1
|
Chouksey A. Case Report of Myoclonus-Ataxia Syndrome in an Indian Patient Due to SCNA1 Gene Mutation. Mov Disord Clin Pract 2025. [PMID: 40156359 DOI: 10.1002/mdc3.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Affiliation(s)
- Anjali Chouksey
- Neurology Consultant, Department of Neurology, Gastro-Neuro Clinic, Jabalpur, India
| |
Collapse
|
2
|
Shao W, Liu L, Gu J, Yang Y, Wu Y, Zhang Z, Xu Q, Wang Y, Shen Y, Gu L, Cheng Y, Zhang H. Spotlight on mechanism of sudden unexpected death in epilepsy in Dravet syndrome. Transl Psychiatry 2025; 15:84. [PMID: 40097380 PMCID: PMC11914262 DOI: 10.1038/s41398-025-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Dravet syndrome (DS) is a severe and catastrophic epilepsy with childhood onset. The incidence and prevalence of sudden unexpected death in epilepsy (SUDEP) are significantly higher in DS patients than in general epileptic populations. Although extensive research conducted, the underlying mechanisms of SUDEP occurring in DS patients remain unclear. This review focuses on the link between DS and SUDEP and analyzes the potential pathogenesis. We summarize the genetic basis of DS and SUDEP and elucidate the pathophysiological mechanisms of SUDEP in DS. Furthermore, given the drug-resistant nature of this disorder, the pharmacological approach has limited efficacy and often causes side effects, therefore, the non-pharmacological approaches and precise treatment can reduce the risk of SUDEP in this condition, open a new window to cure this disease, and provide a widened landscape of treatment options for patients.
Collapse
Affiliation(s)
- WeiHui Shao
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuan Cheng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Rong M, Marques PT, Ali QZ, Morcos R, Chandran I, Qaiser F, Møller RS, Bayat A, Rubboli G, Gardella E, Reuter MS, Sands TT, Scheffer IE, Schneider A, Poduri A, Wirrell E, Nabbout R, Sullivan J, Valente K, Auvin S, Knupp KG, Brunklaus A, Aledo-Serrano Á, Andrade DM. Variants in ATP6V0C are associated with Dravet-like developmental and epileptic encephalopathy. Epilepsia 2025. [PMID: 40085430 DOI: 10.1111/epi.18346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Dravet syndrome (DS) is a developmental and epileptic encephalopathy. Diagnosis is clinical, but ~90% of patients have pathogenic variants in SCN1A. ATP6V0C has recently been proposed as a novel candidate gene for epilepsy, with or without developmental delay. Here we describe two adult patients with a clinical diagnosis of DS associated with ATP6V0C variants. METHODS Patients with developmental and epileptic encephalopathies were evaluated by physicians who are experts in DS, and their clinical diagnosis was correlated with genetic findings. A subgroup of those patients with DS but without known genetic causes were evaluated through gene panels, whole exome sequencing, and chromosome microarray. Phenotype was determined by pediatric and adult chart reviews, interviews, and physical examinations. RESULTS Of 753 patients with DS, two unrelated individuals with classic features of DS during childhood and adulthood were identified with heterozygous de novo missense variants in ATP6V0C (c.319G > C, p.(Gly107Arg) and c.284C > T, p.(Ala95Val), respectively). Both variants were absent in normal populations and computational prediction algorithms suggested deleterious effects on protein structure and/or function. No disease-causing variants in other genes previously associated with DS were found. SIGNIFICANCE Here we describe two adult patients with Dravet-like syndrome and pathogenic/likely pathogenic variants in ATP6V0C. We propose that abnormal ATP6V0C function can, at the severe end of the clinical spectrum, be associated with Dravet-like phenotype. This is relevant, as these patients would not qualify for disease-modifying antisense nucleotide or gene therapies targeting SCN1A.
