1
|
Paik JJ, Christopher-Stine L, Boesen M, Carrino JA, Eggleton SP, Denis D, Kubassova O. The utility of muscle magnetic resonance imaging in idiopathic inflammatory myopathies: a scoping review. Front Immunol 2025; 16:1455867. [PMID: 39931069 PMCID: PMC11808160 DOI: 10.3389/fimmu.2025.1455867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are muscle disorders characterized by proximal weakness of the skeletal muscles, inflammation in muscle, and autoimmunity. The classic subgroups in IIMs include dermatomyositis, inclusion body myositis, immune-mediated necrotizing myopathy, and polymyositis (PM). PM is increasingly recognized as a rare subtype and often included in overlap myositis, the antisynthetase syndrome when no rash is present, or misdiagnosed inclusion body myositis. Magnetic resonance imaging (MRI) has played an increasingly important role in IIM diagnosis and assessment. Although conventional MRI provides qualitative information that is helpful for diagnosis, its application for the quantitative assessment of disease activity is challenging. Therefore, advanced quantitative MRI techniques have been implemented in the past 10 years to highlight potential new applications of disease monitoring in IIM. The aim of this review is to examine the role of quantitative MRI techniques in evaluating the key imaging features of IIM, mainly muscle edema and muscle damage (fatty replacement and/or muscle atrophy).
Collapse
Affiliation(s)
- Julie J. Paik
- Department of Myositis, Johns Hopkins University, Baltimore, MD, United States
| | | | - Mikael Boesen
- IAG, Image Analysis Group, London, United Kingdom
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - John A. Carrino
- Department of Radiology and Imaging, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, United States
| | - S. Peter Eggleton
- Global Clinical Development, Merck Serono Ltd.,
Feltham, United Kingdom, an affiliate of the healthcare business of Merck KGaA
| | - Deborah Denis
- Global Clinical Development, EMD Serono Research & Development Institute,
Inc., Billerica, MA, United States, an affiliate of the healthcare business of Merck KGaA
| | | |
Collapse
|
2
|
Salam S, Symonds T, Doll H, Rousell S, Randall J, Lloyd-Price L, Hudgens S, Guldberg C, Herbelin L, Barohn RJ, Hanna MG, Dimachkie MM, Machado PM. Measurement properties of the Inclusion Body Myositis Functional Rating Scale. J Neurol Neurosurg Psychiatry 2025; 96:122-131. [PMID: 38960586 DOI: 10.1136/jnnp-2024-333617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES To evaluate the validity, reliability, responsiveness and meaningful change threshold of the Inclusion Body Myositis (IBM) Functional Rating Scale (FRS). METHODS Data from a large 20-month multicentre, randomised, double-blind, placebo-controlled trial in IBM were used. Convergent validity was tested using Spearman correlation with other health outcomes. Discriminant (known groups) validity was assessed using standardised effect sizes (SES). Internal consistency was tested using Cronbach's alpha. Intrarater reliability in stable patients and equivalence of face-to-face and telephone administration were tested using intraclass correlation coefficients (ICCs) and Bland-Altman plots. Responsiveness was assessed using standardised response mean (SRM). A receiver operator characteristic (ROC) curve anchor-based approach was used to determine clinically meaningful IBMFRS change. RESULTS Among the 150 patients, mean (SD) IBMFRS total score was 27.4 (4.6). Convergent validity was supported by medium to large correlations (rs modulus: 0.42-0.79) and discriminant validity by moderate to large group differences (SES=0.51-1.59). Internal consistency was adequate (overall Cronbach's alpha: 0.79). Test-retest reliability (ICCs=0.84-0.87) and reliability of telephone versus face-to-face administration (ICCs=0.93-0.95) were excellent, with Bland-Altman plots showing good agreement. Responsiveness in the worsened group defined by various external constructs was large at both 12 (SRM=-0.76 to -1.49) and 20 months (SRM=-1.12 to -1.57). In ROC curve analysis, a drop in at least two IBMFRS total score points was shown to represent a meaningful decline. CONCLUSIONS When administered by trained raters, the IBMFRS is a reliable, valid and responsive tool that can be used to evaluate the impact of IBM and its treatment on physical function, with a 2-point reduction representing meaningful decline. TRIAL REGISTRATION NUMBER NCT02753530.
