1
|
Zimmer JA, Ardayfio P, Wang H, Khanna R, Evans CD, Lu M, Sparks J, Andersen S, Lauzon S, Nery ESM, Battioui C, Engle SE, Biffi A, Svaldi D, Salloway S, Greenberg SM, Sperling RA, Mintun M, Brooks DA, Sims JR. Amyloid-Related Imaging Abnormalities With Donanemab in Early Symptomatic Alzheimer Disease: Secondary Analysis of the TRAILBLAZER-ALZ and ALZ 2 Randomized Clinical Trials. JAMA Neurol 2025; 82:461-469. [PMID: 40063015 PMCID: PMC11894547 DOI: 10.1001/jamaneurol.2025.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025]
Abstract
Importance Amyloid-related imaging abnormalities (ARIA) are the major adverse event associated with amyloid-targeting immunotherapy. Identifying clinical features and individual risk factors for ARIA could facilitate effective prediction and prevention strategies. Objective To characterize ARIA in participants treated with donanemab. Design, Setting, and Participants These prespecified and post hoc exploratory analyses use data from the placebo-controlled portions of the TRAILBLAZER-ALZ and ALZ 2 randomized clinical trials, conducted from December 2017 to December 2020 and from June 2020 to April 2023, respectively. Additional analyses are included from a stand-alone open-label addendum conducted from August 2021 through August 2023. Participants in the placebo-controlled trials and the open-label addendum aged 60 to 85 years with early symptomatic Alzheimer disease and elevated amyloid levels were included. The placebo-controlled trials, but not the addendum, had tau inclusion criteria. Interventions Placebo-controlled trial participants were randomized 1:1 to receive placebo or donanemab, and all open-label participants received donanemab. Donanemab was administered every 4 weeks for up to 72 weeks. Main Outcomes and Measures The primary outcomes were the frequency, radiographic severity, seriousness, symptoms, timing relative to donanemab treatment, and risk factors for ARIA. Results Across 3030 total participants (placebo-controlled trials: 999 placebo participants, 984 donanemab participants; open-label addendum: 1047 donanemab participants), mean (SD) age was approximately 73.7 (6.0) years and 1684 participants (55.6%) were female. Frequencies of ARIA-edema/effusions (ARIA-E) and ARIA-microhemorrhages and hemosiderin deposition (ARIA-H) were higher with donanemab (24.4% and 31.3% in placebo-controlled trials, respectively; 19.8% and 27.2% in open-label addendum, respectively) than with placebo (1.9% and 13.0%, respectively). ARIA-E was mostly mild or moderate in severity. Serious ARIA-E was reported in 1.5% and symptomatic ARIA-E in 5.8% of donanemab-treated participants in the placebo-controlled trials. Symptoms most frequently reported with ARIA-E were headache and confusional state. In 58.3% of donanemab-treated participants with ARIA-E, the first event occurred by the third infusion (approximately month 3). Risk analysis demonstrated independent associations between ARIA-E and 6 baseline variables, including increased risk with APOE ε4 allele number, greater number of microhemorrhages, presence of cortical superficial siderosis, higher amyloid plaque, and elevated mean arterial pressure, and decreased risk with antihypertensive use. Conclusions and Relevance ARIA is an adverse event associated with donanemab treatment that requires safety monitoring. Individual ARIA risk can be assessed by APOE ε4 status and baseline imaging findings. Trial Registrations ClinicalTrials.gov Identifiers: NCT03367403 and NCT04437511.
Collapse
Affiliation(s)
| | | | - Hong Wang
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Ming Lu
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | - Stephen Salloway
- Butler Hospital, Providence, Rhode Island
- Department of Neurology and Department of Psychiatry, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Reisa A. Sperling
- Massachusetts General Hospital, Boston, Massachusetts
- Center for Alzheimer Research and Treatment, Boston, Massachusetts
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mark Mintun
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | |
Collapse
|
2
|
Seifert RM, Klingebiel R, Schäbitz WR. Diagnosis, pathomechanisms and therapy of cerebral amyloid angiopathy-related inflammation (CAA-ri). Neurol Res Pract 2025; 7:26. [PMID: 40281535 PMCID: PMC12032642 DOI: 10.1186/s42466-025-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Research of the past years has refined our perception of cerebral amyloid angiopathy-related inflammation (CAA-ri) as a subacute autoimmune encephalopathy, which is presumably caused by elevated CSF concentrations of anti-amyloid β (Aβ) autoantibodies. A broad understanding of the pathophysiological mechanisms and diagnostic criteria of CAA-ri may lay the foundation for improved immunosuppressive treatment of the disease. MAIN TEXT Spontaneous CAA-ri mainly occurs in elderly patients but might also be evoked iatrogenically by modern treatment with amyloid-modifying therapies in Alzheimer's disease (AD). On a histopathological level, CAA-ri is characterized by microglial activation and the formation of vasogenic edemas. Clinically, the disease frequently presents with progressive cognitive decline, focal neurological deficits, headache and epileptic seizures. While brain biopsy has formerly represented the gold standard in the diagnosis of CAA-ri, its importance has been increasingly replaced by clinical as well as radiological diagnostic criteria and the relevance of anti-Aβ autoantibodies in the CSF of affected patients. Though relevant progress has been achieved in immunosuppressive treatment of CAA-ri, the protocols lack standardization as well as decision criteria for the choice of the respective immunosuppressive agent. CONCLUSIONS CAA-ri gains increasing interest as a spontaneous human model of iatrogenic edematous amyloid-related imaging abnormalities (ARIA-E) in the context of amyloid-modifying therapies. In near future, screening of AD patients for the presence of CAA-ri using CSF anti-Aβ autoantibodies might play a decisive role in the risk stratification as well as dosage finding of amyloid-modifying therapies, as they show high specificity for CAA-ri. The clinical and radiological diagnostic criteria by Auriel et al. allow diagnosis of probable resp. possible CAA-ri with high accuracy. Though only tested in small, specialized patient cohorts to date, additional imaging modalities (11C-PK11195 PET) might play a future role in the clinical monitoring of CAA-ri. Therapy of CAA-ri frequently encompasses initial steroid treatment, whereby different schemes, dosages as well as substances are used. Choice of immunosuppressive agents with higher potency still requires objective decision criteria, which should be established in future studies involving larger CAA-ri patient cohorts.
