrophies are monogenic disorders primarily affecting the white matter. We aimed to evaluate the utility of genetic testing and time-to-diagnosis in a retrospective cohort of children with suspected leukodystrophy. METHODS Medical records of patients who attended the leukodystrophy clinic at the Dana-Dwek Children's Hospital between June 2019 and December 2021 were retrieved. Clinical, molecular, and neuroimaging data were reviewed, and the diagnostic yield was compared across genetic tests. RESULTS Sixty-seven patients (Female/Male ratio 35/32) were included. Median age at symptom onset was 9 months (interquartile range (IQR) 3-18 months), and median length of follow-up was 4.75 years (IQR 3-8.5). Time from symptom onset to a confirmed genetic diagnosis was 15months (IQR 11-30). Pathogenic variants were identified in 60/67 (89.6%) patients; classic leukodystrophy (55/67, 82.1%), leukodystrophy mimics (5/67, 7.5%). Seven patients (10.4%) remained undiagnosed. Exome sequencing showed the highest diagnostic yield (34/41, 82.9%), followed by single-gene sequencing (13/24, 54%), targeted panels (3/9, 33.3%) and chromosomal microarray (2/25, 8%). Familial pathogenic variant testing confirmed the diagnosis in 7/7 patients. A comparison between patients who presented before (n = 31) and after (n = 21) next-generation sequencing (NGS) became clinically available in Israel revealed that the time-to-diagnosis was shorter in the latter group with a median of 12months (IQR 3.5-18.5) vs. a median of 19 months (IQR 13-51) (p = 0.005). CONCLUSIONS NGS carries the highest diagnostic yield in children with suspected leukodystrophy. Access to advanced sequencing technologies accelerates speed to diagnosis, which is increasingly crucial as targeted treatments become available.
Collapse
Affiliation(s)
- Ayelet Zerem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Stephanie Libzon
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel; Magen Rare Disease Center, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Liat Ben Sira
- Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Radiology, Department of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadas Meirson
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Haviv
- Statistical Advisor and Senior Lecturer, The Ashkelon Academic College, Israel
| | - Keren Yosovich
- Magen Rare Disease Center, Genetics Institute, Wolfson Medical Center, Holon, Israel
| | - Adi Mory
- Genetics Institute and Genomic Center, Tel Aviv Sourasky Medical Center, Israel
| | - Hagit Baris Feldman
- Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel; Genetics Institute and Genomic Center, Tel Aviv Sourasky Medical Center, Israel
| | - Dorit Lev
- Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel; Magen Rare Disease Center, Genetics Institute, Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel; Magen Rare Disease Center, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hacohen
- Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Daphna Marom
- Sackler Faulty of Medicine, Tel Aviv University, Tel Aviv, Israel; Genetics Institute and Genomic Center, Tel Aviv Sourasky Medical Center, Israel
| |
Collapse
|
7
|
Perrier S, Guerrero K, Tran LT, Michell-Robinson MA, Legault G, Brais B, Sylvain M, Dorman J, Demos M, Köhler W, Pastinen T, Thiffault I, Bernard G. Solving inherited white matter disorder etiologies in the neurology clinic: Challenges and lessons learned using next-generation sequencing. Front Neurol 2023; 14:1148377. [PMID: 37077564 PMCID: PMC10108901 DOI: 10.3389/fneur.2023.1148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionRare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing.MethodsEach of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease.ResultsFollowing different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas.DiscussionThis study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kether Guerrero
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Luan T. Tran
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Geneviève Legault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Michel Sylvain
