1
|
Stemmerik MG, Tasca G, Gilhus NE, Servais L, Vicino A, Maggi L, Sansone V, Vissing J. Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment. Brain 2025; 148:363-375. [PMID: 39397743 DOI: 10.1093/brain/awae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Muscle diseases cover a diverse group of disorders that, in most cases, are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated diseases, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate end points in therapeutic trials. We categorize these as either (i) disease unspecific markers; (ii) markers of specific pathways that may be used for more than one disease; or (iii) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.
Collapse
Affiliation(s)
- Mads G Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne NE1 3BZ, UK
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
- Division of Child Neurology, Department of Pediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, 4000 Liège, Belgium
| | - Alex Vicino
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan MI, Italy
| | - Valeria Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan- ERN for Neuromuscular Diseases, 20162 Milan MI, Italy
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Holm-Yildiz S, Krag T, Dysgaard T, Pedersen BS, Witting N, Kodal LS, Kannuberg L, Pedersen JJ, Lyu Z, Aagaard MM, Vissing J. Quantitative Muscle MRI to Monitor Disease Progression in Hypokalemic Period Paralysis. Neurol Genet 2024; 10:e200211. [PMID: 39633713 PMCID: PMC11616970 DOI: 10.1212/nxg.0000000000200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024]
Abstract
Background and Objectives Primary hypokalemic periodic paralysis (HypoPP) is a muscle channelopathy that can cause periodic paralysis and permanent weakness. Currently, little is known about how progressive this myopathy is. Natural history data for HypoPP can potentially answer the question of progressiveness and form the basis for outcome measures to be used in follow-up and emerging treatment trials. We aimed to describe the natural history of HypoPP and assess whether quantitative fat imaging is a valuable biomarker to monitor disease progression. Methods In this prospective follow-up study, we examined disease progression using Dixon MRI to monitor changes in fat replacement of the muscle and stationary dynamometry to monitor changes in muscle strength. Results We included 37 persons (mean age 43 years, range 18-79 years) with HypoPP-causing variants in CACNA1S. Three participants were asymptomatic carriers, 22 had periodic paralysis, 3 had permanent weakness, and 9 had periodic paralysis in combination with permanent weakness. The median follow-up time was 20 months (range 12-25). We found that fat fraction increased in 10 of 21 examined muscles. An increase in the composite fat fraction of at least 1 muscle group was found in all symptomatic phenotypes. By contrast, we found no significant change in muscle strength. Discussion The results from this follow-up study support the use of quantitative muscle MRI to monitor subclinical disease progression in HypoPP in patients with and without attacks of paralysis.
Collapse
Affiliation(s)
- Sonja Holm-Yildiz
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas Krag
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Tina Dysgaard
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Britt Stævnsbo Pedersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Nanna Witting
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Louise Sloth Kodal
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Linda Kannuberg
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jonas Jalili Pedersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Zhe Lyu
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Müller Aagaard
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - John Vissing
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Bolano-Díaz C, Verdú-Díaz J, Díaz-Manera J. MRI for the diagnosis of limb girdle muscular dystrophies. Curr Opin Neurol 2024; 37:536-548. [PMID: 39132784 DOI: 10.1097/wco.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW In the last 30 years, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.
Collapse
Affiliation(s)
- Carla Bolano-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - José Verdú-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Neuromuscular Diseases Laboratory, Insitut de Recerca de l'Hospital de la Santa Creu i Sant Pau
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
4
|
Cheung A, Audhya IF, Szabo SM, Friesen M, Weihl CC, Gooch KL. Patterns of Clinical Progression Among Patients With Autosomal Recessive Limb-Girdle Muscular Dystrophy: A Systematic Review. J Clin Neuromuscul Dis 2023; 25:65-80. [PMID: 37962193 DOI: 10.1097/cnd.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES As the clinical course of autosomal recessive limb-girdle muscular dystrophy (LGMDR) is highly variable, this study characterized the frequency of loss of ambulation (LOA) among patients by subtype (LGMDR1, LGMDR2, LGMDR3-6, LGMDR9, LGMDR12) and progression to cardiac and respiratory involvement among those with and without LOA. METHODS Systematic literature review. RESULTS From 2929 abstracts screened, 418 patients were identified with ambulatory status data (LOA: 265 [63.4%]). Cardiac and/or respiratory function was reported for 142 patients (34.0%; all with LOA). Among these, respiratory involvement was most frequent in LGMDR3-6 (74.1%; mean [SD] age 23.9 [11.0] years) and cardiac in LGMDR9 (73.3%; mean [SD] age 23.7 [17.7] years). Involvement was less common in patients without LOA except in LGMDR9 (71.4% respiratory and 52.4% cardiac). CONCLUSIONS This study described the co-occurrence of LOA, cardiac, and respiratory involvement in LGMDR and provides greater understanding of the clinical progression of LGMDR.
