1
|
Stipa G, Ancidoni A, Vanacore N, Bellomo G. Raw Water and ALS: A Unifying Hypothesis for the Environmental Agents Involved in ALS. Ann Neurosci 2023; 30:124-132. [PMID: 37706096 PMCID: PMC10496797 DOI: 10.1177/09727531221120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 09/15/2023] Open
Abstract
Different studies identified the presence of several altered genes in familial and sporadic amyotrophic lateral sclerosis (ALS) forms. The experimental data, together with the epidemiological data, would seem to suggest the existence of molecular mechanisms (e.g., axonal transport) related to these genes, together with a susceptibility of the same genes to certain environmental factors that would therefore suggest an impact of the environment on the etiopathogenesis of ALS. In our review, we considered the most relevant environmental clusters around the world, collecting different hypotheses and underlining common environmental factors among the different clusters. Moreover, further epidemiological data identified a higher risk of ALS in professional athletes and, in particular, in soccer and football players. Despite this increased risk of ALS highlighted by the epidemiological evidence in aforementioned sports, the mechanisms remain unclear. At last, the use of raw water has been associated with ALS risk. The aim of the present review is to characterize a possible relationship between these clusters, to be explored in the context of the interaction between genetic and environmental factors on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Giuseppe Stipa
- Clinical Neurophysiology Division, Neuroscience Department, S. Maria University Hospital, Terni, Italy
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Guido Bellomo
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| |
Collapse
|
2
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
4
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
5
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
6
|
Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J. Recent trends in determination of neurotoxins in aquatic environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Pierozan P, Andersson M, Brandt I, Karlsson O. The environmental neurotoxin β-N-methylamino-L-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res 2018. [PMID: 29528516 DOI: 10.1111/jpi.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Paula Pierozan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Main BJ, Bowling LC, Padula MP, Bishop DP, Mitrovic SM, Guillemin GJ, Rodgers KJ. Detection of the suspected neurotoxin β-methylamino-l-alanine (BMAA) in cyanobacterial blooms from multiple water bodies in Eastern Australia. HARMFUL ALGAE 2018; 74:10-18. [PMID: 29724339 DOI: 10.1016/j.hal.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/09/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The emerging toxin β-methylamino-l-alanine (BMAA) has been linked to the development of a number of neurodegenerative diseases in humans including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease. BMAA has been found to be produced by a range of cyanobacteria, diatoms, and dinoflagellates worldwide, and is present in freshwater, saltwater, and terrestrial ecosystems. Surface scum samples were collected from waterways in rural and urban New South Wales, Australia and algal species identified. Reverse phase liquid chromatography-tandem mass spectrometry was used to analyse sixteen cyanobacterial scum for the presence of BMAA as well as its toxic structural isomer 2,4-diaminobutyric acid (2,4-DAB). BMAA was detected in ten of the samples analysed, and 2,4-DAB in all sixteen. The presence of these toxins in water used for agriculture raises concerns for public health and food security in Australia.
Collapse
Affiliation(s)
- Brendan J Main
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Lee C Bowling
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia; DPI Water, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - David P Bishop
- Elemental Bio-imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Gilles J Guillemin
- MND Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
9
|
Regueiro J, Negreira N, Carreira-Casais A, Pérez-Lamela C, Simal-Gándara J. Dietary exposure and neurotoxicity of the environmental free and bound toxin β- N -methylamino- l -alanine. Food Res Int 2017; 100:1-13. [DOI: 10.1016/j.foodres.2017.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
10
|
Chernoff N, Hill DJ, Diggs DL, Faison BD, Francis BM, Lang JR, Larue MM, Le TT, Loftin KA, Lugo JN, Schmid JE, Winnik WM. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:1-47. [PMID: 28598725 PMCID: PMC6503681 DOI: 10.1080/10937404.2017.1297592] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer's disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.