- Division of Pediatric Neurology, Centre Mère-Enfant Soleil du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - James Dorman
- John H. Stroger Jr. Hospital of Cook County, Chicago, IL, United States
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, United States
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada
| | - Wolfgang Köhler
- Leukodystrophy Center, University of Leipzig Medical Center, Leipzig, Germany
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, United States
- Isabelle Thiffault
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Geneviève Bernard
| |
Collapse
|
8
|
Paredes-Fuentes AJ, Oliva C, Urreizti R, Yubero D, Artuch R. Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up. Crit Rev Clin Lab Sci 2023; 60:270-289. [PMID: 36694353 DOI: 10.1080/10408363.2023.2166013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The currently available biomarkers generally lack the specificity and sensitivity needed for the diagnosis and follow-up of patients with mitochondrial diseases (MDs). In this group of rare genetic disorders (mutations in approximately 350 genes associated with MDs), all clinical presentations, ages of disease onset and inheritance types are possible. Blood, urine, and cerebrospinal fluid surrogates are well-established biomarkers that are used in clinical practice to assess MD. One of the main challenges is validating specific and sensitive biomarkers for the diagnosis of disease and prediction of disease progression. Profiling of lactate, amino acids, organic acids, and acylcarnitine species is routinely conducted to assess MD patients. New biomarkers, including some proteins and circulating cell-free mitochondrial DNA, with increased diagnostic specificity have been identified in the last decade and have been proposed as potentially useful in the assessment of clinical outcomes. Despite these advances, even these new biomarkers are not sufficiently specific and sensitive to assess MD progression, and new biomarkers that indicate MD progression are urgently needed to monitor the success of novel therapeutic strategies. In this report, we review the mitochondrial biomarkers that are currently analyzed in clinical laboratories, new biomarkers, an overview of the most common laboratory diagnostic techniques, and future directions regarding targeted versus untargeted metabolomic and genomic approaches in the clinical laboratory setting. Brief descriptions of the current methodologies are also provided.
Collapse
Affiliation(s)
- Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Delia Yubero
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Zheng F, Lin Z, Hu Y, Shi X, Zhao Q, Lin Z. Identification of a Novel Non-Canonical Splice-Site Variant in ABCD1. J Clin Med 2023; 12:jcm12020473. [PMID: 36675402 PMCID: PMC9863105 DOI: 10.3390/jcm12020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Cerebral adrenoleukodystrophy (CALD) is a fatal genetic disease characterized by rapid, devastating neurological decline, with a narrow curative treatment window in the early stage. Non-canonical splice-site (NCSS) variants can easily be missed during genomic DNA analyses, and only a few of them in ABCD1 have been explored. Here, we studied a Chinese patient with clinical features similar to those of early-stage CALD but with a negative molecular diagnosis and a sibling who had presumably died of CALD. Trio-based whole-exome sequencing (trio-WES) and RNA sequencing (RNA-Seq) revealed a novel hemizygote NCSS variant c.901-25_901-9 del in ABCD1 intron 1, resulting in a complex splicing pattern. The in vitro minigene assay revealed that the c.901-25_901-9 del construct contained two aberrant transcripts that caused skipping of exon 2 and a small 48-bp deletion on left of the same exon. We identified a novel NCSS variant, that extends the spectrum of the known ABCD1 variants, and demonstrated the pathogenicity of this gene variant. Our findings highlight the importance of combining RNA-Seq and WES techniques for prompt diagnosis of leukodystrophy with NCSS variants.