Collapse
Affiliation(s)
- Marlene Rong
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Paula T Marques
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Quratulain Zulfiqar Ali
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ricardo Morcos
- Epilepsy and Neurogenetics Unit, Vithas Madrid University Hospitals, Universidad Europea de Madrid, Madrid, Spain
| | - Ilakkiah Chandran
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Farah Qaiser
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Member of the European Reference Center EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Allan Bayat
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Guido Rubboli
- Danish Epilepsy Center, Member of the European Reference Center EpiCARE, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Member of the European Reference Center EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tristan T Sands
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Amy Schneider
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rima Nabbout
- APHP, Necker Enfants Malades Hospital, Member of the European Reference Center EpiCARE, Institut Imagine INSERM 1163, Université Paris Cité, Paris, France
| | - Joseph Sullivan
- Department of Neurology, University of California San Francisco, San Francisco, California, United States
| | - Kette Valente
- Clinic Hospital Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Stéphane Auvin
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- APHP, Robert Debré University Hospital, Pediatric Neurology Department, CRMR Epilepsies Rares, EpiCare Member, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Kelly G Knupp
- Department of Pediatrics and Neurology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Ángel Aledo-Serrano
- Epilepsy and Neurogenetics Unit, Vithas Madrid University Hospitals, Universidad Europea de Madrid, Madrid, Spain
| | - Danielle M Andrade
- Adult Genetic Epilepsy (AGE) Program, Krembil Brain Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Aledo-Serrano A, Lewis-Smith D, Leonard H, Bayat A, Junaid M, Hagebeuk E, Fenger CD, Laze J, Rossi A, Trivisano M, Gonzalez-Giraldez B, Lama J, Krey I, Platzer K, Brischoux-Boucher E, Sarret C, Lomax LB, Zanus C, Musante L, Costa P, Moloney P, Delanty N, Russo A, Schönewolf-Greulich B, Bisgaard AM, Berger C, Freri E, Takahashi S, Zacher P, Jung J, Demarest S, Marsh E, Percy A, Neul J, Olson H, Swanson L, Meletti S, Cioclu MC, Ali QZ, Suller A, Beltran-Corbellini A, Gil-Nagel A, Zhang X, Previtali R, Højte AF, Specchio N, Downs J, Lesca G, Rubboli G, Andrade D, Gardella E, Pestana E, Devinsky O, Benke T, Helbig I, Thomas R, Møller RS. The natural history of CDKL5 deficiency disorder into adulthood. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.12.24318239. [PMID: 39867409 PMCID: PMC11759598 DOI: 10.1101/2025.01.12.24318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Knowledge of the natural history of CDKL5 deficiency disorder (CDD) is limited to the results of cross-sectional analysis of largely pediatric cohorts. Assessment of outcomes in adulthood is critical for clinical decision-making and future precision medicine approaches but is challenging because of the diagnostic gap and duration of follow-up that would be required for prospective studies. We aimed to delineate the natural history retrospectively from adulthood. We analyzed clinical data about an international cohort of 67 adults with CDD. We analyzed demographic, phenotypic, CDKL5 Developmental Score (CDS), and treatment data, and tested associations with genetic factors, sex, and a positive or negative history of neonatal seizures, as an early predictor of prognosis. All but one of 67 adults (55 females, median age of 24 years at last follow-up) had epilepsy, typically beginning with epileptic spasms or tonic seizures before 4 months of age. Focal-onset and non-motor seizures emerged later. Fewer than a third had been documented as having bilateral tonic-clonic seizures or status epilepticus. Seizures often improved with age, but 73% had never experienced more than 6 months of seizure-freedom. Clobazam, sodium valproate, and lamotrigine were the most frequently prescribed antiseizure medications, but no specific treatment demonstrated superiority. Common comorbidities included movement disorders, visual impairment, sleep disorders, constipation, and scoliosis. All participants had intellectual disability, 75% had not acquired speech and 45% had regressed developmentally. 16% never achieved any CDS skill, but most attained at least three, and 28% attained six or all seven. By adulthood, half of those who had achieved any CDS skill retained all their CDS skills. The skills most frequently lost were independent walking and standing. Those with a history of neonatal seizures tended to attain fewer CDS skills and were more likely to have abnormal muscle tone in adulthood, atrioventricular conduction delay, and potential complications of their illness and treatment. Individuals carrying missense variants attained more CDS skills than those with other variants and were more likely to lose skills in adulthood and develop anxiety, possibly reflecting the limited neurodevelopment of those with non-missense variants, who manifested a more multisystemic disorder. In summary, retrospective data from adulthood elucidates the evolution of symptoms, variation in developmental outcomes, and the treatment landscape in CDKL5 deficiency disorder. Presence a non-missense variants or a history of neonatal seizures indicates a more complex disorder and lower developmental trajectory. Our findings will inform management decisions, prognostication, and the design of clinical trials in CDKL5 Deficiency Disorder.