Collapse
Affiliation(s)
- Sharfaraz Salam
- Department of Neuromuscular Diseases, University College London, London, UK
| | | | - Helen Doll
- Clinical Outcomes Solutions Ltd, Folkestone, UK
| | - Sam Rousell
- Clinical Outcomes Solutions Ltd, Folkestone, UK
| | | | | | | | | | - Laura Herbelin
- Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Richard J Barohn
- Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, University College London, London, UK
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas City Medical Center, Kansas City, Missouri, USA
| | - Pedro M Machado
- Department of Neuromuscular Diseases, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, University College London Hospitals National Health Service (NHS) Trust, London, UK
| |
Collapse
|
3
|
Anderson NC, Lloyd TE. Inclusion body myositis: an update. Curr Opin Rheumatol 2025; 37:80-85. [PMID: 39469805 DOI: 10.1097/bor.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW To review recent advances in our understanding of the epidemiology, pathophysiology, and management of inclusion body myositis (IBM). RECENT FINDINGS Recent epidemiologic studies have highlighted the morbidity and mortality associated with IBM, including the impact of dysphagia. Multiomic analyses of IBM tissues have identified new pathogenic pathways and biomarkers for use in clinical trials. New diagnostic criteria and outcome measures have been proposed to improve clinical trial design. Ongoing clinical trials are targeting T cells and autophagy. SUMMARY Improvements in our understanding of IBM pathogenesis are identifying new pathways and biomarkers that need validation in larger cohorts. Exercise remains the primary therapeutic modality available, and new treatment targets are needed.
Collapse
|
4
|
Tam K, Liu SW, Costa S, Szabo E, Reitsma S, Gillick H, Adachi JD, Wong AKO. Fully-automated segmentation of muscle and inter-/intra-muscular fat from magnetic resonance images of calves and thighs: an open-source workflow in Python. Skelet Muscle 2024; 14:37. [PMID: 39731189 DOI: 10.1186/s13395-024-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND INTER- and INTRAmuscular fat (IMF) is elevated in high metabolic states and can promote inflammation. While magnetic resonance imaging (MRI) excels in depicting IMF, the lack of reproducible tools prevents the ability to measure change and track intervention success. METHODS We detail an open-source fully-automated iterative threshold-seeking algorithm (ITSA) for segmenting IMF from T1-weighted MRI of the calf and thigh within three cohorts (CaMos Hamilton (N = 54), AMBERS (N = 280), OAI (N = 105)) selecting adults 45-85 years of age. Within the CaMos Hamilton cohort, same-day and 1-year repeated images (N = 38) were used to evaluate short- and long-term precision error with root mean square coefficients of variation; and to validate against semi-automated segmentation methods using linear regression. The effect of algorithmic improvements to fat ascertainment using 3D connectivity and partial volume correction rules on analytical precision was investigated. Robustness and versatility of the algorithm was demonstrated by application to different MR sequences/magnetic strength and to calf versus thigh scans. RESULTS Among 439 adults (319 female(89%), age: 71.6 ± 7.6 yrs, BMI: 28.06 ± 4.87 kg/m2, IMF%: 10.91 ± 4.57%), fully-automated ITSA performed well across MR sequences and anatomies from three cohorts. Applying both 3D connectivity and partial volume fat correction improved precision from 4.99% to 2.21% test-retest error. Validation against semi-automated methods showed R2 from 0.92 to 0.98 with fully-automated ITSA routinely yielding more conservative computations of IMF volumes. Quality control shows 7% of cases requiring manual correction, primarily due to IMF merging with subcutaneous fat. A full workflow described methods to export tags for manual correction. CONCLUSIONS The greatest challenge in segmenting IMF from MRI is in selecting a dynamic threshold that consistently performs across repeated imaging. Fully-automated ITSA achieved this, demonstrated low short- and long-term precision error, conducive of use within RCTs.
