1
|
Cummings JL, Teunissen CE, Fiske BK, Le Ber I, Wildsmith KR, Schöll M, Dunn B, Scheltens P. Biomarker-guided decision making in clinical drug development for neurodegenerative disorders. Nat Rev Drug Discov 2025:10.1038/s41573-025-01165-w. [PMID: 40185982 DOI: 10.1038/s41573-025-01165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Neurodegenerative disorders are characterized by complex neurobiological changes that are reflected in biomarker alterations detectable in blood, cerebrospinal fluid (CSF) and with brain imaging. As accessible proxies for processes that are difficult to measure, biomarkers are tools that hold increasingly important roles in drug development and clinical trial decision making. In the past few years, biomarkers have been the basis for accelerated approval of new therapies for Alzheimer disease and amyotrophic lateral sclerosis as surrogate end points reasonably likely to predict clinical benefit.Blood-based biomarkers are emerging for Alzheimer disease and other neurodegenerative disorders (for example, Parkinson disease, frontotemporal dementia), and some biomarkers may be informative across multiple disease states. Collection of CSF provides access to biomarkers not available in plasma, including markers of synaptic dysfunction and neuroinflammation. Molecular imaging is identifying an increasing array of targets, including amyloid plaques, neurofibrillary tangles, inflammation, mitochondrial dysfunction and synaptic density. In this Review, we consider how biomarkers can be implemented in clinical trials depending on their context of use, including providing information on disease risk and/or susceptibility, diagnosis, prognosis, pharmacodynamic outcomes, monitoring, prediction of response to therapy and safety. Informed choice of increasingly available biomarkers and rational deployment in clinical trials support drug development decision making and de-risk the drug development process for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Brian K Fiske
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Göteborg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Philip Scheltens
- Alzheimer's Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
- EQT Group, Dementia Fund, Stockholm, Sweden
| |
Collapse
|
2
|
Meng T, Fei Q, Lv T, Chen S. Association of serum neurofilament light chain with cognitive impairment: findings from the National Health and Nutrition Examination Survey. Front Aging Neurosci 2025; 17:1517663. [PMID: 39906713 PMCID: PMC11788381 DOI: 10.3389/fnagi.2025.1517663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Background Serum Neurofilament Light chain (NfL) is a promising biomarker of neuronal damage, used to assess the extent of neuronal injury and neurodegeneration, and it is widely applied in the diagnosis of neurodegenerative disease and monitoring disease progression. This article aims to determine whether serum NfL associated with cognitive level. Methods Using NHANES data, we conducted an analysis of cognitive test results for 450 adults aged 60 years and older and examined their correlation with serum NfL levels. When exploring the association between cognitive test scores and serum NfL levels, regression models and restricted cubic spline (RCS) regression models were employed to adjust for potential confounding factors. The least absolute shrinkage and selection operator (LASSO) regression was applied for identifying key cognitive impairment factors, which was then included in the establishment of a risk prediction nomogram model, with the receiver operating characteristic (ROC) curve being built to evaluate its discriminatory power for cognitive impairment. Results It was found that there is a strong positive correlation between serum NfL levels and both low total cognitive function (total-CF) OR: 1.028 (95%CI = 1.015-1.041 p < 0.001) and low Digit Symbol Substitution Test (DSST) OR: 1.026 (95%CI = 1.003-1.050, p = 0.027). Furthermore, using the RCS model, we observed a linear trend in the relationship between NfL and low total-CF. The nomogram model based on NfL identified by LASSO regression displayed a considerable predicative value for low total-CF, with an area under the curve [AUC = 85.6% (81.6-89.3%)]. Conclusion There is a strong correlation between serum NfL levels and cognitive function, especially DSST, which reflects attention and information processing abilities, as well as overall cognitive function, but not memory and language fluency. Thus, NfL may serve as a serum biomarker for dementia monitoring.
Collapse
Affiliation(s)
- Tianjiao Meng
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Qinwen Fei
- Department of Geriatrics, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Tian Lv
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Shiqin Chen
- Department of Neurology, Second People's Hospital of Yuhuan, Yuhuan, China
| |
Collapse
|
3
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:11838. [PMID: 39519389 PMCID: PMC11546606 DOI: 10.3390/ijms252111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review explores the current landscape of blood biomarkers in Frontotemporal dementia (FTD). Neurofilament light chain (NfL) may be useful in the differentiation of behavioral variant FTD from primary psychiatric disorders (PPDs) or dementia with Lewy bodies (DLB). In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), elevated NfL may herald pheno-conversion to full-blown dementia. Baseline NfL correlates with steeper neuroanatomical changes and cognitive, behavioral and functional decline, making NfL promising in monitoring disease progression. Phosphorylated neurofilament heavy chain (pNfH) levels have a potential limited role in the demarcation of the conversion stage to full-blown FTD. Combined NfL and pNfH measurements may allow a wider stage stratification. Total tau levels lack applicability in the framework of FTD. p-tau, on the other hand, is of potential value in the discrimination of FTD from Alzheimer's dementia. Progranulin concentrations could serve the identification of GRN mutation carriers. Glial fibrillary acidic protein (GFAP) may assist in the differentiation of PPDs from behavioral variant FTD and the detection of GRN mutation carriers (additional research is warranted). Finally, TAR DNA-binding protein-43 (TDP-43) appears to be a promising diagnostic biomarker for FTD. Its potential in distinguishing TDP-43 pathology from other FTD-related pathologies requires further research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | | | - Vasiliki Karakoida
- School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (V.K.); (P.A.K.)