Collapse
|
5
|
Zhu L, Demetriou Y, Barden J, Disla J, Mattis J. Medial septum parvalbumin-expressing inhibitory neurons are impaired in a mouse model of Dravet Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620933. [PMID: 39554146 PMCID: PMC11565850 DOI: 10.1101/2024.10.29.620933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dravet syndrome (DS) is a severe neurodevelopmental disorder caused by pathogenic variants in the SCN1A gene, which encodes the voltage-gated sodium channel Na v 1.1 α subunit. Experiments in animal models of DS - including the haploinsufficient Scn1a +/- mouse - have identified impaired excitability of interneurons in the hippocampus and neocortex; this is thought to underlie the treatment-resistant epilepsy that is a prominent feature of the DS phenotype. However, additional brain structures, such as the medial septum (MS), also express SCN1A . The medial septum is known to play an important role in cognitive function and thus may contribute to the intellectual impairment that also characterizes DS. In this study, we employed whole cell patch clamp recordings in acute brain slices to characterize the electrophysiological properties of MS neurons in Scn1a +/- mice versus age-matched wild-type littermate controls. We found no discernible genotype-related differences in MS cholinergic (ChAT) neurons, but significant dysfunction within MS parvalbumin-expressing (PV) inhibitory neurons in Scn1a +/- mice. We further identified heterogeneity of firing patterns among MS PV neurons, and additional genotype differences in the proportion of subtype representation. These results confirm that the MS is an additional locus of pathology in DS, that may contribute to co- morbidities such as cognitive impairment.
Collapse
|
6
|
Suzuki T, Natsume J, Ito Y, Ito T, Noritake K, Kinoshita F, Fukasawa T, Tsuji T, Itomi K, Kurahashi H, Kubota K, Okanishi T, Saitoh S, Sugiura H, Watanabe H, Takahashi Y, Kidokoro H. Effect of levodopa on pathological gait in Dravet syndrome: A randomized crossover trial using three-dimensional gait analysis. Epilepsia 2024; 65:1304-1313. [PMID: 38469885 DOI: 10.1111/epi.17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE Individuals with Dravet syndrome (DS) exhibit progressive gait disturbance. No quantitative studies have been conducted to evaluate the effectiveness of medication for gait disturbance. Therefore, the aim of this study was to evaluate the effectiveness of levodopa for pathological gait in people with DS using three-dimensional gait analysis (3DGA). METHODS Nine individuals with DS, ages 6-20 years, participated in a crossover study of levodopa and were randomly assigned to the levodopa precedence or no levodopa precedence group. Levodopa/carbidopa hydrate was prescribed at a dose of 5 mg/kg/day (body weight <60 kg) or 300 mg/day (body weight ≥60 kg). The medication was taken for 4-6 weeks (4-week washout period). 3DGA was performed three times before the study, with and without levodopa. A mixed-effects model was used to evaluate the effectiveness of levodopa. The primary outcome was the change in the Gait Deviation Index (GDI). In addition, spatiotemporal gait parameters, 6-minute walking distance (6MD), and balance were evaluated. The correlation between the effectiveness of levodopa and age or gait performance before starting levodopa was analyzed. RESULTS Levodopa improved the GDI by 4.2 points, (p = .029), 6MD by 52 m (p = .002), and balance test result by 4.1 mm (p = .011) in participants with DS. No severe adverse events were observed, with the exception of one participant, who exhibited fever and consequently stopped taking levodopa. Levodopa was more effective in younger participants with a higher baseline gait performance. SIGNIFICANCE Our randomized crossover trial showed that levodopa has the potential to improve gait disturbance in people with DS.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Tadashi Ito
- Three-dimensional Motion Analysis Room, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Koji Noritake
- Department of Orthopedic Surgery, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Fumie Kinoshita
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | | | - Takeshi Tsuji
- Department of Pediatrics, Okazaki City Hospital, Okazaki, Japan
| | - Kazuya Itomi
- Department of Neurology, Aichi Children's Health and Medical Center, Obu, Japan
| | | | - Kazuo Kubota
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tohru Okanishi
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
- Division of Child Neurology, Institute of Neurological Sciences, Tottori University School of Medicine, Yonago, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideshi Sugiura
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Du X, Lian S, Sun M, Li R, Wang H, Yang X, Wang H, Zhang X, Wang F, Yao Y, Guo J. Epileptic seizures worsen the gait and motor abnormalities in adult patients with Dravet syndrome (with a case report and literature review). Epilepsia Open 2023; 8:1576-1580. [PMID: 37418349 PMCID: PMC10690644 DOI: 10.1002/epi4.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Dravet syndrome (DS), previously known as severe myoclonic epilepsy in infancy (SMEI), is considered the most serious "epileptic encephalopathy." Here, we present a man with a de novo SCN1A mutation who was diagnosed with DS at the age of 29. In addition to pharmaco-resistant seizures and cognitive delay, he also developed moderate to severe motor and gait problems, such as crouching gait and Pisa syndrome. Moreover, it deteriorated significantly following an epileptic seizure. The patient presented with severe flexion of the head and trunk in the sagittal plane and fulfilled the diagnostic criteria for camptocormia and antecollis. After a week, it spontaneously alleviated partially. We applied levodopa to the patient and had a good response. Functional Gait Assessment (FGA) was assessed at three different times: 4 days after the seizure, 1 week after the seizure, and after taking levodopa for 2 years. The results were 4, 12, and 19 points, respectively. We postulated that: (1) gait and motor deficits are somehow influenced by recurrent epileptic episodes;(2) the nigrostriatal dopamine system is involved. To our knowledge, we were the ones who first reported this phenomenon.
