1
|
Ding L, Zhang K, Wang X, Tong S, Guo X, Jia J. Functional Reorganization of White Matter Supporting the Transhemispheric Mechanism of Mirror Therapy After Stroke: A Multimodal MRI Study. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1126-1134. [PMID: 40053618 DOI: 10.1109/tnsre.2025.3549380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Mirror therapy (MT) is an effective approach in stroke recovery, but its impact on subcortical neural reorganization remains unclear. Thus, we aimed to investigate the neuroplastic effects on white matter due to MT. In this study, thirty-three participants with stroke were recruited and randomly assigned into the MT group (n = 16) or the control group (n = 17) for a 4-week intervention. Before and after the intervention, motor recovery was evaluated using the Fugl-Meyer Assessment upper limb subscale (FMA-UL), and the white matter structure and function were investigated using DTI and resting-state fMRI, focusing on the corticospinal tract and the corpus callosum. Significant correlations between the improvements of the FMA-UL and the baseline fractional anisotropy of ipsilesional corticospinal tract ( ) and corpus callosum ( ) were observed only in the MT group. Additionally, no significant structural alterations were found between the two groups after the intervention. The fractional amplitude of low-frequency fluctuation of ipsilesional corticospinal tract ( ) and corpus callosum ( ) were significantly enhanced only in the MT group, which were correlated with the improvements of the FMA-UL ( ). Furthermore, partial correlation analysis and subsequent mediation model analysis suggested that the changes of fractional amplitude of low-frequency fluctuation in corpus callosum partially mediated the effect of the baseline fractional anisotropy of ipsilesional corticospinal tract on the FMA-UL improvements in the MT group. This study provided neuroimaging evidence on white matter reorganization after MT, specifically the corpus callosum, suggesting a potential interhemispheric transcallosal neuroplastic mechanism of MT.
Collapse
|
2
|
Sui C, Zhang Q, Gillen K, Gao Y, Zhang N, Feng M, Xin H, Liang C, Guo L, Wang Y. Association of Increased Brain Iron Levels With Anxiety and Motor Dysfunction in Cerebral Small Vessel Disease. CNS Neurosci Ther 2025; 31:e70355. [PMID: 40130450 PMCID: PMC11933864 DOI: 10.1111/cns.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
AIMS This study explored the relationships between brain iron levels, emotion, and cognitive and motor function in cerebral small vessel disease (CSVD) patients using quantitative susceptibility mapping (QSM). METHODS A total of 208 subjects were enrolled in this study. A brain QSM map was calculated from multiecho GRE data via morphology-enabled dipole inversion with an automatic uniform cerebrospinal fluid zero reference algorithm (MEDI+0). Multiple linear regression analysis was applied to explore the clinical factors influencing cerebral susceptibility in CSVD patients. Correlation analysis and pathway-specific mediation effects between brain iron levels and motor function were investigated. RESULTS There were significant differences in the MoCA scores, depression scores, five-repetition sit-to-stand test (5R-STS) time, and susceptibility values of the caudate nucleus and putamen among the three groups (p < 0.05, FDR correction). Age and history of diabetes played crucial roles in brain iron levels in the caudate nucleus and putamen, which may increase iron levels in the basal ganglia, associated with cognitive decline. Notably, the susceptibility values of the left caudate nucleus and putamen were positively correlated with the 5R-STS time in CSVD subjects, and there were significant mediating effects of anxiety on the prediction of motor dysfunction with respect to iron levels in the left putamen in CSVD patients. CONCLUSION Age, diabetes status, and anxiety may serve as effective intervention targets for individuals with CSVD, especially individuals with cognitive and motor dysfunction. A greater brain iron burden may be a quantitative imaging marker of cognitive and motor dysfunction in CSVD patients. TRIAL REGISTRATION ISRCTN20008650.