Collapse
Affiliation(s)
- Rebecca M Seifert
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany.
| | - Randolf Klingebiel
- Institut für diagnostische und interventionelle Neuroradiologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Wolf-Rüdiger Schäbitz
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| |
Collapse
|
3
|
Greenberg SM, Bax F, van Veluw SJ. Amyloid-related imaging abnormalities: manifestations, metrics and mechanisms. Nat Rev Neurol 2025; 21:193-203. [PMID: 39794509 DOI: 10.1038/s41582-024-01053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
Three monoclonal antibodies directed against specific forms of the amyloid-β (Aβ) peptide have been granted accelerated or traditional approval by the FDA as treatments for Alzheimer disease, representing the first step towards bringing disease-modifying treatments for this disease into clinical practice. Here, we review the detection, underlying pathophysiological mechanisms and clinical implications of amyloid-related imaging abnormalities (ARIA), the most impactful adverse effect of anti-Aβ immunotherapy. ARIA appears as regions of oedema or effusions (ARIA-E) in brain parenchyma or sulci or as haemorrhagic lesions (ARIA-H) in the form of cerebral microbleeds, convexity subarachnoid haemorrhage, cortical superficial siderosis or intracerebral haemorrhage. Analysis of the radiographic appearance of ARIA, its clinical risk factors and underlying neuropathology, and results from animal models point to a central role for cerebral amyloid angiopathy - a condition characterized by cerebrovascular Aβ deposits - as a key component, either as a direct target for antibody-mediated inflammation or as recipient of Aβ mobilized from plaques in the Alzheimer brain parenchyma. The great majority of ARIA occurrences are associated with mild or no clinical symptoms. However, ~5% of all ARIA events are severe enough to result in hospitalization, permanent disability or death and thus raise challenging clinical questions regarding patient selection and use of concomitant agents. Therefore, identifying novel approaches to predicting, modelling, preventing and treating ARIA remains a key step towards allowing safe use of anti-Aβ immunotherapy for the world's rapidly ageing population.
Collapse
Affiliation(s)
- Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Francesco Bax
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical Neurology Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Zedde M, Piazza F, Pascarella R. Clinical and Neuroradiological Manifestations of Cerebral Amyloid Angiopathy: A Closer Look into the Natural History of a Frequent Disease. J Clin Med 2025; 14:1697. [PMID: 40095710 PMCID: PMC11900615 DOI: 10.3390/jcm14051697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA) is one of the most prevalent small vessel diseases (SVDs). Its neuroradiological hallmarks are both hemorrhagic and non-hemorrhagic ones. Among the clinical manifestations, transient focal neurological episodes (TFNEs) are associated with an increased risk of bleeding in a short time period and with convexal subarachnoid hemorrhage (SAH). The natural history of CAA is incompletely characterized in the literature, because the focus has been mostly on hemorrhagic events, while both clinical and non-hemorrhagic presentations are possible and sometimes underestimated. Furthermore, new diagnostic criteria have incorporated non-hemorrhagic Magnetic Resonance Imaging (MRI) markers and non-hemorrhagic clinical presentations. Disease trajectories are often individual and help provide food for thought and discussion on some issues, thus allowing for a greater and deeper evaluation. We, therefore, present a case that exemplifies how the natural history of CAA can be atypical compared to its expected course, which is long and not only hemorrhagic. Several episodes of CAA-related inflammation, with prevalent, but not exclusive, leptomeningeal involvement, were evaluated and treated in the presented case, in which the intraparenchymal cerebral hemorrhagic manifestation was the last in the patient's history. CAA may have a very long natural history. During the disease's course, inflammatory features might be prominent in neuroimaging but not strongly symptomatic, and intraparenchymal cerebral hemorrhage (ICH) may be a late event. The awareness of this subtype of the disease allows us to better explore the pathophysiology of CAA and to increase the level of clinical suspicion for the diagnosis. Furthermore, the distinction between different disease phenotypes can provide useful information for patient management in clinical practice.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
5
|
Su Y, Dong Y, Cheng X. Recurrent intracerebral haemorrhages as main manifestations in cerebral amyloid angiopathy-related inflammation. Stroke Vasc Neurol 2024; 9:738-740. [PMID: 38553035 PMCID: PMC11791626 DOI: 10.1136/svn-2024-003100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 01/02/2025] Open
Abstract
Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a relatively rare and treatable subtype of CAA. We have herein reported a case of CAA-ri with repeated recurrent lobar haemorrhages within a short time as the main manifestations and effectively treated with immunosuppressive therapy. Our case expanded the clinical spectrum of CAA-ri and indicated that leptomeningeal inflammation might be a trigger and bleeding source for recurrent haemorrhage in CAA.
Collapse
Affiliation(s)
- Ya Su
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital Fudan University, Shanghai, China
| | - Yi Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
6
|
van den Brink H, Voigt S, Kozberg M, van Etten ES. The role of neuroinflammation in cerebral amyloid angiopathy. EBioMedicine 2024; 110:105466. [PMID: 39608058 DOI: 10.1016/j.ebiom.2024.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease characterized by vascular amyloid-β (Aβ) deposition. CAA is often seen in the brains of elderly individuals and in a majority of patients with Alzheimer's disease. The molecular pathways triggered by vascular Aβ, causing vessel wall breakdown and ultimately leading to intracerebral haemorrhage and cognitive decline, remain poorly understood. The occurrence of CAA-related inflammation (CAA-ri) and Amyloid-Related Imaging Abnormalities (ARIA) have sparked interest for a role of neuroinflammation in CAA pathogenesis. This review discusses prior studies of neuroinflammation in CAA and outlines potential future research directions targeting candidates such as matrix metalloproteinases, complement activation, microglial activation, reactive astrocytes and parenchymal border macrophages. Understanding the role of neuroinflammation in CAA pathogenesis could help identify new therapeutic strategies.
Collapse
Affiliation(s)
- Hilde van den Brink
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariel Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
7
|
van den Berg E, Roelofs R, Jäkel L, Greenberg SM, Charidimou A, van Etten ES, Boche D, Klijn CJM, Schreuder FHBM, Kuiperij HB, Verbeek MM. No replicating evidence for anti-amyloid-β autoantibodies in cerebral amyloid angiopathy-related inflammation. Ann Clin Transl Neurol 2024; 11:2563-2571. [PMID: 39268830 PMCID: PMC11514902 DOI: 10.1002/acn3.52169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE Elevated levels of anti-amyloid-β (anti-Aβ) autoantibodies in cerebrospinal fluid (CSF) have been proposed as a diagnostic biomarker for cerebral amyloid angiopathy-related inflammation (CAA-RI). We aimed to independently validate the immunoassay for quantifying these antibodies and evaluate its diagnostic value for CAA-RI. METHODS We replicated the immunoassay to detect CSF anti-Aβ autoantibodies using CSF from CAA-RI patients and non-CAA controls with unrelated disorders and further characterized its performance. Moreover, we conducted a literature review of CAA-RI case reports to investigate neuropathological and CSF evidence of the nature of the inflammatory reaction in CAA-RI. RESULTS The assay demonstrated a high background signal in CSF, which increased and corresponded with higher total immunoglobulin G (IgG) concentration in CSF (rsp = 0.51, p = 0.02). Assay levels were not elevated in CAA-RI patients (n = 6) compared to non-CAA controls (n = 20; p = 0.64). Literature review indicated only occasional presence of B-lymphocytes and plasma cells (i.e., antibody-producing cells), alongside the abundant presence of activated microglial cells, T-cells, and other monocyte lineage cells. CSF analysis did not convincingly indicate intrathecal IgG production. INTERPRETATION We were unable to reproduce the reported elevation of anti-Aβ autoantibody concentration in CSF of CAA-RI patients. Our findings instead support nonspecific detection of IgG levels in CSF by the assay. Reviewed CAA-RI case reports suggested a widespread cerebral inflammatory reaction. In conclusion, our findings do not support anti-Aβ autoantibodies as a diagnostic biomarker for CAA-RI.