Collapse
Affiliation(s)
- N. Chernoff
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. J. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. L. Diggs
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - B. D. Faison
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA
| | - B. M. Francis
- Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - J. R Lang
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - M. M. Larue
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - T.-T. Le
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | | | - J. N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - J. E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - W. M. Winnik
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
11
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
12
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
13
|
Karlsson O, Michno W, Ransome Y, Hanrieder J. MALDI imaging delineates hippocampal glycosphingolipid changes associated with neurotoxin induced proteopathy following neonatal BMAA exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:740-746. [PMID: 27956354 DOI: 10.1016/j.bbapap.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
The environmental toxin β-N-methylamino-L-alanine (BMAA) has been proposed to contribute to neurodegenerative diseases. We have previously shown that neonatal exposure to BMAA results in dose-dependent cognitive impairments, proteomic alterations and progressive neurodegeneration in the hippocampus of adult rats. A high BMAA dose (460mg/kg) also induced intracellular fibril formation, increased protein ubiquitination and enrichment of proteins important for lipid transport and metabolism. The aim of this study was therefore to elucidate the role of neuronal lipids in BMAA-induced neurodegeneration. By using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we characterized the spatial lipid profile in the hippocampus of six month-old rats that were treated neonatally (postnatal days 9-10) with 460mg/kg BMAA. Multivariate statistical analysis revealed long-term changes in distinct ganglioside species (GM, GD, GT) in the dentate gyrus. These changes could be a consequence of direct effects on ganglioside biosynthesis through the b-series (GM3-GD3-GD2-GD1b-GT1b) and may be linked to astrogliosis. Complementary immunohistochemistry experiments towards GFAP and S100β further verified the role of increased astrocyte activity in BMAA-induced brain damage. This highlights the potential of imaging MS for probing chemical changes associated with neuropathological mechanisms in situ. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden; Department of Pharmaceutical Biosciences, Toxicology and Drug Safety, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80 Mölndal, Sweden
| | - Yusuf Ransome
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80 Mölndal, Sweden; Department of Chemistry and Chemical Engineering, Analytical Chemistry, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
14
|
|
15
|
BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon 2016; 109:45-50. [DOI: 10.1016/j.toxicon.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 12/23/2022]
|
16
|
Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain. Sci Rep 2015; 5:15570. [PMID: 26498001 PMCID: PMC4620439 DOI: 10.1038/srep15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.
Collapse
|
17
|
Berntzon L, Ronnevi L, Bergman B, Eriksson J. Detection of BMAA in the human central nervous system. Neuroscience 2015; 292:137-47. [DOI: 10.1016/j.neuroscience.2015.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
|
18
|
Chiu AS, Braidy N, Marçal H, Welch JH, Gehringer MM, Guillemin GJ, Neilan BA. Global cellular responses to β-methyl-amino-L-alanine (BMAA) by olfactory ensheathing glial cells (OEC). Toxicon 2015; 99:136-45. [PMID: 25797319 DOI: 10.1016/j.toxicon.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 01/15/2023]
Abstract
This study utilised a proteomics approach to identify any differential protein expression in a glial cell line, rat olfactory ensheathing cells (OECs), treated with the cyanotoxin β-methylamino-l-alanine (BMAA). Five proteins of interest were identified, namely Rho GDP-dissociation inhibitor 1 (RhoGDP1), Nck-associated protein 1 (NCKAP1), voltage-dependent anion-selective channel protein 1 (VDAC1), 3-hydroxyacyl-CoA dehydrogenase type-2 (3hCoAdh2), and ubiquilin-4 (UBQLN4). Four of these candidates, nuclear receptor subfamily 4 group A member 1 (Nur77), cyclophilin A (CyPA), RhoGDP1 and VDAC1, have been reported to be involved in cell growth. A microarray identified UBQLN4, palladin and CyPA, which have been implicated to have roles in excitotoxicity. Moreover, the NCKAP1, UBQLN4, CyPA and 3hCoAdh2 genes have been associated with abnormal protein aggregation. Differential expression of genes involved in mitochondrial activity, Nur77, 3hCoAdh2, VDAC1 and UBQLN4, were also identified. Confirmatory reverse transcription quantitative PCR (RT-qPCR) analysis of transcripts generated from the genes of interest corroborated the differential expression trends identified in the global protein analysis. BMAA induced cell cycle arrest in the G2/M phase of OEC and apoptosis after 48 h at concentrations of 250 μM and 500 μM. Collectively, this work advances our understanding of the mechanism of BMAA-mediated glial-toxicity in vitro.
Collapse
Affiliation(s)
- Alexander S Chiu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Helder Marçal
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Jeffrey H Welch
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Michelle M Gehringer
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
19
|
Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets. Sci Rep 2014; 4:6931. [PMID: 25373604 PMCID: PMC5381377 DOI: 10.1038/srep06931] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01–0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments.