Collapse
Affiliation(s)
- Xiaoping Du
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Shizhong Lian
- Department of NeurosurgeryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Meizhen Sun
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ruilong Li
- Department of NeurosurgeryFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Huifang Wang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiaoping Yang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Huifen Wang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiaobin Zhang
- Epilepsy CenterXiamen Humanity Hospital Fujian Medical UniversityXiamenChina
| | - Fengpeng Wang
- Epilepsy CenterXiamen Humanity Hospital Fujian Medical UniversityXiamenChina
| | - Yi Yao
- Epilepsy CenterXiamen Humanity Hospital Fujian Medical UniversityXiamenChina
| | - Junhong Guo
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
8
|
Strzelczyk A, Lagae L, Wilmshurst JM, Brunklaus A, Striano P, Rosenow F, Schubert‐Bast S. Dravet syndrome: A systematic literature review of the illness burden. Epilepsia Open 2023; 8:1256-1270. [PMID: 37750463 PMCID: PMC10690674 DOI: 10.1002/epi4.12832] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
We performed a systematic literature review and narrative synthesis according to a pre-registered protocol (Prospero: CRD42022376561) to identify the evidence associated with the burden of illness in Dravet syndrome (DS), a developmental and epileptic encephalopathy characterized by drug-resistant epilepsy with neurocognitive and neurobehavioral impairment. We searched MEDLINE, Embase, and APA PsychInfo, Cochrane's database of systematic reviews, and Epistemonikos from inception to June 2022. Non-interventional studies reporting on epidemiology (incidence, prevalence, and mortality), patient and caregiver health-related quality of life (HRQoL), direct and indirect costs and healthcare resource utilization were eligible. Two reviewers independently carried out the screening. Pre-specified data were extracted and a narrative synthesis was conducted. Overall, 49 studies met the inclusion criteria. The incidence varied from 1:15 400-1:40 900, and the prevalence varied from 1.5 per 100 000 to 6.5 per 100 000. Mortality was reported in 3.7%-20.8% of DS patients, most commonly due to sudden unexpected death in epilepsy and status epilepticus. Patient HRQoL, assessed by caregivers, was lower than in non-DS epilepsy patients; mean scores (0 [worst] to 100/1 [best]) were 62.1 for the Kiddy KINDL/Kid-KINDL, 46.5-54.7 for the PedsQL and 0.42 for the EQ-5D-5L. Caregivers, especially mothers, were severely affected, with impacts on their time, energy, sleep, career, and finances, while siblings were also affected. Symptoms of depression were reported in 47%-70% of caregivers. Mean total direct costs were high across all studies, ranging from $11 048 to $77 914 per patient per year (PPPY), with inpatient admissions being a key cost driver across most studies. Mean costs related to lost productivity were only reported in three publications, ranging from approximately $19 000 to $20 000 PPPY ($17 596 for mothers vs $1564 for fathers). High seizure burden was associated with higher resource utilization, costs and poorer HRQoL. The burden of DS on patients, caregivers, the healthcare system, and society is profound, reflecting the severe nature of the syndrome. Future studies will be able to assess the impact that newly approved therapies have on reducing the burden of DS.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine‐Main, Center of Neurology and NeurosurgeryGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt am MainGermany
| | - Lieven Lagae
- Department of Development and RegenerationUniversity Hospitals KU LeuvenLeuvenBelgium
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Andreas Brunklaus
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
| | - Pasquale Striano
- IRCCS ‘G. Gaslini’ InstituteGenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenovaItaly
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine‐Main, Center of Neurology and NeurosurgeryGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt am MainGermany
| | - Susanne Schubert‐Bast
- Epilepsy Center Frankfurt Rhine‐Main, Center of Neurology and NeurosurgeryGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐University FrankfurtFrankfurt am MainGermany
- Department of NeuropediatricsGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
| |
Collapse
|
9
|