Collapse
Affiliation(s)
- Feixia Zheng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhongdong Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ying Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xulai Shi
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: ; Tel.: +86-13-80-668-9800
| |
Collapse
|
10
|
Verdura E, Senger B, Raspall-Chaure M, Schlüter A, Launay N, Ruiz M, Casasnovas C, Rodriguez-Palmero A, Macaya A, Becker HD, Pujol A. Loss of seryl-tRNA synthetase ( SARS1) causes complex spastic paraplegia and cellular senescence. J Med Genet 2022; 59:1227-1233. [PMID: 36041817 PMCID: PMC9691831 DOI: 10.1136/jmg-2022-108529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miquel Raspall-Chaure
- Pediatric Neurology Research Group, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain,Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035, Barcelona, Catalonia, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Agustí Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Pediatrics, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain,Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035, Barcelona, Catalonia, Spain,Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Catalonia, Spain
| | | | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|
12
|
Fernandez G, Yubero D, Palau F, Armstrong J. Molecular Modelling Hurdle in the Next-Generation Sequencing Era. Int J Mol Sci 2022; 23:7176. [PMID: 35806177 PMCID: PMC9266691 DOI: 10.3390/ijms23137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
There are challenges in the genetic diagnosis of rare diseases, and pursuing an optimal strategy to identify the cause of the disease is one of the main objectives of any clinical genomics unit. A range of techniques are currently used to characterize the genomic variability within the human genome to detect causative variants of specific disorders. With the introduction of next-generation sequencing (NGS) in the clinical setting, geneticists can study single-nucleotide variants (SNVs) throughout the entire exome/genome. In turn, the number of variants to be evaluated per patient has increased significantly, and more information has to be processed and analyzed to determine a proper diagnosis. Roughly 50% of patients with a Mendelian genetic disorder are diagnosed using NGS, but a fair number of patients still suffer a diagnostic odyssey. Due to the inherent diversity of the human population, as more exomes or genomes are sequenced, variants of uncertain significance (VUSs) will increase exponentially. Thus, assigning relevance to a VUS (non-synonymous as well as synonymous) in an undiagnosed patient becomes crucial to assess the proper diagnosis. Multiple algorithms have been used to predict how a specific mutation might affect the protein's function, but they are far from accurate enough to be conclusive. In this work, we highlight the difficulties of genomic variability determined by NGS that have arisen in diagnosing rare genetic diseases, and how molecular modelling has to be a key component to elucidate the relevance of a specific mutation in the protein's loss of function or malfunction. We suggest that the creation of a multi-omics data model should improve the classification of pathogenicity for a significant amount of the detected genomic variability. Moreover, we argue how it should be incorporated systematically in the process of variant evaluation to be useful in the clinical setting and the diagnostic pipeline.
Collapse
Affiliation(s)
- Guerau Fernandez
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, 08007 Barcelona, Spain
| | - Judith Armstrong
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| |
Collapse
|
13
|
Bullich G, Matalonga L, Pujadas M, Papakonstantinou A, Piscia D, Tonda R, Artuch R, Gallano P, Garrabou G, González JR, Grinberg D, Guitart M, Laurie S, Lázaro C, Luengo C, Martí R, Milà M, Ovelleiro D, Parra G, Pujol A, Tizzano E, Macaya A, Palau F, Ribes A, Pérez-Jurado LA, Beltran S. Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases. J Mol Diagn 2022; 24:529-542. [PMID: 35569879 DOI: 10.1016/j.jmoldx.2022.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).
Collapse
Affiliation(s)
- Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Leslie Matalonga
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Montserrat Pujadas
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anastasios Papakonstantinou
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Davide Piscia
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pia Gallano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics Department, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Glòria Garrabou
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Muscle Research and Mitochondrial Function Laboratory, CELLEX-Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Internal Medicine Department, Hospital Clinic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Grinberg
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Míriam Guitart
- Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steven Laurie
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Conxi Lázaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalan Institute of Oncology, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Luengo
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Martí
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Milà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigació Biomèdica August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Ovelleiro
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Genís Parra
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aurora Pujol
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Hospital Duran i Reynals, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Medicine Genetics Group Vall d'Hebron Institut de Recerca (VHIR), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Universitat Autònoma de Barcelona, Hospital Vall d´Hebron, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Palau
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetic and Molecular Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Clinic Institute of Medicine and Dermatology, Hospital Clínic de Barcelona and Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Antònia Ribes
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Secció d'Errors Congènits del Metabolisme-Institute of Clinical Biochemistry (IBC), Servei de Bioquímica i Genètìca Molecular, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, South Australia, Australia
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|