Collapse
|
20
|
Delzor A, Couratier P, Boumédiène F, Nicol M, Druet-Cabanac M, Paraf F, Méjean A, Ploux O, Leleu JP, Brient L, Lengronne M, Pichon V, Combès A, El Abdellaoui S, Bonneterre V, Lagrange E, Besson G, Bicout DJ, Boutonnat J, Camu W, Pageot N, Juntas-Morales R, Rigau V, Masseret E, Abadie E, Preux PM, Marin B. Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme. BMJ Open 2014; 4:e005528. [PMID: 25180055 PMCID: PMC4156816 DOI: 10.1136/bmjopen-2014-005528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS. METHODS AND ANALYSIS The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case-control study, in the subpopulation living in the identified areas, will gather information about patients' occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls. ETHICS AND DISSEMINATION The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Aurélie Delzor
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Philippe Couratier
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Farid Boumédiène
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Marie Nicol
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Michel Druet-Cabanac
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - François Paraf
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Annick Méjean
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Olivier Ploux
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Jean-Philippe Leleu
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Luc Brient
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Marion Lengronne
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Saïda El Abdellaoui
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Vincent Bonneterre
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
| | - Emmeline Lagrange
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Dominique J Bicout
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
- Biomathematics and Epidemiology, Environment and Health Prediction in Populations (EPSP), VetAgro Sup, Marcy-l'Etoile, France
| | - Jean Boutonnat
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - William Camu
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Nicolas Pageot
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Raul Juntas-Morales
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Valérie Rigau
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Estelle Masseret
- UMR 5119 ECOSYM, Ecology of Coastal Marine Systems, UM2-CNRS-IRD-Ifremer-UM1, University Montpellier II, Montpellier, France
| | - Eric Abadie
- Environment Resources Laboratory/Languedoc-Roussillon, Ifremer, Sète, France
| | - Pierre-Marie Preux
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Benoît Marin
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| |
Collapse
|
21
|
Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins (Basel) 2014; 6:1109-38. [PMID: 24662480 PMCID: PMC3968380 DOI: 10.3390/toxins6031109] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work.
Collapse
|
22
|
Non-protein amino acids and neurodegeneration: the enemy within. Exp Neurol 2013; 253:192-6. [PMID: 24374297 DOI: 10.1016/j.expneurol.2013.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Animals, in common with plants and microorganisms, synthesise proteins from a pool of 20 protein amino acids (plus selenocysteine and pyrolysine) (Hendrickson et al., 2004). This represents a small proportion (~2%) of the total number of amino acids known to exist in nature (Bell, 2003). Many 'non-protein' amino acids are synthesised by plants, and in some cases constitute part of their chemical armoury against pathogens, predators or other species competing for the same resources (Fowden et al., 1967). Microorganisms can also use selectively toxic amino acids to gain advantage over competing organisms (Nunn et al., 2010). Since non-protein amino acids (and imino acids) are present in legumes, fruits, seeds and nuts, they are ubiquitous in the diets of human populations around the world. Toxicity to humans is unlikely to have been the selective force for their evolution, but they have the clear potential to adversely affect human health. In this review we explore the links between exposure to non-protein amino acids and neurodegenerative disorders in humans. Environmental factors play a major role in these complex disorders which are predominantly sporadic (Coppede et al., 2006). The discovery of new genes associated with neurodegenerative diseases, many of which code for aggregation-prone proteins, continues at a spectacular pace but little progress is being made in identifying the environmental factors that impact on these disorders. We make the case that insidious entry of non-protein amino acids into the human food chain and their incorporation into protein might be contributing significantly to neurodegenerative damage.