Collapse
Affiliation(s)
- Emma van den Berg
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenthe Netherlands
| | - Rian Roelofs
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Andreas Charidimou
- Department of Neurology, Boston University Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Ellis S. van Etten
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Catharina J. M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenthe Netherlands
| | - Floris H. B. M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenthe Netherlands
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenthe Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenthe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
8
|
Tang M, Kim J, Lau KK, Chan KH. Severe cerebral amyloid angiopathy related inflammation (CAA-ri) associated with vaccination: Case report and literature review. J Neuroimmunol 2024; 394:578406. [PMID: 39094435 DOI: 10.1016/j.jneuroim.2024.578406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a rapid but reversible autoimmune encephalopathy where spontaneous autoantibody reaction against amyloid beta deposited in cerebral blood vessels produces characteristic neuroinflammatory changes such as vasogenic edema and microhemorrhages on MRI. The term amyloid-related imaging abnormalities (ARIA) is sometimes used to describe these changes but are more often reserved for similar MRI signal abnormalities seen after administration of anti-amyloid immunotherapy, using treatment exposure as an antecedent. It is unclear if there is any biological basis for this dichotomized distinction. We report a case of severe CAA-ri after exposure to SARS-CoV-2 vaccine and performed a literature review of CAA-ri related to vaccination. CAA-ri precipitated by immunogenic triggers other than anti-amyloid therapy would lend support to the hypothesis that ARIA seen on MRI may represent the same disease underpinned by a shared anti-Aβ autoantibody response irrespective of etiology. A thorough history should be taken before labelling CAA-ri as spontaneous.
Collapse
Affiliation(s)
- Michael Tang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region; Division of Rehabilitation, Department of Medicine, Tung Wah Hospital, Hong Kong Special Administrative Region.
| | - Jane Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States of America
| | - Kui Kai Lau
- Division of Neurology, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Koon Ho Chan
- Division of Neurology, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region
| |
Collapse
|
9
|
Cummings JL, Osse AML, Kinney JW, Cammann D, Chen J. Alzheimer's Disease: Combination Therapies and Clinical Trials for Combination Therapy Development. CNS Drugs 2024; 38:613-624. [PMID: 38937382 PMCID: PMC11258156 DOI: 10.1007/s40263-024-01103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Alzheimer's disease (AD) is a complex multifaceted disease. Recently approved anti-amyloid monoclonal antibodies slow disease progression by approximately 30%, and combination therapy appears necessary to prevent the onset of AD or produce greater slowing of cognitive and functional decline. Combination therapies may address core features, non-specific co-pathology commonly occurring in patients with AD (e.g., inflammation), or non-AD pathologies that may co-occur with AD (e.g., α-synuclein). Combination therapies may be advanced through co-development of more than one new molecular entity or through add-on strategies including an approved agent plus a new molecular entity. Addressing add-on combination therapy is currently urgent since patients on anti-amyloid monoclonal antibodies may be included in clinical trials for experimental agents. Phase 1 information must be generated for each agent in combination drug development. Phase 2 and Phase 3 of add-on therapies may contrast the new molecular entity, the approved agent as standard of care, and the combination. More complex development programs including standard or modified combinatorial designs are required for co-development of two or more new molecular entities. Biomarkers are markedly affected by anti-amyloid monoclonal antibodies, and these effects must be anticipated in add-on trials. Examining target engagement biomarkers and comparing the magnitude and sequence of biomarker changes in those receiving more than one therapy, compared with those on monotherapy, may be informative. Using network-based medicine approaches, computational strategies may identify rational combinations using disease and drug effect network mapping.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV, Las Vegas, NV, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
- , 1380 Opal Valley Street, Henderson, NV, 89052, USA.
| | - Amanda M Leisgang Osse
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV, Las Vegas, NV, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jefferson W Kinney
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV, Las Vegas, NV, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Davis Cammann
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
10
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Pavone C, Bonacini L, Cecco GD, D’Aniello S, Pezzella FR, Merlino G, Piazza F, Pezzini A, Morotti A, Fainardi E, Toni D, Valzania F, Pascarella R. Spontaneous Non-Aneurysmal Convexity Subarachnoid Hemorrhage: A Scoping Review of Different Etiologies beyond Cerebral Amyloid Angiopathy. J Clin Med 2024; 13:4382. [PMID: 39124649 PMCID: PMC11313189 DOI: 10.3390/jcm13154382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Spontaneous convexity subarachnoid hemorrhage (cSAH) is a vascular disease different from aneurysmal SAH in neuroimaging pattern, causes, and prognosis. Several causes might be considered in individual patients, with a limited value of the patient's age for discriminating among these causes. Cerebral amyloid angiopathy (CAA) is the most prevalent cause in people > 60 years, but reversible cerebral vasoconstriction syndrome (RCVS) has to be considered in young people. CAA gained attention in the last years, but the most known manifestation of cSAH in this context is constituted by transient focal neurological episodes (TFNEs). CAA might have an inflammatory side (CAA-related inflammation), whose diagnosis is relevant due to the efficacy of immunosuppression in resolving essudation. Other causes are hemodynamic stenosis or occlusion in extracranial and intracranial arteries, infective endocarditis (with or without intracranial infectious aneurysms), primary central nervous system angiitis, cerebral venous thrombosis, and rarer diseases. The diagnostic work-up is fundamental for an etiological diagnosis and includes neuroimaging techniques, nuclear medicine techniques, and lumbar puncture. The correct diagnosis is the first step for choosing the most effective and appropriate treatment.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Pavone
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Lara Bonacini
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Serena D’Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | | | - Giovanni Merlino
- Stroke Unit and Clinical Neurology Udine University Hospital, 33100 Udine, Italy;
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
| | - Alessandro Pezzini
- Department of Medicine and Surgery, University of Parma, Stroke Care Program, Department of Emergency, Parma University Hospital, 43126 Parma, Italy;
| | - Andrea Morotti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy;
| | - Danilo Toni
- Department of Human neurosciences, University of Rome La Sapienza, 00185 Rome, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| |
Collapse
|
11
|
Abushakra S, Porsteinsson AP, Sabbagh M, Watson D, Power A, Liang E, MacSweeney E, Boada M, Flint S, McLaine R, Kesslak JP, Hey JA, Tolar M. APOLLOE4 Phase 3 study of oral ALZ-801/valiltramiprosate in APOE ε4/ε4 homozygotes with early Alzheimer's disease: Trial design and baseline characteristics. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12498. [PMID: 39144121 PMCID: PMC11322500 DOI: 10.1002/trc2.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION The approved amyloid antibodies for early Alzheimer's disease (AD) carry a boxed warning about the risk of amyloid-related imaging abnormalities (ARIAs) that are highest in apolipoprotein E (APOE) ε4/ε4 homozygotes. ALZ-801/valiltramiprosate, an oral brain-penetrant amyloid beta oligomer inhibitor is being evaluated in APOE ε4/ε4 homozygotes with early AD. METHODS This Phase 3 randomized, double-blind, placebo-controlled, 78-week study of ALZ-801 administered as 265 mg twice per day tablets, enrolled 50- to 80-year-old homozygotes with Mini-Mental State Examination (MMSE) ≥ 22 and Clinical Dementia Rating-Global Score 0.5 or 1.0. The study is powered to detect a 2.0 to 2.5 drug-placebo difference on the Alzheimer's Disease Assessment Scale 13-item Cognitive subscale primary outcome with 150 subjects/arm. The key secondary outcomes are Clinical Dementia Rating-Sum of Boxes and Instrumental Activities of Daily Living; volumetric magnetic resonance imaging and fluid biomarkers are additional outcomes. RESULTS The APOLLOE4 Phase 3 trial enrolled 325 subjects with a mean age of 69 years, 51% female, MMSE 25.6, and 65% mild cognitive impairment. Topline results are expected in 2024. DISCUSSION APOLLOE4 is the first disease-modification AD trial focused on APOE ε4/ε4 homozygotes. Oral ALZ-801 has the potential to be the first effective and safe anti-amyloid treatment for the high-risk APOE ε4/ε4 population. Highlights The APOLLOE4 Phase 3, placebo-controlled, 78-week study is designed to evaluate the efficacy and safety of ALZ-801 265 mg twice per day in early Alzheimer's disease (AD) subjects with the apolipoprotein E (APOE) ε4/ε4 genotype.The enrolled early AD population (N = 325) has 51% females, a mean age = 69 years, and a mean Mini-Mental State Examination = 25.6, with the majority being mild cognitive impairment subjects, a similar disease stage to the lecanemab Phase 3 AD trial (Clarity AD).The primary outcome is the cognitive Alzheimer's Disease Assessment Scale 13-item Cognitive subscale, with two functional measures as key secondary outcomes (Clinical Dementia Rating-Sum of Boxes, Amsterdam-Instrumental Activities of Daily Living), and with hippocampal volume and fluid biomarkers as additional outcomes.The study is unique in allowing a large number of microhemorrhages or siderosis at baseline magnetic resonance imaging, lesions that indicate concomitant cerebral amyloid angiopathy (CAA).At baseline, 32% of the enrolled population had at least 1 microhemorrhage, 24% had 1 to 4, and 8% had > 4 microhemorrhages; 10% had at least 1 siderosis lesion; with more males than females having microhemorrhages (63% vs. 37%) and siderosis (68% vs. 32%).Study results will become available in the second half of 2024 and, if positive, ALZ-801 may become the first oral drug to demonstrate a favorable benefit/risk profile in APOE ε4/ε4 AD subjects.