Collapse
Affiliation(s)
- Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of Radiology, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Qihao Zhang
- Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA
| | - Kelly Gillen
- Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Mengmeng Feng
- Department of Radiology, Department of Radiology and Nuclear MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Haotian Xin
- Department of Radiology, Department of Radiology and Nuclear MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yi Wang
- Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA
| |
Collapse
|
3
|
Chao X, Fang Y, Wang J, Wang P, Dong Y, Lu Z, Yin D, Shi R, Liu X, Sun W. Abnormal intrinsic brain functional network dynamics in stroke and correlation with neuropsychiatric symptoms revealed based on lesion and cerebral blood flow. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111181. [PMID: 39490916 DOI: 10.1016/j.pnpbp.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
There has been a lack of clarity about the mechanisms of widespread network dysfunctions after stroke. This study aimed to reveal dynamic functional network alternations following stroke based on lesion and brain perfusion. We prospectively enrolled 125 acute ischaemic stroke patients (25 were transient ischemic attack (TIA) patients) and 49 healthy controls with assessed the severity of their depression, anxiety, fatigue, and apathy. We performed dynamic functional network connectivity (DFNC) analysis using the sliding window method. The common static FC biomarkers of stroke were used to define functional states and calculated stroke-specific changes in dynamic indicators. Next, ridge regression (RR) analyses were performed on the dynamic indicators using voxel-wise lesion maps, cerebral blood flow (CBF) difference maps (removal of voxels overlapping lesions) and a combination of both. Mediation analyses were used to characterize the effect of dynamic networks changes on the relationship between lesion, CBF, and neuropsychological scores. Our results showed that DFNC identified three functional states with three dynamic metrics extracted for subsequent analyses. RR analyses show that both CBF and lesions partially explain post-stroke dysfunction (CBF: dynamic indicator1: R2 = 0.110, p = 0.163; dynamic indicator2: R2 = 0.277, p = 0.006; dynamic indicator3: R2 = 0.125, p = 0.121; lesion: dynamic indicator1: R2 = 0.132, p = 0.109; dynamic indicator2: R2 = 0.238, p = 0.015; dynamic indicator3: R2 = 0.131, p = 0.110). In addition, combining the two can improve the efficacy of explanations. Finally, exploratory mediation analyses identified that dynamic functional network changes can mediate between CBF, lesion and neuropsychiatric disorders. Our results suggest that CBF and lesion can be combined to improve the interpretation of dynamic network dysfunction after stroke.
Collapse
Affiliation(s)
- Xian Chao
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yirong Fang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinjing Wang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yiran Dong
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zeyu Lu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dawei Yin
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ran Shi
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinfeng Liu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wen Sun
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Chen B, Yang T, Liao Z, Sun F, Mei Z, Zhang W. Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review. Int J Mol Sci 2025; 26:406. [PMID: 39796261 PMCID: PMC11721500 DOI: 10.3390/ijms26010406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Post-stroke spasticity (PSS), characterized by a velocity-dependent increase in muscle tone and exaggerated reflexes, affects a significant portion of stroke patients and presents a substantial obstacle to post-stroke rehabilitation. Effective management and treatment for PSS remains a significant clinical challenge in the interdisciplinary aspect depending on the understanding of its etiologies and pathophysiology. We systematically review the relevant literature and provide the main pathogenic hypotheses: alterations in the balance of excitatory and inhibitory inputs to the descending pathway or the spinal circuit, which are secondary to cortical and subcortical ischemic or hemorrhagic injury, lead to disinhibition of the stretch reflex and increased muscle tone. Prolongation of motoneuron responses to synaptic excitation by persistent inward currents and secondary changes in muscle contribute to hypertonia. The guidelines for PSS treatment advocate for a variety of therapeutic approaches, yet they are hindered by constraints such as dose-dependent adverse effects, high cost, and limited therapeutic efficacy. Taken together, we highlight key processes of PSS pathophysiology and summarize many interventions, including neuroprotective agents, gene therapy, targeted therapy, physiotherapy, NexTGen therapy and complementary and alternative medicine. We aim to confer additional clinical benefits to patients and lay the foundation for the development of new potential therapies against PSS.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Ma J, Rui Z, Zou Y, Qin Z, Zhao Z, Zhang Y, Mao Z, Bai H, Zhang J. Neurosurgical and BCI approaches to visual rehabilitation in occipital lobe tumor patients. Heliyon 2024; 10:e39072. [PMID: 39687114 PMCID: PMC11647799 DOI: 10.1016/j.heliyon.2024.e39072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the effects of occipital lobe tumors on visual processing and the role of brain-computer interface (BCI) technologies in post-surgical visual rehabilitation. Through a combination of pre-surgical functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI), intra-operative direct cortical stimulation (DCS) and Electrocorticography (ECoG), and post-surgical BCI interventions, we provide insight into the complex dynamics between occipital lobe tumors and visual function. Our results highlight a discrepancy between clinical assessments of visual field damage and the patient's reported visual experiences, suggesting a residual functional capacity within the damaged occipital regions. Additionally, the absence of expected visual phenomena during surgery and the promising outcomes from BCI-driven rehabilitation underscore the complexity of visual processing and the potential of technology-enhanced rehabilitation strategies. This work emphasizes the need for an interdisciplinary approach in developing effective treatments for visual impairments related to brain tumors, illustrating the significant implications for neurosurgical practices and the advancement of rehabilitation sciences.