Collapse
|
23
|
Bradley WG, Borenstein AR, Nelson LM, Codd GA, Rosen BH, Stommel EW, Cox PA. Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative diseases? Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:325-33. [PMID: 23286757 DOI: 10.3109/21678421.2012.750364] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS) is caused by gene-environment interactions. Mutations in genes underlying familial ALS (fALS) have been discovered in only 5-10% of the total population of ALS patients. Relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron death leading to the syndrome of ALS, although exposure to chemicals including lead and pesticides, and to agricultural environments, smoking, certain sports, and trauma have all been identified with an increased risk of ALS. There is a need for research to quantify the relative roles of each of the identified risk factors for ALS. Recent evidence has strengthened the theory that chronic environmental exposure to the neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) produced by cyanobacteria may be an environmental risk factor for ALS. Here we describe methods that may be used to assess exposure to cyanobacteria, and hence potentially to BMAA, namely an epidemiologic questionnaire and direct and indirect methods for estimating the cyanobacterial load in ecosystems. Rigorous epidemiologic studies could determine the risks associated with exposure to cyanobacteria, and if combined with genetic analysis of ALS cases and controls could reveal etiologically important gene-environment interactions in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Karlsson O, Berg AL, Lindström AK, Hanrieder J, Arnerup G, Roman E, Bergquist J, Lindquist NG, Brittebo EB, Andersson M. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci 2012; 130:391-404. [PMID: 22872059 PMCID: PMC3498744 DOI: 10.1093/toxsci/kfs241] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) has been proposed to contribute to neurodegenerative disease. We have previously reported a selective uptake of BMAA in the mouse neonatal hippocampus and that exposure during the neonatal period causes learning and memory impairments in adult rats. The aim of this study was to characterize effects in the brain of 6-month-old rats treated neonatally (postnatal days 9–10) with the glutamatergic BMAA. Protein changes were examined using the novel technique Matrix-Assisted Laser Desorption Ionization (MALDI) imaging mass spectrometry (IMS) for direct imaging of proteins in brain cryosections, and histological changes were examined using immunohistochemistry and histopathology. The results showed long-term changes including a decreased expression of proteins involved in energy metabolism and intracellular signaling in the adult hippocampus at a dose (150mg/kg) that gave no histopathological lesions in this brain region. Developmental exposure to a higher dose (460mg/kg) also induced changes in the expression of S100β, histones, calcium- and calmodulin-binding proteins, and guanine nucleotide-binding proteins. At this dose, severe lesions in the adult hippocampus including neuronal degeneration, cell loss, calcium deposits, and astrogliosis were evident. The data demonstrate subtle, sometimes dose-dependent, but permanent effects of a lower neonatal dose of BMAA in the adult hippocampus suggesting that BMAA could potentially disturb many processes during the development. The detection of BMAA in seafood stresses the importance of evaluating the magnitude of human exposure to this neurotoxin.
Collapse
Affiliation(s)
- Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Caller TA, Field NC, Chipman JW, Shi X, Harris BT, Stommel EW. Spatial clustering of amyotrophic lateral sclerosis and the potential role of BMAA. ACTA ACUST UNITED AC 2012; 13:25-32. [PMID: 22214351 DOI: 10.3109/17482968.2011.621436] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative syndrome which has no known cause, except for a small proportion of cases which are genetically inherited. The development of ALS likely involves both genetic and environmental risk factors. Environmental risk factors implicated in ALS have included heavy metals, trauma, pesticides, electrical injuries, electromagnetic radiation and the cyanobacterial-derived neurotoxin beta-N-methylamino-L-alanine (BMAA). To investigate possible environmental risks, a number of epidemiological studies of ALS have been conducted. Some of these studies employ spatial analysis techniques that examine for spatial clusters of ALS and can help guide further research into identifying environmental exposures. Despite identifying geographical disparities in the distribution of ALS cases, these studies have not provided any clear associations with environmental factors. We review the literature on important studies of spatial clustering of ALS and explore the hypothesized link between the neurotoxin BMAA and ALS.
Collapse
Affiliation(s)
- Tracie A Caller
- Department of Neurology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr., Lebanon, New Hampshire 03753, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Holtcamp W. The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A110-6. [PMID: 22382274 PMCID: PMC3295368 DOI: 10.1289/ehp.120-a110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
27
|
Chiu AS, Gehringer MM, Welch JH, Neilan BA. Does α-amino-β-methylaminopropionic acid (BMAA) play a role in neurodegeneration? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3728-46. [PMID: 22016712 PMCID: PMC3194113 DOI: 10.3390/ijerph8093728] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
The association of α-amino-β-methylaminopropionic acid (BMAA) with elevated incidence of amyotrophic lateral sclerosis/Parkinson’s disease complex (ALS/PDC) was first identified on the island of Guam. BMAA has been shown to be produced across the cyanobacterial order and its detection has been reported in a variety of aquatic and terrestrial environments worldwide, suggesting that it is ubiquitous. Various in vivo studies on rats, mice, chicks and monkeys have shown that it can cause neurodegenerative symptoms such as ataxia and convulsions. Zebrafish research has also shown disruption to neural development after BMAA exposure. In vitro studies on mice, rats and leeches have shown that BMAA acts predominantly on motor neurons. Observed increases in the generation of reactive oxygen species (ROS) and Ca2+ influx, coupled with disruption to mitochondrial activity and general neuronal death, indicate that the main mode of activity is via excitotoxic mechanisms. The current review pertaining to the neurotoxicity of BMAA clearly demonstrates its ability to adversely affect neural tissues, and implicates it as a potentially significant compound in the aetiology of neurodegenerative disease. When considering the potential adverse health effects upon exposure to this compound, further research to better understand the modes of toxicity of BMAA and the environmental exposure limits is essential.