Rong M, Benke T, Zulfiqar Ali Q, Aledo-Serrano Á, Bayat A, Rossi A, Devinsky O, Qaiser F, Ali AS, Fasano A, Bassett AS, Andrade DM. Adult Phenotype of SYNGAP1-DEE. Neurol Genet 2023; 9:e200105. [PMID: 38045990 PMCID: PMC10692795 DOI: 10.1212/nxg.0000000000200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives SYNGAP1 variants are associated with rare developmental and epileptic encephalopathies (DEEs). Although SYNGAP1-related childhood phenotypes are well characterized, the adult phenotype remains ill-defined. We sought to investigate phenotypes and outcomes in adults with SYNGAP1 variants and epilepsy. Methods Patients 18 years or older with DEE carrying likely pathogenic and pathogenic (LP/P) SYNGAP1 variants were recruited through physicians' practices and patient organization groups. We used standardized questionnaires to evaluate current seizures, medication use, sleep, gastrointestinal symptoms, pain response, gait, social communication disorder and adaptive skills of patients. We also assessed caregiver burden. Results Fourteen unrelated adult patients (median: 21 years, range: 18-65 years) with SYNGAP1-DEE were identified, 11 with novel and 3 with known LP/P SYNGAP1 de novo variants. One patient with a partial exon 3 deletion had greater daily living skills and social skills than others with single-nucleotide variants. Ten of 14 (71%) patients had drug-resistant seizures, treated with a median of 2 antiseizure medications. All patients (100%) had abnormal pain processing. Sleep disturbances, social communication disorders, and aggressive/self-injurious behaviors were each reported in 86% of patients. Only half of adults could walk with minimal or no assistance. Toileting was normal in 29%, and 71% had constipation. No adult patients could read or understand verbal material at a sixth-grade level or higher. Aggressive/self-injurious behaviors were leading cause of caregiver burden. The oldest patient was aged 65 years; although nonambulant, she had walked independently when younger. Discussion Seventy-one percent of patients with SYNGAP1-DEEs continue to have seizures when adults. Nonseizure comorbidities, especially aggression and self-injurious behaviors, are major management challenges in adults with SYNGAP1-DEE. Only 50% of adults can ambulate with minimal or no assistance. Almost all adult patients depend on caregivers for many activities of daily living. Prompt diagnostic genetic testing of adults with DEE can inform clinical care and guide outcomes of precision therapies.
Collapse
Affiliation(s)
- Marlene Rong
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Tim Benke
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Quratulain Zulfiqar Ali
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Ángel Aledo-Serrano
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Allan Bayat
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Alessandra Rossi
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Orrin Devinsky
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Farah Qaiser
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Anum S Ali
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Anne S Bassett
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Danielle M Andrade
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
10
|
Pestana Knight EM. Recognition of Movement Disorders in Genetic, Developmental, and Epileptic Encephalopathies: More Than Seizures and Neurocognitive Problems. Neurology 2023; 101:815-816. [PMID: 37748885 DOI: 10.1212/wnl.0000000000207973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
|
11
|
Lenge M, Balestrini S, Mei D, Macconi L, Caligiuri ME, Cuccarini V, Aquino D, Mazzi F, d’Incerti L, Darra F, Bernardina BD, Guerrini R. Morphometry and network-based atrophy patterns in SCN1A-related Dravet syndrome. Cereb Cortex 2023; 33:9532-9541. [PMID: 37344172 PMCID: PMC10431750 DOI: 10.1093/cercor/bhad224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Mutations of the voltage-gated sodium channel SCN1A gene (MIM#182389) are among the most clinically relevant epilepsy-related genetic mutations and present variable phenotypes, from the milder genetic epilepsy with febrile seizures plus to Dravet syndrome, a severe developmental and epileptic encephalopathy. Qualitative neuroimaging studies have identified malformations of cortical development in some patients and mild atrophic changes, partially confirmed by quantitative studies. Precise correlations between MRI findings and clinical variables have not been addressed. We used morphometric methods and network-based models to detect abnormal brain structural patterns in 34 patients with SCN1A-related epilepsy, including 22 with Dravet syndrome. By measuring the morphometric characteristics of the cortical mantle and volume of subcortical structures, we found bilateral atrophic changes in the hippocampus, amygdala, and the temporo-limbic cortex (P-value < 0.05). By correlating atrophic patterns with brain connectivity profiles, we found the region of the hippocampal formation as the epicenter of the structural changes. We also observed that Dravet syndrome was associated with more severe atrophy patterns with respect to the genetic epilepsy with febrile seizures plus phenotype (r = -0.0613, P-value = 0.03), thus suggesting that both the underlying mutation and seizure severity contribute to determine atrophic changes.