| | | | - Markos Sgantzos
- Department of Anatomy, Medical School, University of Thessaly, 41100 Larissa, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| |
Collapse
|
5
|
Li W, Sun M, Chen C. Exploring the correlation between paediatric narcolepsy and serum neurofilament light chain levels: An exploratory study. Eur J Paediatr Neurol 2024; 52:82-85. [PMID: 39173568 DOI: 10.1016/j.ejpn.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The study seeks to assess serum neurofilament light chain (NfL) levels in paediatric narcolepsy-diagnosed patients. Moreover, it aims to explore the correlation between NfL levels and the severity of narcolepsy symptoms, sleep quality, and manifestations of anxiety and depression. METHODS This retrospective analysis included 98 paediatric narcolepsy cases and 100 controls matched for age and gender. The study focused on comparing serum NfL levels across these groups. Severity of EDS in patients was measured with the Epworth Sleepiness Scale (ESS). Moreover, the Pittsburgh Sleep Quality Index (PSQI), Hamilton Depression Rating Scale-24 (HAMD-24), and Hamilton Anxiety Scale-14 (HAMA-14) were used to assess narcolepsy symptoms, sleep quality, and psychological conditions. RESULTS Patients with paediatric narcolepsy had significantly higher serum NfL levels than controls (P < 0.05). Additionally, a positive correlation was found between serum NfL levels and ESS scores (P < 0.001). An independent link between serum NfL and paediatric narcolepsy was established via multiple logistic regression (OR = 0.943, 95 % CI = 0.921-0.993, P = 0.004). Moreover, serum NfL's diagnostic precision for paediatric narcolepsy was evident from the ROC curve area of 0.938 (95 % CI: 0.86-0.99, P < 0.001). CONCLUSION The study implies a positive correlation between increased serum NfL levels and the severity of paediatric narcolepsy. Nevertheless, the causative link between serum NfL levels and paediatric narcolepsy remains uncertain, highlighting the need for larger sample sizes and well-structured cohort studies to offer more definitive.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Neurology, Rongcheng People's Hospital, The Affiliated Hospital of Jining Medical University, Weihai, Shandong, China
| | - Meijun Sun
- Department of Neurology, Rongcheng People's Hospital, The Affiliated Hospital of Jining Medical University, Weihai, Shandong, China
| | - Chen Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
6
|
Garcia-Cordero I, Vasilevskaya A, Taghdiri F, Khodadadi M, Mikulis D, Tarazi A, Mushtaque A, Anssari N, Colella B, Green R, Rogaeva E, Sato C, Grinberg M, Moreno D, Hussain MW, Blennow K, Zetterberg H, Davis KD, Wennberg R, Tator C, Tartaglia MC. Functional connectivity changes in neurodegenerative biomarker-positive athletes with repeated concussions. J Neurol 2024; 271:4180-4190. [PMID: 38589629 DOI: 10.1007/s00415-024-12340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - David Mikulis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Apameh Tarazi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Asma Mushtaque
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Neda Anssari
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Brain Vision and Concussion Clinic, Winnipeg, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mohammed W Hussain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Karen D Davis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Krembil Brain Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Wennberg
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles Tator
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada.
| |
Collapse
|
7
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Cayir S, Sadabad FE, Mecca A, Matuskey D, Zadeh AF. The Relationship of Cerebrospinal Fluid Biomarkers and Cognitive Performance in Frontotemporal Dementia. RESEARCH SQUARE 2024:rs.3.rs-3945509. [PMID: 38410483 PMCID: PMC10896374 DOI: 10.21203/rs.3.rs-3945509/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Objective Currently available literature on the relationships between cerebrospinal fluid (CSF) biomarkers and cognitive performance in frontotemporal dementia (FTD) is very limited and inconclusive. In this study, we investigated the association of cognition, as measured with Montreal Cognitive Assessment (MoCA), with CSF levels of total tau (t-tau), phosphorylated tau at threonine 181 (p-tau181), and amyloid β 1-42 (Aβ1-42) in a group of patients with FTD and Alzheimer's disease (AD). Methods We conducted a retrospective cohort study with participants selected from the electronic records of patients seen at Yale New Haven Hospital's Memory Clinic, CT, USA. We included 61 patients, 28 with FTD (mean age=64.1) and 33 with AD (mean age=66.8). Results T-tau levels negatively and significantly correlated with total MoCA scores as well as the different MoCA index scores in both the FTD (r=-0.469, p<0.05) and AD (r=-0.545, p<0.01) groups. There were no significant associations with MoCA scores and p-tau181 levels in patients with FTD (r=-0.224, p>0.05), unlike patients with AD, who exhibited significant correlations (r=-0.549, p<0.01). Also, Aβ1-42 levels were not significantly correlated with MoCA scores in either of the FTD and AD groups. Conclusion CSF concentrations of t-tau are inversely correlated to cognitive performance in patients with FTD and both t-tau and p-tau181 in AD. These findings provide valuable insights into the relationship between clinical cognitive performance and tau-related pathology in FTD.
Collapse
Affiliation(s)
- Salih Cayir
- Yale University Radiology and Biomedical Imaging
| | | | - Adam Mecca
- Yale University School of Medicine, Alzheimer's Disease Research Unit
| | | | | |
Collapse
|
9
|
Wood H. Neurofilament marks prodrome onset in FTD. Nat Rev Neurol 2023; 19:508. [PMID: 37553391 DOI: 10.1038/s41582-023-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
|