Collapse
Affiliation(s)
- Alexander S Chiu
- The School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
28
|
Early hippocampal cell death, and late learning and memory deficits in rats exposed to the environmental toxin BMAA (β-N-methylamino-L-alanine) during the neonatal period. Behav Brain Res 2011; 219:310-20. [PMID: 21315110 DOI: 10.1016/j.bbr.2011.01.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/29/2011] [Indexed: 11/22/2022]
Abstract
We have reported previously that exposure to the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) during the neonatal period causes cognitive impairments in adult rats. The aim of this study was to investigate the long-term effects of neonatal BMAA exposure on learning and memory mechanisms and to identify early morphological changes in the neonatal brain. BMAA was injected subcutaneously in rat pups on postnatal days 9-10. BMAA (50 and 200 mg/kg) caused distinct deficits in spatial learning and memory in adult animals but no morphological changes. No impairment of recognition memory was detected, suggesting that neonatal exposure to BMAA preferentially affects neuronal systems that are important for spatial tasks. Histopathological examination revealed early neuronal cell death as determined by TUNEL staining in the hippocampus 24 h after a high dose (600 mg/kg) of BMAA whereas no changes were observed at lower doses (50 and 200 mg/kg). In addition, there was a low degree of neuronal cell death in the retrosplenial and cingulate cortices, areas that are also important for cognitive function. Taken together, these results indicate that BMAA is a developmental neurotoxin inducing long-term changes in cognitive function. The risk posed by BMAA as a potential human neurotoxin merits further consideration, particularly if the proposed biomagnifications in the food chain are confirmed.
Collapse
|
29
|
Lee M, McGeer PL. Weak BMAA toxicity compares with that of the dietary supplement β-alanine. Neurobiol Aging 2011; 33:1440-7. [PMID: 21236519 DOI: 10.1016/j.neurobiolaging.2010.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/30/2010] [Indexed: 11/30/2022]
Abstract
β-N-methylamino-L-alanine (BMAA) is routinely described in the literature as a potent neurotoxin and as a possible cause of neurodegenerative disorders of aging such as Alzheimer's disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. To test for the toxicity of BMAA against human neurons, we chose 3 standard human neuronal cell lines for examination and compared the toxicity with the muscle-building nutritional supplement β-alanine, glutamic acid, and the established excitotoxins kainic acid, quisqualic acid, ibotenic acid, domoic acid, and quinolinic acid. Neurotoxicity was measured by the standard lactic dehydrogenase release assay after 5-day incubation of NT-2, SK-N-MC, and SH-SY5Y cells with BMAA and the comparative substances. The ED(50) of BMAA, corresponding to 50% death of neurons, varied from 1430 to 1604 μM while that of the nutritional supplement β-alanine was almost as low, varying from 1945 to 2134 μM. The ED(50) for glutamic acid and the 5 established excitotoxins was 200- to 360-fold lower, varying from 44 to 70 μM. These in vitro data are in accord with previously published in vivo data on BMAA toxicity in which mice showed no pathological effects from oral consumption of 500 mg/kg/day for more than 10 weeks. Because there are no known natural sources of BMAA that would make consumption of such amounts possible, and because the toxicity observed was in the same range as the nutritional supplement β-alanine, the hypothesis that BMAA is an environmental hazard and a contributor to degenerative neurological diseases becomes untenable.
Collapse
Affiliation(s)
- Moonhee Lee
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
30
|
Excitatory amino acid beta-N-methylamino-L-alanine is a putative environmental neurotoxin. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100629047l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The amino acid beta-N-methylamino-L-alanine (L-BMAA) has been associated with
the amyotrophic lateral sclerosis/parkinsonismdementia complex in three
distinct western Pacific populations. The putative neurotoxin is produced by
cyanobacteria, which live symbiotically in the roots of cycad trees. L-BMAA
was thought to be a threat only to those few populations whose diet and
medicines rely heavily on cycad seeds. However, the recent discovery that
cyanobacteria from diverse terrestrial, freshwater, and saltwater ecosystems
around the world produce the toxin requires a reassessment of whether it
poses a larger health threat. Therefore, it is proposed that monitoring
L-BMAA levels in cyanobacteria-contaminated water supplies might be prudent.