Collapse
Affiliation(s)
- Matteo Lenge
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Simona Balestrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Davide Mei
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Letizia Macconi
- Neuroradiology Unit, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Grecia University, 88100, Catanzaro, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Neurologico Carlo Besta, 20100, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Neurologico Carlo Besta, 20100, Milan, Italy
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Neurologico Carlo Besta, 20100, Milan, Italy
| | - Ludovico d’Incerti
- Neuroradiology Unit, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Engineering for Innovation Medicine University of Verona, 37100, Verona, Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Engineering for Innovation Medicine University of Verona, 37100, Verona, Italy
- Pediatric Epilepsy Research Center (CREP), Azienda Ospedaliera Universitaria Integrata, 37100, Verona, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139, Florence, Italy
| |
Collapse
|
12
|
Pickrell WO, Fry AE. Epilepsy genetics: a practical guide for adult neurologists. Pract Neurol 2023; 23:111-119. [PMID: 36639246 DOI: 10.1136/pn-2022-003623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
An understanding of epilepsy genetics is important for adult neurologists, as making a genetic diagnosis gives clinical benefit. In this review, we describe the key features of different groups of genetic epilepsies. We describe the common available genetic tests for epilepsy, and how to interpret them.
Collapse
Affiliation(s)
- William Owen Pickrell
- Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea, UK
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Andrew E Fry
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Berg AT, Kaat AJ, Gaebler-Spira D. Measuring the inch stones for progress: Gross motor function in the developmental and epileptic encephalopathies. Epilepsy Behav 2022; 137:108953. [PMID: 36368092 DOI: 10.1016/j.yebeh.2022.108953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEE) entail moderate to profound impairments in gross motor skills and mobility, which are poorly quantified with clinical outcomes assessments (COA) used in neuro-typical populations. We studied the motor domain of the Adaptive Behavior Assessment System-3 for ages 0-5 years (ABAS) used outside of its intended age range with a focus on raw scores. METHODS In a cross-sectional survey, 117 parents of children with a variety of DEEs (ages 1-35 years, median = 9) completed the motor domain section of the ABAS. Floor and ceiling effects and associations with epilepsy-related factors were assessed with appropriate parametric and nonparametric statistical techniques. The sensitivity of the ABAS and additional measures of mobility borrowed from the cerebral palsy literature (Functional Activities Questionnaire (FAQ-22) walking level (FAQ-WL)) to different levels of the Functional Mobility Scale was determined. RESULTS ABAS motor scores corresponded to a median age equivalent of 20.5 months (Inter-Quartile Range (IQR) 8-34). Most raw scores corresponded to standardized scores > 2 standard deviations below the ABAS standardization sample mean. ABAS raw scores demonstrated minimal floor and ceiling effects (<5%). In linear regression models, scores increased with age under 6 years (p < 0.0001) but flattened out thereafter. Scores varied substantially by DEE group (p < 0.001) and decreased with higher convulsive seizure frequency (<0.0001) and number of seizure medications (p < 0.001). ABAS and other motor scores were sensitive to important differences in mobility as represented by the FMS at 5 yards. Further, they correlated with declines in mobility function from 5 to 500 yards. SIGNIFICANCE An out-of-range COA with raw scores may provide a measure of motor ability and mobility sensitive within the range of moderate to profound impairment seen in patients with DEE. This approach could shorten the time to appropriate COA development and ensure timely clinical trial readiness for novel therapies for rare DEEs.
Collapse
Affiliation(s)
- Anne T Berg
- COMBINEDBrain, Nashville, TN, United States; Northwestern Feinberg School of Medicine, Department of Neurology, Chicago, IL, United States.
| | - Aaron J Kaat
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Deborah Gaebler-Spira
- Shirley Ryan Ability Lab, Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Tsuji S. Broadening Neurologic Manifestations in Adult Patients With Dravet Syndrome. Neurology 2022; 98:913-914. [PMID: 35418455 DOI: 10.1212/wnl.0000000000200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shoji Tsuji
- University of Tokyo Graduate School of Medicine
| |
Collapse
|