Collapse
Affiliation(s)
| | | | | | | | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
5
|
de Bruyn A, Montagnese F, Holm-Yildiz S, Scharff Poulsen N, Stojkovic T, Behin A, Palmio J, Jokela M, De Bleecker JL, de Visser M, van der Kooi AJ, Ten Dam L, Domínguez González C, Maggi L, Gallone A, Kostera-Pruszczyk A, Macias A, Łusakowska A, Nedkova V, Olive M, Álvarez-Velasco R, Wanschitz J, Paradas C, Mavillard F, Querin G, Fernández-Eulate G, Quinlivan R, Walter MC, Depuydt CE, Udd B, Vissing J, Schoser B, Claeys KG. Anoctamin-5 related muscle disease: clinical and genetic findings in a large European cohort. Brain 2023; 146:3800-3815. [PMID: 36913258 DOI: 10.1093/brain/awad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023] Open
Abstract
Anoctamin-5 related muscle disease is caused by biallelic pathogenic variants in the anoctamin-5 gene (ANO5) and shows variable clinical phenotypes: limb-girdle muscular dystrophy type 12 (LGMD-R12), distal muscular dystrophy type 3 (MMD3), pseudometabolic myopathy or asymptomatic hyperCKaemia. In this retrospective, observational, multicentre study we gathered a large European cohort of patients with ANO5-related muscle disease to study the clinical and genetic spectrum and genotype-phenotype correlations. We included 234 patients from 212 different families, contributed by 15 centres from 11 European countries. The largest subgroup was LGMD-R12 (52.6%), followed by pseudometabolic myopathy (20.5%), asymptomatic hyperCKaemia (13.7%) and MMD3 (13.2%). In all subgroups, there was a male predominance, except for pseudometabolic myopathy. Median age at symptom onset of all patients was 33 years (range 23-45 years). The most frequent symptoms at onset were myalgia (35.3%) and exercise intolerance (34.1%), while at last clinical evaluation most frequent symptoms and signs were proximal lower limb weakness (56.9%) and atrophy (38.1%), myalgia (45.1%) and atrophy of the medial gastrocnemius muscle (38.4%). Most patients remained ambulatory (79.4%). At last evaluation, 45.9% of patients with LGMD-R12 additionally had distal weakness in the lower limbs and 48.4% of patients with MMD3 also showed proximal lower limb weakness. Age at symptom onset did not differ significantly between males and females. However, males had a higher risk of using walking aids earlier (P = 0.035). No significant association was identified between sportive versus non-sportive lifestyle before symptom onset and age at symptom onset nor any of the motor outcomes. Cardiac and respiratory involvement that would require treatment occurred very rarely. Ninety-nine different pathogenic variants were identified in ANO5 of which 25 were novel. The most frequent variants were c.191dupA (p.Asn64Lysfs*15) (57.7%) and c.2272C>T (p.Arg758Cys) (11.1%). Patients with two loss-of function variants used walking aids at a significantly earlier age (P = 0.037). Patients homozygous for the c.2272C>T variant showed a later use of walking aids compared to patients with other variants (P = 0.043). We conclude that there was no correlation of the clinical phenotype with the specific genetic variants, and that LGMD-R12 and MMD3 predominantly affect males who have a significantly worse motor outcome. Our study provides useful information for clinical follow up of the patients and for the design of clinical trials with novel therapeutic agents.