Collapse
Affiliation(s)
- Kenneth Tam
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Si Wen Liu
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Sarah Costa
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Eva Szabo
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Shannon Reitsma
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Hana Gillick
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Andy Kin On Wong
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
- Schroeder's Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, 200 Elizabeth St. 7EN-238, Toronto, ON, M5G2C4, Canada.
| |
Collapse
|
5
|
Heerfordt J, Karlsson M, Kusama M, Ogata S, Mukasa R, Kiyosawa N, Sato N, Widholm P, Dahlqvist Leinhard O, Ahlgren A, Mori-Yoshimura M. Volumetric muscle composition analysis in sporadic inclusion body myositis using fat-referenced magnetic resonance imaging: Disease pattern, repeatability, and natural progression. Muscle Nerve 2024; 70:1181-1191. [PMID: 39318110 DOI: 10.1002/mus.28252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION/AIMS Fat-referenced magnetic resonance imaging (MRI) has emerged as a promising volumetric technique for measuring muscular volume and fat in neuromuscular disorders, but the experience in inflammatory myopathies remains limited. Therefore, this work aimed at describing how sporadic inclusion body myositis (sIBM) manifests on standardized volumetric fat-referenced MRI muscle measurements, including within-scanner repeatability, natural progression rate, and relationship to clinical parameters. METHODS Ten sIBM patients underwent whole-leg Dixon MRI at baseline (test-retest) and after 12 months. The lean muscle volume (LMV), muscle fat fraction (MFF), and muscle fat infiltration (MFI) of the quadriceps, hamstrings, adductors, medial gastrocnemius, and tibialis anterior were computed. Clinical assessments of IBM Functional Rating Scale (IBMFRS) and knee extension strength were also performed. The baseline test-retest MRI measurements were used to estimate the within-subject standard deviation (sw). 12-month changes were derived for all parameters. RESULTS The MRI measurements showed high repeatability in all muscles; sw ranged from 2.7 to 18.0 mL for LMV, 0.7-1.3 percentage points (pp) for MFF, and 0.2-0.7 pp for MFI. Over 12 months, average LMV decreased by 7.4% while MFF and MFI increased by 3.8 pp and 1.8 pp, respectively. Mean IBMFRS decreased by 2.4 and mean knee extension strength decreased by 32.8 N. DISCUSSION The MRI measurements showed high repeatability and 12-month changes consistent with muscle atrophy and fat replacement as well as a decrease in both muscle strength and IBMFRS. Our findings suggest that fat-referenced MRI measurements are suitable for assessing disease progression and treatment response in inflammatory myopathies.
Collapse
Affiliation(s)
| | | | - Midori Kusama
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Seiya Ogata
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo, Co. Ltd., Tokyo, Japan
| | - Ryuta Mukasa
- Translational Science Department II, Daiichi Sankyo, Co. Ltd., Tokyo, Japan
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo, Co. Ltd., Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Per Widholm
- AMRA Medical AB, Linköping, Sweden
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
6
|
Yoshida T, Albayda J. Imaging Modalities in Myositis: A Clinical Review. Rheum Dis Clin North Am 2024; 50:641-659. [PMID: 39415372 DOI: 10.1016/j.rdc.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