Collapse
Affiliation(s)
- Jie Ma
- PLA Medical School, Beijing, 100853, PR China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zong Rui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yuhui Zou
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Zhizhen Qin
- PLA Medical School, Beijing, 100853, PR China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zhenyu Zhao
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Jianning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| |
Collapse
|
6
|
Fang R, Duering M, Bode FJ, Stösser S, Meißner JN, Hermann P, Liman TG, Nolte CH, Kerti L, Ikenberg B, Bernkopf K, Glanz W, Janowitz D, Wagner M, Neumann K, Speck O, Düzel E, Gesierich B, Dewenter A, Spottke A, Waegemann K, Görtler M, Wunderlich S, Zerr I, Petzold GC, Endres M, Georgakis MK, Dichgans M. Risk factors and clinical significance of post-stroke incident ischemic lesions. Alzheimers Dement 2024; 20:8412-8428. [PMID: 39417418 DOI: 10.1002/alz.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION While incident ischemic lesions (IILs) are not unusual on follow-up magnetic resonance imaging (MRI) following stroke, their risk factors and prognostic significance remain unknown. METHODS In a prospective multicenter study of 503 acute stroke patients, we assessed IILs on registered MRI images at baseline and 6 months, analyzing risk factors and clinical outcomes across 36 months. RESULTS At 6 months, 78 patients (15.5%) had IILs, mostly diffusion-weighted imaging-positive (72%) and clinically covert (91%). Older age and small vessel disease (SVD) lesions were baseline risk factors for IILs. IILs were associated with worse cognitive (beta for global cognition: -0.31, 95% confidence interval [CI]: -0.48 to -0.14) and functional outcomes (beta for modified Rankin scale [mRS]: 0.36, 95% CI: 0.14 to 0.58), and higher recurrent stroke risk (hazard ratio: 3.81, 95% CI: 1.35 to 10.69). IILs partially explained the relationship between SVD and poor cognition. DISCUSSION IILs are common and are associated with worse cognitive and functional outcomes and stroke recurrence risk. Assessing IILs following stroke might aid prognostication. HIGHLIGHTS Incident ischemic lesions (IILs) were assessed with registered baseline and 6-month magnetic resonance imaging (MRI) scans in a stroke cohort. IILs 6 months after stroke are present in one-sixth of patients and are mostly clinically silent. Small vessel disease burden is the main baseline risk factor for IILs. IILs are associated with cognitive and functional impairment and stroke recurrence. Assessing IILs by follow-up MRI aids long-term prognostication for stroke patients.
Collapse
Affiliation(s)
- Rong Fang
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Felix J Bode
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Stösser
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Julius N Meißner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Peter Hermann
- Universitätsmedizin Göttingen, Klinik für Neurologie, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Thomas G Liman
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE, Berlin), Berlin, Germany
- Department of Neurology, Carl Von Ossietzky University, Oldenburg, Germany
| | - Christian H Nolte
- German Center for Neurodegenerative Diseases (DZNE, Berlin), Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Lucia Kerti
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE, Berlin), Berlin, Germany
| | - Benno Ikenberg
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathleen Bernkopf
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wenzel Glanz
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany
| | - Katja Neumann
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Karin Waegemann
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Michael Görtler
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Silke Wunderlich
- Department of Neurology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Inga Zerr
- Universitätsmedizin Göttingen, Klinik für Neurologie, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE, Berlin), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, Berlin, Germany
- Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHK, Munich), Munich, Germany
| |
Collapse
|
7
|
Yamagami K, Samata B, Doi D, Tsuchimochi R, Kikuchi T, Amimoto N, Ikeda M, Yoshimoto K, Takahashi J. Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons. Stem Cells Transl Med 2024; 13:1113-1128. [PMID: 39340829 PMCID: PMC11555480 DOI: 10.1093/stcltm/szae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.