Collapse
Affiliation(s)
| | - Anton P. Porsteinsson
- Alzheimer's Disease Care, Research & Education Program, Department of PsychiatryUniversity of RochesterRochesterNew YorkUSA
| | - Marwan Sabbagh
- Barrow Neurological Institute and St. Joseph's HospitalPhoenixArizonaUSA
| | - David Watson
- Alzheimer's Research and Treatment CenterWellingtonFloridaUSA
| | | | | | | | - Merce Boada
- Ace Alzheimer CenterBarcelona, International University of Catalunya, Barcelona, Spain and Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| | | | | | | | | | | |
Collapse
|
12
|
Galvin JE, Cummings JL, Benea ML, de Moor C, Allegri RF, Atri A, Chertkow H, Paquet C, Porter VR, Ritchie CW, Sikkes SAM, Smith MR, Grassi CM, Rubino I. Generating real-world evidence in Alzheimer's disease: Considerations for establishing a core dataset. Alzheimers Dement 2024; 20:4331-4341. [PMID: 38706421 PMCID: PMC11180865 DOI: 10.1002/alz.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Ongoing assessment of patients with Alzheimer's disease (AD) in postapproval studies is important for mapping disease progression and evaluating real-world treatment effectiveness and safety. However, interpreting outcomes in the real world is challenging owing to variation in data collected across centers and specialties and greater heterogeneity of patients compared with trial participants. Here, we share considerations for observational postapproval studies designed to collect harmonized longitudinal data from individuals with mild cognitive impairment or mild dementia stage of disease who receive therapies targeting the underlying pathological processes of AD in routine practice. This paper considers key study design parameters, including proposed aims and objectives, study populations, approaches to data collection, and measures of cognition, functional abilities, neuropsychiatric status, quality of life, health economics, safety, and drug utilization. Postapproval studies that capture these considerations will be important to provide standardized data on AD treatment effectiveness and safety in real-world settings.
Collapse
Affiliation(s)
- James E. Galvin
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of MedicineBoca RatonFloridaUSA
| | - Jeffrey L. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | | | - Ricardo F. Allegri
- Instituto de Investigaciones Neurológicas FleniBuenos AiresArgentina
- Departamento de NeurocienciasUniversidad De La Costa (CUC), BarranquillaAtlánticoColombia
| | - Alireza Atri
- Banner Sun Health Research InstituteSun CityArizonaUSA
- Center for Brain/Mind Medicine, Department of NeurologyBrigham and Women's Hospital – Main CampusBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Howard Chertkow
- Rotman Research Institute, Baycrest Health SciencesTorontoOntarioCanada
| | - Claire Paquet
- Université de Paris GHU AP‐HP Nord Lariboisière HospitalParisFrance
| | - Verna R. Porter
- Pacific Brain Health Center, Pacific Neuroscience InstituteSanta MonicaCaliforniaUSA
- Saint John's Cancer InstituteSanta MonicaCaliforniaUSA
| | | | - Sietske A. M. Sikkes
- Alzheimer Center AmsterdamAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Clinical, Neuro‐ and Developmental PsychologyVrije Universiteit (VU) AmsterdamAmsterdamThe Netherlands
| | | | | | | |
Collapse
|
13
|
Söderberg L, Johannesson M, Gkanatsiou E, Nygren P, Fritz N, Zachrisson O, Rachalski A, Svensson AS, Button E, Dentoni G, Osswald G, Lannfelt L, Möller C. Amyloid-beta antibody binding to cerebral amyloid angiopathy fibrils and risk for amyloid-related imaging abnormalities. Sci Rep 2024; 14:10868. [PMID: 38740836 PMCID: PMC11091209 DOI: 10.1038/s41598-024-61691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Therapeutic antibodies have been developed to target amyloid-beta (Aβ), and some of these slow the progression of Alzheimer's disease (AD). However, they can also cause adverse events known as amyloid-related imaging abnormalities with edema (ARIA-E). We investigated therapeutic Aβ antibody binding to cerebral amyloid angiopathy (CAA) fibrils isolated from human leptomeningeal tissue to study whether this related to the ARIA-E frequencies previously reported by clinical trials. The binding of Aβ antibodies to CAA Aβ fibrils was evaluated in vitro using immunoprecipitation, surface plasmon resonance, and direct binding assay. Marked differences in Aβ antibody binding to CAA fibrils were observed. Solanezumab and crenezumab showed negligible CAA fibril binding and these antibodies have no reported ARIA-E cases. Lecanemab showed a low binding to CAA fibrils, consistent with its relatively low ARIA-E frequency of 12.6%, while aducanumab, bapineuzumab, and gantenerumab all showed higher binding to CAA fibrils and substantially higher ARIA-E frequencies (25-35%). An ARIA-E frequency of 24% was reported for donanemab, and its binding to CAA fibrils correlated with the amount of pyroglutamate-modified Aβ present. The findings of this study support the proposal that Aβ antibody-CAA interactions may relate to the ARIA-E frequency observed in patients treated with Aβ-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Patrik Nygren
- BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
| | - Nicolas Fritz
- BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
| | | | | | | | - Emily Button
- BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
| | | | | | - Lars Lannfelt
- BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
- Department of Public Health/Geriatrics, Uppsala University, 751 85, Uppsala, Sweden
| | | |
Collapse
|
14
|
Foley KE, Wilcock DM. Three major effects of APOE ε4 on Aβ immunotherapy induced ARIA. Front Aging Neurosci 2024; 16:1412006. [PMID: 38756535 PMCID: PMC11096466 DOI: 10.3389/fnagi.2024.1412006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The targeting of amyloid-beta (Aβ) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aβ immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
15
|
Lee D, Antonsdottir IM, Clark ED, Porsteinsson AP. Review of valiltramiprosate (ALZ-801) for the treatment of Alzheimer's disease: a novel small molecule with disease modifying potential. Expert Opin Pharmacother 2024; 25:791-799. [PMID: 38814590 DOI: 10.1080/14656566.2024.2360069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive deterioration, functional impairments, and neuropsychiatric symptoms. Valiltramiprosate is a tramiprosate prodrug being investigated as a novel treatment for AD. AREAS COVERED The online databases PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched using the terms 'ALZ-801' or 'valiltramiprosate.' Alzheon press releases were reviewed for emerging clinical information. Valiltramiprosate is an oral, well-tolerated synthetic valine-conjugate prodrug of tramiprosate. Valiltramiprosate's active metabolite include tramiprosate and 3-sulfopropanoic acid. Proposed mechanism of action is multiligand binding to Aβ42 which stabilizes amyloid monomers to prevent peptide aggregation and oligomerization. Pharmacokinetic studies show 52% oral bioavailability, rapid absorption, approximately 40% brain-drug exposure, and near complete renal clearance. Compared to tramiprosate, valiltramiprosate extends plasma tramiprosate half-life and improves interindividual pharmacokinetic variability. Interim analyses from valiltramiprosate's phase II biomarker trial show: (1) significant reductions in plasma p-tau181 and related AD fluid biomarkers; (2) brain structure preservation and reduced hippocampal atrophy by MRI; and (3) improvements on cognitive assessments at multiple timepoints. Its phase III clinical trial in ApoE ε4 homozygotes is near completion. EXPERT OPINION Valiltramiprosate's clinical trial data show early indications of efficacy with potential disease modifying effect in AD.