This review highlights the key role of imaging modalities in diagnosing and managing myositis. The authors underscore MRI's superiority in identifying muscle edema and fat infiltration, marking it as essential for evaluating disease activity and damage. They also suggest ultrasound's emerging significance for diagnosis and monitoring of the disease, valued for its ease of use, and real-time capabilities. Furthermore, PET scans' unique physiologic capabilities, especially useful for malignancy detection and assessing lung disease, are emphasized. Collectively, these imaging techniques offer a tailored approach to myositis management, facilitate precise diagnosis, effective treatment planning, and disease activity monitoring, thereby enhancing patient outcomes in rheumatology practice.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Rheumatology, Chikamori Hospital, Kochi, Japan; Department of Neurology, Tokushima University Hospital, Tokushima, Japan; Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jemima Albayda
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Forsting J, Wächter M, Froeling M, Rohm M, Güttsches AK, De Lorenzo A, Südkamp N, Kocabas A, Vorgerd M, Enax-Krumova E, Rehmann R, Schlaffke L. Quantitative muscle magnetic resonance imaging in limb-girdle muscular dystrophy type R1 (LGMDR1): A prospective longitudinal cohort study. NMR IN BIOMEDICINE 2024; 37:e5172. [PMID: 38794994 DOI: 10.1002/nbm.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/27/2024]
Abstract
Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m2) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marian Wächter
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Alice De Lorenzo
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Abdulhadi Kocabas
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
8
|
Weddell J, Marzo-Ortega H, Machado PM. MRI in axial spondyloarthritis: redefining diagnostic and assessment paradigms. ARP RHEUMATOLOGY 2024; 3:254-257. [PMID: 39754726 DOI: 10.63032/skwb5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Affiliation(s)
- Jake Weddell
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Helena Marzo-Ortega
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Pedro M Machado
- Department of Neuromuscular Diseases & Centre for Rheumatology, University College London, London, UK
| |
Collapse
|
9
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
10
|
Zierer LK, Naegel S, Schneider I, Kendzierski T, Kleeberg K, Koelsch AK, Scholle L, Schaefer C, Naegel A, Zierz S, Otto M, Stoltenburg-Didinger G, Kraya T, Stoevesandt D, Mensch A. Quantitative whole-body muscle MRI in idiopathic inflammatory myopathies including polymyositis with mitochondrial pathology: indications for a disease spectrum. J Neurol 2024; 271:3186-3202. [PMID: 38438820 PMCID: PMC11136737 DOI: 10.1007/s00415-024-12191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Inflammatory myopathies (IIM) include dermatomyositis (DM), sporadic inclusion body myositis (sIBM), immune-mediated necrotizing myopathy (IMNM), and overlap myositis (OLM)/antisynthetase syndrome (ASyS). There is also a rare variant termed polymyositis with mitochondrial pathology (PM-Mito), which is considered a sIBM precursor. There is no information regarding muscle MRI for this rare entity. The aim of this study was to compare MRI findings in IIM, including PM-Mito. METHODS This retrospective analysis included 41 patients (7 PM-Mito, 11 sIBM, 11 PM/ASyS/OLM, 12 IMNM) and 20 healthy controls. Pattern of muscle involvement was assessed by semiquantitative evaluation, while Dixon method was used to quantify muscular fat fraction. RESULTS The sIBM typical pattern affecting the lower extremities was not found in the majority of PM-Mito-patients. Intramuscular edema in sIBM and PM-Mito was limited to the lower extremities, whereas IMNM and PM/ASyS/OLM showed additional edema in the trunk. Quantitative assessment showed increased fat content in sIBM, with an intramuscular proximo-distal gradient. Similar changes were also found in a few PM-Mito- and PM/ASyS/OLM patients. In sIBM and PM-Mito, mean fat fraction of several muscles correlated with clinical involvement. INTERPRETATION As MRI findings in patients with PM-Mito relevantly differed from sIBM, the attribution of PM-Mito as sIBM precursor should be critically discussed. Some patients in PM/ASyS/OLM and PM-Mito group showed MR-morphologic features predominantly observed in sIBM, indicative of a spectrum from PM/ASyS/OLM toward sIBM. In some IIM subtypes, MRI may serve as a biomarker of disease severity.