Collapse
Affiliation(s)
- Alexander de Bruyn
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Sonja Holm-Yildiz
- Copenhagen Neuromuscular Center (CNMC), Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nanna Scharff Poulsen
- Copenhagen Neuromuscular Center (CNMC), Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders Nord/Est/Île-de-France, Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Anthony Behin
- Reference Center for Neuromuscular Disorders Nord/Est/Île-de-France, Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johanna Palmio
- Neuromuscular Center, Department of Neurology, Tampere University Hospital, 33520 Tampere, Finland
| | - Manu Jokela
- Neuromuscular Center, Department of Neurology, Tampere University Hospital, 33520 Tampere, Finland
- Neurocenter, Department of Neurology, Clinical Neurosciences, Turku University Hospital and University of Turku, 20014 Turku, Finland
| | - Jan L De Bleecker
- Department of Neurology, University Hospital Gent, 9000 Gent, Belgium
| | - Marianne de Visser
- Department of Neurology, Amsterdam University Medical Centers, Location AMC, Neuroscience Institute, University of Amsterdam, 1107 AZ Amsterdam, The Netherlands
| | - Anneke J van der Kooi
- Department of Neurology, Amsterdam University Medical Centers, Location AMC, Neuroscience Institute, University of Amsterdam, 1107 AZ Amsterdam, The Netherlands
| | - Leroy Ten Dam
- Department of Neurology, Amsterdam University Medical Centers, Location AMC, Neuroscience Institute, University of Amsterdam, 1107 AZ Amsterdam, The Netherlands
| | - Cristina Domínguez González
- Reference Center for Rare Neuromuscular Disorders, imas12 Research Institute, Hospital Universitario 12 de Octubre, Biomedical Network Research Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28041 Madrid, Spain
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Annamaria Gallone
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | | | - Anna Macias
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Velina Nedkova
- Department of Neurology, Bellvitge Hospital, 08041 Barcelona, Spain
| | - Montse Olive
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sat Pau), 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28001 Madrid, Spain
| | - Rodrigo Álvarez-Velasco
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sat Pau), 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28001 Madrid, Spain
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Fabiola Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Giorgia Querin
- Institut de Myologie, I-Motion Adult ClinicalTrials Platform, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Gorka Fernández-Eulate
- Reference Center for Neuromuscular Disorders Nord/Est/Île-de-France, Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Ros Quinlivan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Christophe E Depuydt
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Bjarne Udd
- Neuromuscular Center, Department of Neurology, Tampere University Hospital, 33520 Tampere, Finland
| | - John Vissing
- Copenhagen Neuromuscular Center (CNMC), Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| |
Collapse
|
9
|
Soontrapa P, Liewluck T. Anoctamin 5 (ANO5) Muscle Disorders: A Narrative Review. Genes (Basel) 2022; 13:genes13101736. [PMID: 36292621 PMCID: PMC9602132 DOI: 10.3390/genes13101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Anoctaminopathy-5 refers to a group of hereditary skeletal muscle or bone disorders due to mutations in the anoctamin 5 (ANO5)-encoding gene, ANO5. ANO5 is a 913-amino acid protein of the anoctamin family that functions predominantly in phospholipid scrambling and plays a key role in the sarcolemmal repairing process. Monoallelic mutations in ANO5 give rise to an autosomal dominant skeletal dysplastic syndrome (gnathodiaphyseal dysplasia or GDD), while its biallelic mutations underlie a continuum of four autosomal recessive muscle phenotypes: (1). limb–girdle muscular dystrophy type R12 (LGMDR12); (2). Miyoshi distal myopathy type 3 (MMD3); (3). metabolic myopathy-like (pseudometabolic) phenotype; (4). asymptomatic hyperCKemia. ANO5 muscle disorders are rare, but their prevalence is relatively high in northern European populations because of the founder mutation c.191dupA. Weakness is generally asymmetric and begins in proximal muscles in LGMDR12 and in distal muscles in MMD3. Patients with the pseudometabolic or asymptomatic hyperCKemia phenotype have no weakness, but conversion to the LGMDR12 or MMD3 phenotype may occur as the disease progresses. There is no clear genotype–phenotype correlation. Muscle biopsy displays a broad spectrum of pathology, ranging from normal to severe dystrophic changes. Intramuscular interstitial amyloid deposits are observed in approximately half of the patients. Symptomatic and supportive strategies remain the mainstay of treatment. The recent development of animal models of ANO5 muscle diseases could help achieve a better understanding of their underlying pathomechanisms and provide an invaluable resource for therapeutic discovery.
Collapse
Affiliation(s)
- Pannathat Soontrapa
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|