Collapse
Affiliation(s)
- Daniel Lee
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Inga M Antonsdottir
- Johns Hopkins School of Nursing, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Emily D Clark
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Anton P Porsteinsson
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Bilodeau PA, Dickson JR, Kozberg MG. The Impact of Anti-Amyloid Immunotherapies on Stroke Care. J Clin Med 2024; 13:1245. [PMID: 38592119 PMCID: PMC10931618 DOI: 10.3390/jcm13051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Anti-amyloid immunotherapies have recently emerged as treatments for Alzheimer's disease. While these therapies have demonstrated efficacy in clearing amyloid-β and slowing cognitive decline, they have also been associated with amyloid-related imaging abnormalities (ARIA) which include both edema (ARIA-E) and hemorrhage (ARIA-H). Given that ARIA have been associated with significant morbidity in cases of antithrombotic or thrombolytic therapy, an understanding of mechanisms of and risk factors for ARIA is of critical importance for stroke care. We discuss the latest data regarding mechanisms of ARIA, including the role of underlying cerebral amyloid angiopathy, and implications for ischemic stroke prevention and management.
Collapse
Affiliation(s)
- Philippe A. Bilodeau
- Division of Neuroimmunology and Neuroinfectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John R. Dickson
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Boston, MA 02129, USA;
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
17
|
Kelly L, Brown C, Michalik D, Hawkes CA, Aldea R, Agarwal N, Salib R, Alzetani A, Ethell DW, Counts SE, de Leon M, Fossati S, Koronyo‐Hamaoui M, Piazza F, Rich SA, Wolters FJ, Snyder H, Ismail O, Elahi F, Proulx ST, Verma A, Wunderlich H, Haack M, Dodart JC, Mazer N, Carare RO. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy. Alzheimers Dement 2024; 20:1421-1435. [PMID: 37897797 PMCID: PMC10917045 DOI: 10.1002/alz.13512] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.
Collapse
Affiliation(s)
- Louise Kelly
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Daniel Michalik
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Roxana Aldea
- Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Nivedita Agarwal
- Neuroradiology sectionScientific Institute IRCCS Eugenio MedeaBosisio Parini, LCItaly
| | - Rami Salib
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Aiman Alzetani
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Scott E. Counts
- Dept. Translational NeuroscienceDept. Family MedicineMichigan State UniversityGrand RapidsMichiganUSA
| | - Mony de Leon
- Brain Health Imaging InstituteDepartment of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | - Maya Koronyo‐Hamaoui
- Departments of NeurosurgeryNeurology, and Biomedical SciencesMaxine Dunitz Neurosurgical Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | - Heather Snyder
- Alzheimer's AssociationMedical & Scientific RelationsChicagoIllinoisUSA
| | - Ozama Ismail
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Fanny Elahi
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Ajay Verma
- Formation Venture Engineering FoundryTopsfieldMassachusettsUSA
| | | | | | | | | | - Roxana O. Carare
- Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
18
|
Doran SJ, Sawyer RP. Risk factors in developing amyloid related imaging abnormalities (ARIA) and clinical implications. Front Neurosci 2024; 18:1326784. [PMID: 38312931 PMCID: PMC10834650 DOI: 10.3389/fnins.2024.1326784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) affects over 6 million people over the age of 65. The advent of new anti-amyloid monoclonal antibodies as treatment for early Alzheimer's disease these immunotherapeutics may slow disease progression but also pose significant risks. Amyloid related imaging abnormalities (ARIA) identified on MRI following administration of these new monoclonal antibodies can cause both brain edema (ARIA-E) and hemorrhage (ARIA-H). While most ARIA is asymptomatic, some patients can develop headache, confusion, nausea, dizziness, seizures and in rare cases death. By analyzing lecanemab, aducanumab, gantenerumab, donanemab, and bapineuzumab clinical trials; risk factors for developing ARIA can be identified to mitigate some of the ARIA risk. Risk factors for developing ARIA-E are a positive Apoε4 carrier status and prior multiple cerebral microhemorrhages. Risk factors for ARIA-H are age, antithrombotic use, and history of prior strokes. With lecanemab, ARIA-E and ARIA-H were seen at lower rates 12 and 17%, respectively, compared to aducanumab (ARIA-E 35% and ARIA-H 19%) in treated patients. ARIA risk factors have impacted inclusion and exclusion criteria, determining who can receive lecanemab. In some clinics, almost 90% of Alzheimer's patients are excluded from receiving these new anti-amyloid therapeutics. This review aims to discuss risk factors of ARIA and highlight important areas for further research. With more anti-amyloid monoclonal antibodies approved by the Food and Drug Administration, considering patient risk factors for developing ARIA is important to identify to minimize patient's risk while receiving these new therapies.