Collapse
Affiliation(s)
- Lea-Katharina Zierer
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Radiology, University Medicine Halle, Halle (Saale), Germany
| | - Steffen Naegel
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, Alfried-Krupp-Krankenhaus Essen, Essen, Germany
| | - Ilka Schneider
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, St. Georg Hospital Leipzig, Leipzig, Germany
| | - Thomas Kendzierski
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Kathleen Kleeberg
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Anna Katharina Koelsch
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Christoph Schaefer
- Department of Internal Medicine II, Rheumatology, University Medicine Halle, Halle (Saale), Germany
| | - Arne Naegel
- Goethe Center for Scientific Computing (G-CSC), Goethe University, Frankfurt/Main, Germany
| | - Stephan Zierz
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Gisela Stoltenburg-Didinger
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Institute of Cell and Neurobiology, Charité University Medicine Berlin, Berlin, Germany
| | - Torsten Kraya
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Department of Neurology, St. Georg Hospital Leipzig, Leipzig, Germany
| | | | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
11
|
Reyngoudt H, Baudin P, Caldas de Almeida Araújo E, Bachasson D, Boisserie J, Mariampillai K, Annoussamy M, Allenbach Y, Hogrel J, Carlier PG, Marty B, Benveniste O. Effect of sirolimus on muscle in inclusion body myositis observed with magnetic resonance imaging and spectroscopy. J Cachexia Sarcopenia Muscle 2024; 15:1108-1120. [PMID: 38613252 PMCID: PMC11154752 DOI: 10.1002/jcsm.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Finding sensitive clinical outcome measures has become crucial in natural history studies and therapeutic trials of neuromuscular disorders. Here, we focus on 1-year longitudinal data from quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31P MRS) in a placebo-controlled study of sirolimus for inclusion body myositis (IBM), also examining their links to functional, strength, and clinical parameters in lower limb muscles. METHODS Quantitative MRI and 31P MRS data were collected at 3 T from a single site, involving 44 patients (22 on placebo, 22 on sirolimus) at baseline and year-1, and 21 healthy controls. Assessments included fat fraction (FF), contractile cross-sectional area (cCSA), and water T2 in global leg and thigh segments, muscle groups, individual muscles, as well as 31P MRS indices in quadriceps or triceps surae. Analyses covered patient-control comparisons, annual change assessments via standard t-tests and linear mixed models, calculation of standardized response means (SRM), and exploration of correlations between MRI, 31P MRS, functional, strength, and clinical parameters. RESULTS The quadriceps and gastrocnemius medialis muscles had the highest FF values, displaying notable heterogeneity and asymmetry, particularly in the quadriceps. In the placebo group, the median 1-year FF increase in the quadriceps was 3.2% (P < 0.001), whereas in the sirolimus group, it was 0.7% (P = 0.033). Both groups experienced a significant decrease in cCSA in the quadriceps after 1 year (P < 0.001), with median changes of 12.6% for the placebo group and 5.5% for the sirolimus group. Differences in FF and cCSA changes between the two groups were significant (P < 0.001). SRM values for FF and cCSA were 1.3 and 1.4 in the placebo group and 0.5 and 0.8 in the sirolimus group, respectively. Water T2 values were highest in the quadriceps muscles of both groups, significantly exceeding control values in both groups (P < 0.001) and were higher in the placebo group than in the sirolimus group. After treatment, water T2 increased significantly only in the sirolimus group's quadriceps (P < 0.01). Multiple 31P MRS indices were abnormal in patients compared to controls and remained unchanged after treatment. Significant correlations were identified between baseline water T2 and FF at baseline and the change in FF (P < 0.001). Additionally, significant correlations were observed between FF, cCSA, water T2, and functional and strength outcome measures. CONCLUSIONS This study has demonstrated that quantitative MRI/31P MRS can discern measurable differences between placebo and sirolimus-treated IBM patients, offering promise for future therapeutic trials in idiopathic inflammatory myopathies such as IBM.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Pierre‐Yves Baudin
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | | | - Damien Bachasson
- Neuromuscular Physiology and Evaluation Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueSorbonne UniversitéParisFrance
| | - Jean‐Marc Boisserie
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Kubéraka Mariampillai
- Department of Internal Medicine and Clinical Immunology, Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique‐Hôpitaux de ParisPitié‐Salpêtrière University HospitalParisFrance
- I‐MotionInstitute of MyologyParisFrance
| | | | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique‐Hôpitaux de ParisPitié‐Salpêtrière University HospitalParisFrance
| | - Jean‐Yves Hogrel
- Neuromuscular Physiology and Evaluation Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique‐Hôpitaux de ParisPitié‐Salpêtrière University HospitalParisFrance
| |
Collapse
|
12
|
Fortanier E, Hostin MA, Michel C, Delmont E, Bellemare ME, Guye M, Bendahan D, Attarian S. One-Year Longitudinal Assessment of Patients With CMT1A Using Quantitative MRI. Neurology 2024; 102:e209277. [PMID: 38630962 DOI: 10.1212/wnl.0000000000209277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Intramuscular fat fraction (FF) assessed using quantitative MRI (qMRI) has emerged as one of the few responsive outcome measures in CMT1A suitable for future clinical trials. This study aimed to identify the relevance of multiple qMRI biomarkers for tracking longitudinal changes in CMT1A and to assess correlations between MRI metrics and clinical parameters. METHODS qMRI was performed in CMT1A patients at 2 time points, a year apart, and various metrics were extracted from 3-dimensional volumes of interest at thigh and leg levels. A semiautomated segmentation technique was used, enabling the analysis of central slices and a larger 3D muscle volume. Metrics included proton density (PD), magnetization transfer ratio (MTR), and intramuscular FF. The sciatic and tibial nerves were also assessed. Disease severity was gauged using Charcot Marie Tooth Neurologic Score (CMTNSv2), Charcot Marie Tooth Examination Score, Overall Neuropathy Limitation Scale scores, and Medical Research Council (MRC) muscle strength. RESULTS Twenty-four patients were included. FF significantly rose in the 3D volume at both thigh (+1.04% ± 2.19%, p = 0.041) and leg (+1.36% ± 1.87%, p = 0.045) levels. The 3D analyses unveiled a length-dependent gradient in FF, ranging from 22.61% ± 10.17% to 26.17% ± 10.79% at the leg level. There was noticeable variance in longitudinal changes between muscles: +3.17% ± 6.86% (p = 0.028) in the tibialis anterior compared with 0.37% ± 4.97% (p = 0.893) in the gastrocnemius medialis. MTR across the entire thigh volume showed a significant decline between the 2 time points -2.75 ± 6.58 (p = 0.049), whereas no significant differences were noted for the 3D muscle volume and PD. No longitudinal changes were observed in any nerve metric. Potent correlations were identified between FF and primary clinical measures: CMTNSv2 (ρ = 0.656; p = 0.001) and MRC in the lower limbs (ρ = -0.877; p < 0.001). DISCUSSION Our results further support that qMRI is a promising tool for following up longitudinal changes in CMT1A patients, FF being the paramount MRI metric for both thigh and leg regions. It is crucial to scrutinize the postimaging data extraction methods considering that annual changes are minimal (around +1.5%). Given the varied FF distribution, the existence of a length-dependent gradient, and the differential fatty involution across muscles, 3D volume analysis appeared more suitable than single slice analysis.
Collapse
Affiliation(s)
- Etienne Fortanier
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Marc Adrien Hostin
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Constance Michel
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Emilien Delmont
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Marc-Emmanuel Bellemare
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Maxime Guye
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - David Bendahan
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Shahram Attarian
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| |
Collapse
|
13
|
Lilleker JB, Naddaf E, Saris CGJ, Schmidt J, de Visser M, Weihl CC. 272nd ENMC international workshop: 10 Years of progress - revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16-18 June 2023, Hoofddorp, The Netherlands. Neuromuscul Disord 2024; 37:36-51. [PMID: 38522330 DOI: 10.1016/j.nmd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Since the publication of the 2013 European Neuromuscular Center (ENMC) diagnostic criteria for Inclusion Body Myositis (IBM), several advances have been made regarding IBM epidemiology, pathogenesis, diagnostic tools, and clinical trial readiness. Novel diagnostic tools include muscle imaging techniques such as MRI and ultrasound, and serological testing for cytosolic 5'-nucleotidase-1A antibodies. The 272nd ENMC workshop aimed to develop new diagnostic criteria, discuss clinical outcome measures and clinical trial readiness. The workshop started with patient representatives highlighting several understudied symptoms and the urge for a timely diagnosis. This was followed by presentations from IBM experts highlighting the new developments in the field. This report is composed of two parts, the first part providing new diagnostic criteria on which consensus was achieved. The second part focuses on the use of outcome measures in clinical practice and clinical trials, highlighting current limitations and outlining the goals for future studies.