Collapse
Affiliation(s)
- Keitaro Yamagami
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryosuke Tsuchimochi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Naoya Amimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Lu HY, Ma ZZ, Zhang JP, Wu JJ, Zheng MX, Hua XY, Xu JG. Altered Resting-State Electroencephalogram Microstate Characteristics in Stroke Patients. J Integr Neurosci 2024; 23:176. [PMID: 39344234 DOI: 10.31083/j.jin2309176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Stroke remains a leading cause of disability globally and movement impairment is the most common complication in stroke patients. Resting-state electroencephalography (EEG) microstate analysis is a non-invasive approach of whole-brain imaging based on the spatiotemporal pattern of the entire cerebral cortex. The present study aims to investigate microstate alterations in stroke patients. METHODS Resting-state EEG data collected from 24 stroke patients and 19 healthy controls matched by age and gender were subjected to microstate analysis. For four classic microstates labeled as class A, B, C and D, their temporal characteristics (duration, occurrence and coverage) and transition probabilities (TP) were extracted and compared between the two groups. Furthermore, we explored their correlations with clinical outcomes including the Fugl-Meyer assessment (FMA) and the action research arm test (ARAT) scores in stroke patients. Finally, we analyzed the relationship between the temporal characteristics and spectral power in frequency bands. False discovery rate (FDR) method was applied for correction of multiple comparisons. RESULTS Microstate analysis revealed that the stroke group had lower occurrence of microstate A which was regarded as the sensorimotor network (SMN) compared with the control group (p = 0.003, adjusted p = 0.036, t = -2.959). The TP from microstate A to microstate D had a significant positive correlation with the Fugl-Meyer assessment of lower extremity (FMA-LE) scores (p = 0.049, r = 0.406), but this finding did not survive FDR adjustment (adjusted p = 0.432). Additionally, the occurrence and the coverage of microstate B were negatively correlated with the power of delta band in the stroke group, which did not pass adjustment (p = 0.033, adjusted p = 0.790, r = -0.436; p = 0.026, adjusted p = 0.790, r = -0.454, respectively). CONCLUSIONS Our results confirm the abnormal temporal dynamics of brain activity in stroke patients. The study provides further electrophysiological evidence for understanding the mechanism of brain motor functional reorganization after stroke.
Collapse
Affiliation(s)
- Hao-Yu Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437 Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 201203 Shanghai, China
| |
Collapse
|
9
|
Yang B, Xin H, Wang L, Qi Q, Wang Y, Jia Y, Zheng W, Sun C, Chen X, Du J, Hu Y, Lu J, Chen N. Distinct brain network patterns in complete and incomplete spinal cord injury patients based on graph theory analysis. CNS Neurosci Ther 2024; 30:e14910. [PMID: 39185854 PMCID: PMC11345750 DOI: 10.1111/cns.14910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
AIMS To compare the changes in brain network topological properties and structure-function coupling in patients with complete spinal cord injury (CSCI) and incomplete spinal cord injury (ICSCI), to unveil the potential neurobiological mechanisms underlying the different effects of CSCI and ICSCI on brain networks and identify objective neurobiological markers to differentiate between CSCI and ICSCI patients. METHODS Thirty-five SCI patients (20 CSCI and 15 ICSCI) and 32 healthy controls (HCs) were included in the study. Here, networks were constructed using resting-state functional magnetic resonance imaging to analyze functional connectivity (FC) and diffusion tensor imaging for structural connectivity (SC). Then, graph theory analysis was used to examine SC and FC networks, as well as to estimate SC-FC coupling values. RESULTS Compared with HCs, CSCI patients showed increased path length (Lp), decreased global efficiency (Eg), and local efficiency (Eloc) in SC. For FC, ICSCI patients exhibited increased small-worldness, clustering coefficient (Cp), normalized clustering coefficient, and Eloc. Also, ICSCI patients showed increased Cp and Eloc than CSCI patients. Additionally, ICSCI patients had reduced SC-FC coupling values compared to HCs. Moreover, in CSCI patients, the SC network's Lp and Eg values were significantly correlated with motor scores, while in ICSCI patients, the FC network's Cp, Eloc, and SC-FC coupling values were related to sensory/motor scores. CONCLUSIONS These results suggest that CSCI patients are characterized by decreased efficiency in the SC network, while ICSCI patients are distinguished by increased local connections and SC-FC decoupling. Moreover, the differences in network metrics between CSCI and ICSCI patients could serve as objective biological markers, providing a basis for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Beining Yang
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Haotian Xin
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Ling Wang
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Qunya Qi
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Yu Wang
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Yulong Jia
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Weimin Zheng
- Department of Radiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Chuchu Sun
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Xin Chen
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Nan Chen