Collapse
Affiliation(s)
- Sarah J. Doran
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine|UC Health, Cincinnati, OH, United States
| | | |
Collapse
|
19
|
Franić IK, Martinez I, Blažina K. Cerebral amyloid angiopathy-related inflammation (CAA-ri): a case report. Neurol Sci 2024; 45:341-344. [PMID: 37658960 DOI: 10.1007/s10072-023-07048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Ivana Karla Franić
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Martinez
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Blažina
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Xu F, Xu J, Wang Q, Gao F, Fu J, Yan T, Dong Q, Su Y, Cheng X. Serum YKL-40 as a Predictive Biomarker of Cerebral Amyloid Angiopathy-Related Intracerebral Hemorrhage Recurrence. J Alzheimers Dis 2024; 99:503-511. [PMID: 38669531 DOI: 10.3233/jad-231125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Neuroinflammation is a major cause of secondary brain injury in intracerebral hemorrhage (ICH). To date, the prognostic value of YKL-40 (chitinase-3-like-1 protein), a biomarker of neuroinflammation, in cerebral amyloid angiopathy-related intracerebral hemorrhage (CAA-ICH) remains undiscovered. Objective To evaluate the relationships between serum YKL-40 and CAA-ICH recurrence. Methods Clinical and imaging information of 68 first-onset probable CAA-ICH cases and 95 controls were collected at baseline. Serum YKL-40 was measured by Luminex assay. Cox proportional hazards model was used to analyze the associations between YKL-40 level and CAA-ICH recurrence. Results Serum YKL-40 level was significantly higher in CAA-ICH cases than healthy controls (median [interquartile range, IQR], 46.1 [19.8, 93.4] versus 24.4 [13.9, 59.0] ng/mL, p = 0.004). Higher level of YKL-40 predicted increased risk of CAA-ICH recurrence adjusted for age, ICH volume and enlarged perivascular space score (ePVS) (above versus below 115.5 ng/ml, adjusted hazard ratios 4.721, 95% confidence intervals 1.829-12.189, p = 0.001) within a median follow-up period of 2.4 years. Adding YKL-40 to a model of only MRI imaging markers including ICH volume and ePVS score improved the discriminatory power (concordance index from 0.707 to 0.772, p = 0.001) and the reclassification power (net reclassification improvement 28.4%; integrated discrimination index 11.0%). Conclusions Serum YKL-40 level might be a candidate prognostic biomarker for CAA-ICH recurrence.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajie Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Wang
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Jiayu Fu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingmeng Yan
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Jessen F, Kramberger MG, Angioni D, Aarsland D, Balasa M, Bennys K, Boada M, Boban M, Chincarini A, Exalto L, Felbecker A, Fliessbach K, Frisoni GB, Garza-Martínez AJ, Grimmer T, Hanseeuw B, Hort J, Ivanoiu A, Klöppel S, Krajcovicova L, McGuinness B, Mecocci P, de Mendonca A, Nous A, Ousset PJ, Paquet C, Perneczky R, Peters O, Tabuas-Pereira M, Piazza F, Plantone D, Riverol M, Ruiz A, Sacco G, Santana I, Scarmeas N, Solje E, Stefanova E, Sutovsky S, van der Flier W, Welsh T, Wimo A, Winblad B, Frölich L, Engelborghs S. Progress in the Treatment of Alzheimer's Disease Is Needed - Position Statement of European Alzheimer's Disease Consortium (EADC) Investigators. J Prev Alzheimers Dis 2024; 11:1212-1218. [PMID: 39350366 PMCID: PMC11436419 DOI: 10.14283/jpad.2024.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024]
Abstract
β-amyloid-targeting antibodies represent the first generation of effective causal treatment of Alzheimer's disease (AD) and can be considered historical research milestones. Their effect sizes, side effects, implementation challenges and costs, however, have stimulated debates about their overall value. In this position statement academic clinicians of the European Alzheimer's Disease Consortium (EADC) discuss the critical relevance of introducing these new treatments in clinical care now. Given the complexity of AD it is unlikely that molecular single-target treatments will achieve substantially larger effects than those seen with current β-amyloid-targeting antibodies. Larger effects will most likely only be achieved incrementally by continuous optimization of molecular approaches, patient selection and combinations therapies. To be successful in this regard, drug development must be informed by the use of innovative treatments in real world practice, because full understanding of all facets of novel treatments requires experience and data of real-world care beyond those of clinical trials. Regarding the antibodies under discussion we consider their effects meaningful and potential side effects manageable. We assume that the number of eventually treated patient will only be a fraction of all early AD patients due to narrow eligibility criteria and barriers of access. We strongly endorse the use of these new compound in clinical practice in selected patients with treatment documentation in registries. We understand this as a critical step in advancing the field of AD treatment, and in shaping the health care systems for the new area of molecular-targeted treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Jessen
- Prof. Frank Jessen, MD, Department of Psychiatry, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany, Tel.: +49-(0)221 478-4010 e-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cozza M, Amadori L, Boccardi V. Exploring cerebral amyloid angiopathy: Insights into pathogenesis, diagnosis, and treatment. J Neurol Sci 2023; 454:120866. [PMID: 37931443 DOI: 10.1016/j.jns.2023.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA) is a neurological disorder characterized by the deposition of amyloid plaques in the walls of cerebral blood vessels. This condition poses significant challenges in terms of understanding its underlying mechanisms, accurate diagnosis, and effective treatment strategies. This article aims to shed light on the complexities of CAA by providing insights into its pathogenesis, diagnosis, and treatment options. The pathogenesis of CAA involves the accumulation of amyloid beta (Aβ) peptides in cerebral vessels, leading to vessel damage, impaired blood flow, and subsequent cognitive decline. Various genetic and environmental factors contribute to the development and progression of CAA, and understanding these factors is crucial for targeted interventions. Accurate diagnosis of CAA often requires advanced imaging techniques, such as magnetic resonance imaging (MRI) or positron emission tomography (PET) scans, to detect characteristic amyloid deposits in the brain. Early and accurate diagnosis enables appropriate management and intervention strategies. Treatment of CAA focuses on preventing further deposition of amyloid plaques, managing associated symptoms, and reducing the risk of complications such as cerebral hemorrhage. Currently, there are no disease-modifying therapies specifically approved for CAA. However, several experimental treatments targeting Aβ clearance and anti-inflammatory approaches are being investigated in clinical trials, offering hope for future therapeutic advancements.
Collapse
Affiliation(s)
| | - Lucia Amadori
- Department of Integration, Intermediate Care Programme, AUSL Bologna, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy.
| |
Collapse
|
23
|
Seifert RM, Rauch M, Klingebiel R, Boese LM, Greeve I, Rudwaleit M, Schäbitz WR. Case report: Cerebral amyloid angiopathy-related inflammation in a patient with granulomatosis with polyangiitis. Front Neurol 2023; 14:1277843. [PMID: 38020617 PMCID: PMC10666051 DOI: 10.3389/fneur.2023.1277843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cerebral amyloid angiopathy-related inflammation (CAA-ri) defines a subacute autoimmune encephalopathy, which is presumably caused by increased CSF concentrations of anti-Aβ autoantibodies. This autoinflammatory reaction is temporally and regionally associated with microglial activation, inflammation and radiological presence of vasogenic edema. Clinical characteristics include progressive demential development as well as headache and epileptic seizures. In the absence of histopathologic confirmation, the criteria defined by Auriel et al. allow diagnosis of probable resp. possible CAA-ri. CAA-ri shows responsiveness to immunosuppressive therapies and a possible coexistence with other autoinflammatory diseases. Methods We present a case report and literature review on the diagnosis of CAA-ri in a patient with known granulomatosis with polyangiitis (GPA). Results Initially, the presented patient showed neuropsychiatric abnormalities and latent arm paresis. Due to slight increase in CSF cell count, an initial antiviral therapy was started. MR tomography showed a pronounced frontotemporal edema as well as cerebral microhemorrhages, leading to the diagnosis of CAA-ri. Subsequent high-dose steroid treatment followed by six intravenous cyclophosphamide pulses resulted in decreased CSF cell count and regression of cerebral MRI findings. Conclusion The symptoms observed in the patient are consistent with previous case reports on CAA-ri. Due to previously known GPA, we considered a cerebral manifestation of this disease as a differential diagnosis. However, absence of pachymeningitis as well as granulomatous infiltrations on imaging made cerebral GPA less likely. An increased risk for Aβ-associated pathologies in systemic rheumatic diseases is discussed variously.