Collapse
Affiliation(s)
- James B Lilleker
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK; Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christiaan G J Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jens Schmidt
- Department of Neurology and Pain Treatment, Neuromuscular Center and Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School MHB, Rüdersdorf bei Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Marianne de Visser
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Schlaffke L, Rehmann R, Froeling M, Güttsches AK, Vorgerd M, Enax-Krumova E, Forsting J. Quantitative muscle MRI in sporadic inclusion body myositis (sIBM): A prospective cohort study. J Neuromuscul Dis 2024; 11:997-1009. [PMID: 39031378 PMCID: PMC11380292 DOI: 10.3233/jnd-240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Sporadic inclusion body myositis (sIBM) is the predominant idiopathic inflammatory myopathy (IIM) in older people. Limitations of classical clinical assessments have been discussed as possible explanations for failed clinical trials, underlining the need for more sensitive outcome measures. Quantitative muscle MRI (qMRI) is a promising candidate for evaluating and monitoring sIBM. Objective Longitudinal assessment of qMRI in sIBM patients. Methods We evaluated fifteen lower extremity muscles of 12 sIBM patients (5 females, mean age 69.6, BMI 27.8) and 12 healthy age- and gender-matched controls. Seven patients and matched controls underwent a follow-up evaluation after one year. Clinical assessment included testing for muscle strength with Quick Motor Function Measure (QMFM), IBM functional rating scale (IBM-FRS), and gait analysis (6-minute walking distance). 3T-MRI scans of the lower extremities were performed, including a Dixon-based sequence, T2 mapping and Diffusion Tensor Imaging. The qMRI-values fat-fraction (FF), water T2 relaxation time (wT2), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ1), and radial diffusivity (RD) were analysed. Results Compared to healthy controls, significant differences for all qMRI parameters averaged over all muscles were found in sIBM using a MANOVA (p < 0.001). In low-fat muscles (FF < 10%), a significant increase of wT2 and FA with an accompanying decrease of MD, λ1, and RD was observed (p≤0.020). The highest correlation with clinical assessments was found for wT2 values in thigh muscles (r≤-0.634). Significant changes of FF (+3.0%), wT2 (+0.6 ms), MD (-0.04 10-3mm2/s), λ1 (-0.05 10-3mm2/s), and RD (-0.03 10-3mm2/s) were observed in the longitudinal evaluation of sIBM patients (p≤0.001). FA showed no significant change (p = 0.242). Conclusion qMRI metrics correlate with clinical findings and can reflect different ongoing pathophysiological mechanisms. While wT2 is an emerging marker of disease activity, the role of diffusion metrics, possibly reflecting changes in fibre size and intracellular deposits, remains subject to further investigations.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Skolka MP, Naddaf E. Exploring challenges in the management and treatment of inclusion body myositis. Curr Opin Rheumatol 2023; 35:404-413. [PMID: 37503813 PMCID: PMC10552844 DOI: 10.1097/bor.0000000000000958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of the management and treatment landscape of inclusion body myositis (IBM), while highlighting the current challenges and future directions. RECENT FINDINGS IBM is a slowly progressive myopathy that predominantly affects patients over the age of 40, leading to increased morbidity and mortality. Unfortunately, a definitive cure for IBM remains elusive. Various clinical trials targeting inflammatory and some of the noninflammatory pathways have failed. The search for effective disease-modifying treatments faces numerous hurdles including variability in presentation, diagnostic challenges, poor understanding of pathogenesis, scarcity of disease models, a lack of validated outcome measures, and challenges related to clinical trial design. Close monitoring of swallowing and respiratory function, adapting an exercise routine, and addressing mobility issues are the mainstay of management at this time. SUMMARY Addressing the obstacles encountered by patients with IBM and the medical community presents a multitude of challenges. Effectively surmounting these hurdles requires embracing cutting-edge research strategies aimed at enhancing the management and treatment of IBM, while elevating the quality of life for those affected.