- Department of Radiology and Nuclear medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
10
|
Chen T, Chen T, Zhang Y, Wu K, Zou Y. Bilateral effect of acupuncture on cerebrum and cerebellum in ischaemic stroke patients with hemiparesis: a randomised clinical and neuroimaging trial. Stroke Vasc Neurol 2024; 9:306-317. [PMID: 38336368 PMCID: PMC11221322 DOI: 10.1136/svn-2023-002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Acupuncture involving the limb region may be effective for stroke rehabilitation clinically, but the visualised and explanatory evidence is limited. Our objectives were to assess the specific effects of acupuncture for ischaemic stroke (IS) patients with hemiparesis and investigate its therapy-driven modification in functional connectivity. METHODS IS patients were randomly assigned (2:1) to receive 10 sessions of hand-foot 12 needles acupuncture (HA, n=30) or non-acupoint (NA) acupuncture (n=16), enrolling gender-matched and age-matched healthy controls (HCs, n=34). The clinical outcomes were the improved Fugl-Meyer Assessment scores including upper and lower extremity (ΔFM, ΔFM-UE, ΔFM-LE). The neuroimaging outcome was voxel-mirrored homotopic connectivity (VMHC). Static and dynamic functional connectivity (sFC, DFC) analyses were used to study the neuroplasticity reorganisation. RESULTS 46 ISs (mean(SD) age, 59.37 (11.36) years) and 34 HCs (mean(SD) age, 52.88 (9.69) years) were included in the per-protocol analysis of clinical and neuroimaging. In clinical, ΔFM scores were 5.00 in HA group and 2.50 in NA group, with a dual correlation between ΔFM and ΔVMHC (angular: r=0.696, p=0.000; cerebellum: r=-0.716, p=0.000) fitting the linear regression model (R2=0.828). In neuroimaging, ISs demonstrated decreased VMHC in bilateral postcentral gyrus and cerebellum (Gaussian random field, GRF corrected, voxel p<0.001, cluster p<0.05), which fitted the logistic regression model (AUC=0.8413, accuracy=0.7500). Following acupuncture, VMHC in bilateral superior frontal gyrus orbital part was increased with cerebro-cerebellar changes, involving higher sFC between ipsilesional superior frontal gyrus orbital part and the contralesional orbitofrontal cortex as well as cerebellum (GRF corrected, voxel p<0.001, cluster p<0.05). The coefficient of variation of VMHC was decreased in bilateral posterior cingulate gyrus (PPC) locally (GRF corrected, voxel p<0.001, cluster p<0.05), with integration states transforming into segregation states overall (p<0.05). There was no acupuncture-related adverse event. CONCLUSIONS The randomised clinical and neuroimaging trial demonstrated acupuncture could promote the motor recovery and modified cerebro-cerebellar VMHC via bilateral static and dynamic reorganisations for IS patients with hemiparesis.
Collapse
Affiliation(s)
- Tianzhu Chen
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyan Chen
- School of Journalism and Communication, Renmin University of China, Beijing, China
| | - Yong Zhang
- Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kang Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Zarghami TS. A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network. Brain Struct Funct 2023; 228:1917-1941. [PMID: 37658184 DOI: 10.1007/s00429-023-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Network representation has been an incredibly useful concept for understanding the behavior of complex systems in social sciences, biology, neuroscience, and beyond. Network science is mathematically founded on graph theory, where nodal importance is gauged using measures of centrality. Notably, recent work suggests that the topological centrality of a node should not be over-interpreted as its dynamical or causal importance in the network. Hence, identifying the influential nodes in dynamic causal models (DCM) remains an open question. This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded centrality measure based on the notion of intervention in graphical models. Operationally, this measure simplifies to an identifiable expression using Bayesian model reduction. As a proof of concept, the average DCM of the extended default mode network (eDMN) was computed in 74 healthy subjects. Next, causal centralities of different regions were computed for this causal graph, and compared against several graph-theoretical centralities. The results showed that the subcortical structures of the eDMN were more causally central than the cortical regions, even though the graph-theoretical centralities unanimously favored the latter. Importantly, model comparison revealed that only the pattern of causal centrality was causally relevant. These results are consistent with the crucial role of the subcortical structures in the neuromodulatory systems of the brain, and highlight their contribution to the organization of large-scale networks. Potential applications of causal centrality-to study causal models of other neurotypical and pathological functional networks-are discussed, and some future lines of research are outlined.
Collapse
Affiliation(s)
- Tahereh S Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Roy B, Marshall RS. New Insight in Causal Pathways Following Subcortical Stroke: From Correlation to Causation. Neurology 2023; 100:271-272. [PMID: 36307227 DOI: 10.1212/wnl.0000000000201648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bhaskar Roy
- From the Department of Neurology (B.R.), Yale School of Medicine, CT; and Columbia University Irving Medical Center (R.S.M.), NY
| | - Randolph S Marshall
- From the Department of Neurology (B.R.), Yale School of Medicine, CT; and Columbia University Irving Medical Center (R.S.M.), NY.
| |
Collapse
|