Collapse
Affiliation(s)
- Rebecca M. Seifert
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Michael Rauch
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Randolf Klingebiel
- Institut für diagnostische und interventionelle Neuroradiologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Lennart-Maximilian Boese
- Institut für diagnostische und interventionelle Neuroradiologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Isabell Greeve
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Martin Rudwaleit
- Universitätsklinik für Innere Medizin und Rheumatologie, Klinikum Bielefeld Rosenhöhe, Bielefeld, Germany
| | - Wolf-Rüdiger Schäbitz
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| |
Collapse
|
24
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
25
|
Tobeh NS, Bruce KD. Emerging Alzheimer's disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions. Front Aging Neurosci 2023; 15:1259012. [PMID: 38020773 PMCID: PMC10630922 DOI: 10.3389/fnagi.2023.1259012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
More than 55 million people suffer from dementia, with this number projected to double every 20 years. In the United States, 1 in 3 aged individuals dies from Alzheimer's disease (AD) or another type of dementia and AD kills more individuals than breast cancer and prostate cancer combined. AD is a complex and multifactorial disease involving amyloid plaque and neurofibrillary tangle formation, glial cell dysfunction, and lipid droplet accumulation (among other pathologies), ultimately leading to neurodegeneration and neuronal death. Unfortunately, the current FDA-approved therapeutics do not reverse nor halt AD. While recently approved amyloid-targeting antibodies can slow AD progression to improve outcomes for some patients, they are associated with adverse side effects, may have a narrow therapeutic window, and are expensive. In this review, we evaluate current and emerging AD therapeutics in preclinical and clinical development and provide insight into emerging strategies that target brain lipid metabolism and microglial function - an approach that may synergistically target multiple mechanisms that drive AD neuropathogenesis. Overall, we evaluate whether these disease-modifying emerging therapeutics hold promise as interventions that may be able to reverse or halt AD progression.
Collapse
Affiliation(s)
- Nour S Tobeh
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
Lei X, He D. Cerebral amyloid angiopathy-related inflammation: the mildest, the worst, and the unexpected. Neurol Sci 2023; 44:3727-3730. [PMID: 37219646 DOI: 10.1007/s10072-023-06855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Xiaoyang Lei
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, No. 28, Gui Yi Street, Guiyang, 550004, Guizhou Province, China
| | - Dian He
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, No. 28, Gui Yi Street, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
27
|
Zedde M, Grisendi I, Assenza F, Vandelli G, Napoli M, Moratti C, Lochner P, Seiffge DJ, Piazza F, Valzania F, Pascarella R. The Venular Side of Cerebral Amyloid Angiopathy: Proof of Concept of a Neglected Issue. Biomedicines 2023; 11:2663. [PMID: 37893037 PMCID: PMC10604278 DOI: 10.3390/biomedicines11102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Small vessel diseases (SVD) is an umbrella term including several entities affecting small arteries, arterioles, capillaries, and venules in the brain. One of the most relevant and prevalent SVDs is cerebral amyloid angiopathy (CAA), whose pathological hallmark is the deposition of amyloid fragments in the walls of small cortical and leptomeningeal vessels. CAA frequently coexists with Alzheimer's Disease (AD), and both are associated with cerebrovascular events, cognitive impairment, and dementia. CAA and AD share pathophysiological, histopathological and neuroimaging issues. The venular involvement in both diseases has been neglected, although both animal models and human histopathological studies found a deposition of amyloid beta in cortical venules. This review aimed to summarize the available information about venular involvement in CAA, starting from the biological level with the putative pathomechanisms of cerebral damage, passing through the definition of the peculiar angioarchitecture of the human cortex with the functional organization and consequences of cortical arteriolar and venular occlusion, and ending to the hypothesized links between cortical venular involvement and the main neuroimaging markers of the disease.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Gabriele Vandelli
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - David J. Seiffge
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
28
|
Hansen N, Juhl AL, Grenzer IM, Teegen B, Wiltfang J, Fitzner D. Cerebrospinal fluid biomarkers in psychiatric autoimmune encephalitis: a retrospective cohort study. Front Psychiatry 2023; 14:1165153. [PMID: 37363167 PMCID: PMC10287966 DOI: 10.3389/fpsyt.2023.1165153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Background Psychiatric autoimmune encephalitis (pAE) is a growing field of interest in diagnosis and therapy in psychiatric hospitals and institutions. This study investigates the relevant extent to which there are potential biomarkers in cerebrospinal fluid (CSF) that can differentiate against a cohort with neurodegenerative disease. Methods We included in this study a total of 27 patients with possible and definite psychiatric autoimmune encephalitis and compared with a cohort with CSF-based AD (n = 27) different biomarkers in CSF such as lactate, cell count, % lymphocytes, % monocytes, total protein content, albumin, immunoglobulins G (IgG), M (IgM) and A (IgA), CSF/serum albumin ratio, CSF/serum IgG ratio, CSF/serum IgA ratio, intrathecal IgG synthesis, blood-brain barrier disruption, specific antibody synthesis for measles, rubella, herpes simplex virus, varicella zoster virus, Ebstein-Barr virus and cytomegalovirus, total tau protein (t-tau), phosphorylated tau protein 181 (p-tau181), amyloid beta 42 (Aß42), amyloid beta 40 (Aß40) and the amyloid beta 42/ amyloid beta 40 (Aß42/40) ratio. Results The p-tau 181 was elevated above cut-off values in both possible pAE and AD. However, in definitive pAE, p-tau181 levels were not elevated. When elevated p-tau181 levels in possible AE were compared with those in AD, we found relevant differences, such as a relative increase in p-tau181 in AD patients. Elevated p-tau181 levels were detected in possible psychiatric AEs with IgLON5, glycine, recoverin, titin, and nonspecific neuropil antibodies in serum and IgLON5, titin, Yo, and nonspecific neuropil autoantibodies in CSF. In addition, we detected elevated levels of p-tau181 and IgLON5 autoantibodies in serum and CSF, and Yo autoantibodies in CSF in patients with definitive pAE. Interestingly, we observed a higher CSF/serum IgM ratio in possible and definitive pAE than in AD patients. Conclusion Our results suggest that neuroaxonal brain damage may occur in specific psychiatric AEs associated with IgLON5, glycine, recoverin, and titin autoantibodies. Further research should focus on the CSF/serum IgM ratio as an early marker of autoantibody production in pAE compared to AD as a potential biomarker for differential diagnosis.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Aaron Levin Juhl
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Insa Maria Grenzer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Stöcker, Groß Grönau, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Sharkus R, Thakkar R, Kolson DL, Constantinescu CS. Dimethyl Fumarate as Potential Treatment for Alzheimer's Disease: Rationale and Clinical Trial Design. Biomedicines 2023; 11:1387. [PMID: 37239057 PMCID: PMC10216730 DOI: 10.3390/biomedicines11051387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's Disease (AD) is a debilitating disease that leads to severe cognitive impairment and functional decline. The role of tau hyperphosphorylation and amyloid plaque deposition in the pathophysiology of AD has been well described; however, neuroinflammation and oxidative stress related to sustained microglial activation is thought to play a significant role in the disease process as well. NRF-2 has been identified in modulating the effects of inflammation and oxidative stress in AD. Activation of NRF-2 leads to an increased production of antioxidant enzymes, including heme oxygenase, which has been shown to have protective effects in neurodegenerative disorders such as AD. Dimethyl fumarate and diroximel fumarate (DMF) have been approved for the use in relapsing-remitting multiple sclerosis. Research indicates that they can modulate the effects of neuroinflammation and oxidative stress through the NRF-2 pathway, and as such, could serve as a potential therapeutic option in AD. We propose a clinical trial design that could be used to assess DMF as a treatment option for AD.