Collapse
|
16
|
de Visser M, De Bleecker J. The search for treatments for inclusion body myositis. Lancet Neurol 2023; 22:873-874. [PMID: 37739563 DOI: 10.1016/s1474-4422(23)00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Marianne de Visser
- Department of Neurology, Amsterdam University Medical Centre, Location University of Amsterdam, Amsterdam 1105 AZ, Netherlands.
| | - Jan De Bleecker
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
17
|
Zubair AS, Salam S, Dimachkie MM, Machado PM, Roy B. Imaging biomarkers in the idiopathic inflammatory myopathies. Front Neurol 2023; 14:1146015. [PMID: 37181575 PMCID: PMC10166883 DOI: 10.3389/fneur.2023.1146015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of acquired muscle diseases with muscle inflammation, weakness, and other extra-muscular manifestations. IIMs can significantly impact the quality of life, and management of IIMs often requires a multi-disciplinary approach. Imaging biomarkers have become an integral part of the management of IIMs. Magnetic resonance imaging (MRI), muscle ultrasound, electrical impedance myography (EIM), and positron emission tomography (PET) are the most widely used imaging technologies in IIMs. They can help make the diagnosis and assess the burden of muscle damage and treatment response. MRI is the most widely used imaging biomarker of IIMs and can assess a large volume of muscle tissue but is limited by availability and cost. Muscle ultrasound and EIM are easy to administer and can even be performed in the clinical setting, but they need further validation. These technologies may complement muscle strength testing and laboratory studies and provide an objective assessment of muscle health in IIMs. Furthermore, this is a rapidly progressing field, and new advances are going to equip care providers with a better objective assessment of IIMS and eventually improve patient management. This review discusses the current state and future direction of imaging biomarkers in IIMs.
Collapse
Affiliation(s)
- Adeel S. Zubair
- Division of Neuromuscular Diseases, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Sharfaraz Salam
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mazen M. Dimachkie
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Pedro M. Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Bhaskar Roy
- Division of Neuromuscular Diseases, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To discuss recent developments in our understanding of epidemiology, diagnostics, biomarkers, pathology, pathogenesis, outcome measures, and therapeutics in inclusion body myositis (IBM). RECENT FINDINGS Recent epidemiology data confirms a relatively higher prevalence in the population aged above 50 years and the reduced life expectancy. Association with cancer and other systemic disorders is better defined. The role of magnetic resonance imaging (MRI) and ultrasound in diagnosis as well as in following disease progression has been elucidated. There are new blood and imaging biomarkers that show tremendous promise for diagnosis and as outcome measures in therapeutic trials. Improved understanding of the pathogenesis of the disease will lead to better therapeutic interventions, but also highlights the importance to have sensitive and responsive outcome measures that accurately quantitate change. SUMMARY There are exciting new developments in our understanding of IBM which should lead to improved management and therapeutic options.
Collapse
Affiliation(s)
- Mari Perez-Rosendahl
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine
| | - Tahseen Mozaffar
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine
- Department of Neurology, School of Medicine, University of California, Irvine
- Institute for Immunology, School of Medicine, University of California, Irvine
| |
Collapse
|
19
|
Greenberg SA, Dmitrienko A, Hayes M. Quantitative MRI Biomarkers as Potential Inclusion Body Myositis Clinical Trial Endpoints. Neurology 2022; 99:361-362. [DOI: 10.1212/wnl.0000000000200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
|