Collapse
Affiliation(s)
- Robert Sharkus
- Department of Neurology, Cooper Neurological Institute, Cherry Hill, NJ 08002, USA; (R.S.); (R.T.)
| | - Richa Thakkar
- Department of Neurology, Cooper Neurological Institute, Cherry Hill, NJ 08002, USA; (R.S.); (R.T.)
| | - Dennis L. Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Cris S. Constantinescu
- Department of Neurology, Cooper Neurological Institute, Cherry Hill, NJ 08002, USA; (R.S.); (R.T.)
- Department of Neurology, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
30
|
Sakai K, Noguchi-Shinohara M, Tanaka H, Ikeda T, Hamaguchi T, Kakita A, Yamada M, Ono K. Cerebrospinal Fluid Biomarkers and Amyloid-β Elimination from the Brain in Cerebral Amyloid Angiopathy-Related Inflammation. J Alzheimers Dis 2023; 91:1173-1183. [PMID: 36565118 DOI: 10.3233/jad-220838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers in patients with cerebral amyloid angiopathy-related inflammation (CAA-ri) have demonstrated inconsistent results. OBJECTIVE We investigated the relationship between CSF amyloid-β protein (Aβ) and vascular pathological findings to elucidate the mechanisms of Aβ elimination from the brain in CAA-ri. METHODS We examined Aβ40 and Aβ42 levels in CSF samples in 15 patients with CAA-ri and 15 patients with Alzheimer's disease and cerebral amyloid angiopathy (AD-CAA) using ELISA as a cross-sectional study. Furthermore, we pathologically examined Aβ40 and Aβ42 depositions on the leptomeningeal blood vessels (arteries, arterioles, and veins) using brain biopsy samples from six patients with acute CAA-ri and brain tissues of two autopsied patients with CAA-ri. RESULTS The median Aβ40 and Aβ42 levels in the CSF showed no significant difference between pre-treatment CAA-ri (Aβ40, 6837 pg/ml; Aβ42, 324 pg/ml) and AD-CAA (Aβ40, 7669 pg/ml, p = 0.345; Aβ42, 355 pg/ml, p = 0.760). Aβ40 and Aβ42 levels in patients with post-treatment CAA-ri (Aβ40, 1770 pg/ml, p = 0.056; Aβ42, 167 pg/ml, p = 0.006) were lower than those in patients with pre-treatment CAA-ri. Regarding Aβ40 and Aβ42 positive arteries, acute CAA-ri cases showed a higher frequency of partially Aβ-deposited blood vessels than postmortem CAA-ri cases (Aβ40, 20.8% versus 3.9%, p = 0.0714; Aβ42, 27.4% versus 2.0%, p = 0.0714, respectively). CONCLUSION Lower levels of CSF Aβ40 and Aβ42 could be biomarkers for the cessation of inflammation in CAA-ri reflecting the recovery of the intramural periarterial drainage pathway and vascular function.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology, Joetsu General Hospital, Joetsu, Japan.,Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Preemptive Medicine for Dementia, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hidetomo Tanaka
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokuhei Ikeda
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Neurology, Kanazawa Medical University, Uchinada, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahito Yamada
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.,Department of Internal Medicine, Kudanzaka Hospital, Tokyo, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
31
|
Zedde M, Pascarella R, Piazza F. CAA-ri and ARIA: Two Faces of the Same Coin? AJNR Am J Neuroradiol 2023; 44:E13-E14. [PMID: 36635054 PMCID: PMC9891329 DOI: 10.3174/ajnr.a7759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- M Zedde
- Neurology Unit, Stroke UnitAzienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio Emilia, Italy
| | - R Pascarella
- Neuroradiology Unit, iCAβ International NetworkAzienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio Emilia, Italy
| | - F Piazza
- CAA and AD Translational Research and Biomarkers Lab, School of MedicineUniversity of Milano-BicoccaMonza, Italy
| |
Collapse
|
32
|
Yang JY, Chu YT, Tsai HH, Jeng JS. Amyloid and tau PET in cerebral amyloid angiopathy-related inflammation two case reports and literature review. Front Neurol 2023; 14:1153305. [PMID: 37188315 PMCID: PMC10175602 DOI: 10.3389/fneur.2023.1153305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a clinical syndrome characterized by MRI findings of amyloid-related imaging abnormalities-edema (ARIA-E) suggestive of autoimmune and inflammatory reaction and hemorrhagic evidence of cerebral amyloid angiopathy. The longitudinal variation of amyloid PET and its imaging association with CAA-ri are undetermined. Moreover, tau PET in CAA-ri has been rarely investigated. Method We retrospectively described two cases of CAA-ri. We provided the temporal change of amyloid and tau PET in the first case, and the cross-sectional finding of amyloid and tau PET in the second case. We also performed a literature review of the imaging features of amyloid PET in reported cases of CAA-ri. Results In the first case, an 88-year-old male presented with progressive consciousness and gait disturbances over 2 months. MRI showed disseminated cortical superficial siderosis. Amyloid PET prior to and after the CAA-ri revealed focally decreased amyloid load in the region of ARIA-E. In the second case, a 72-year-old male was initially suspected to have central nervous system cryptococcosis but later diagnosed with CAA-ri because of the characteristic MRI features and good response to corticosteroid treatment; a subsequent amyloid scan revealed positive amyloid deposition of the brain. Neither case suggested an association between the region of ARIA-E and higher amyloid uptake on PET before or after onset of CAA-ri. Our literature review revealed variable findings related to amyloid burden in post-inflammatory regions in previously reported CAA-ri cases with available amyloid PET. Our case is the first report of longitudinal changes on amyloid PET and show focal decreases in amyloid load after the inflammatory process. Conclusion This case series highlights the need to better explore the potential of longitudinal amyloid PET in the understanding of the mechanisms of CAA-ri.
Collapse
Affiliation(s)
- Jhih-Yong Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Tsai Chu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
- *Correspondence: Hsin-Hsi Tsai
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|