Collapse
|
31
|
The cyanobacteria derived toxin Beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis. Toxins (Basel) 2010; 2:2837-50. [PMID: 22069578 PMCID: PMC3153186 DOI: 10.3390/toxins2122837] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 12/14/2022] Open
Abstract
There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis). The non-protein amino acid beta-N-methylamino-L-alanine (BMAA) was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin.
Collapse
|
32
|
β-N-methylamino-L-alanine induces neurological deficits and shortened life span in Drosophila. Toxins (Basel) 2010; 2:2663-79. [PMID: 22069570 PMCID: PMC3153171 DOI: 10.3390/toxins2112663] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 01/10/2023] Open
Abstract
The neurotoxic non-protein amino acid, β-N-methylamino-L-alanine (BMAA), was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam. Recently, BMAA has been implicated as a fierce environmental factor that contributes to the etiology of Alzheimer’s and Parkinson’s diseases, in addition to ALS. However, the toxicity of BMAA in vivo has not been clearly demonstrated. Here we report our investigation of the neurotoxicity of BMAA in Drosophila. We found that dietary intake of BMAA reduced life span, locomotor functions, and learning and memory abilities in flies. The severity of the alterations in phenotype is correlated with the concentration of BMAA detected in flies. Interestingly, developmental exposure to BMAA had limited impact on survival rate, but reduced fertility in females, and caused delayed neurological impairment in aged adults. Our studies indicate that BMAA exposure causes chronic neurotoxicity, and that Drosophila serves as a useful model in dissecting the pathogenesis of ALS/PDC.
Collapse
|
33
|
Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci U S A 2010; 107:9252-7. [PMID: 20439734 DOI: 10.1073/pnas.0914417107] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-methylamino-L-alanine (BMAA), a neurotoxic nonprotein amino acid produced by most cyanobacteria, has been proposed to be the causative agent of devastating neurodegenerative diseases on the island of Guam in the Pacific Ocean. Because cyanobacteria are widespread globally, we hypothesized that BMAA might occur and bioaccumulate in other ecosystems. Here we demonstrate, based on a recently developed extraction and HPLC-MS/MS method and long-term monitoring of BMAA in cyanobacterial populations of a temperate aquatic ecosystem (Baltic Sea, 2007-2008), that BMAA is biosynthesized by cyanobacterial genera dominating the massive surface blooms of this water body. BMAA also was found at higher concentrations in organisms of higher trophic levels that directly or indirectly feed on cyanobacteria, such as zooplankton and various vertebrates (fish) and invertebrates (mussels, oysters). Pelagic and benthic fish species used for human consumption were included. The highest BMAA levels were detected in the muscle and brain of bottom-dwelling fishes. The discovery of regular biosynthesis of the neurotoxin BMAA in a large temperate aquatic ecosystem combined with its possible transfer and bioaccumulation within major food webs, some ending in human consumption, is alarming and requires attention.
Collapse
|
34
|
Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. ACTA ACUST UNITED AC 2010; 10 Suppl 2:7-20. [PMID: 19929726 DOI: 10.3109/17482960903286009] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excitement about neurogenetics in the last two decades has diverted attention from environmental causes of sporadic ALS. Fifty years ago endemic foci of ALS with a frequency one hundred times that in the rest of the world attracted attention since they offered the possibility of finding the cause for non-endemic ALS throughout the world. Research on Guam suggested that ALS, Parkinson's disease and dementia (the ALS/PDC complex) was due to a neurotoxic non-protein amino acid, beta-methylamino-L-alanine (BMAA), in the seeds of the cycad Cycas micronesica. Recent discoveries that found that BMAA is produced by symbiotic cyanobacteria within specialized roots of the cycads; that the concentration of protein-bound BMAA is up to a hundred-fold greater than free BMAA in the seeds and flour; that various animals forage on the seeds (flying foxes, pigs, deer), leading to biomagnification up the food chain in Guam; and that protein-bound BMAA occurs in the brains of Guamanians dying of ALS/PDC (average concentration 627 microg/g, 5 mM) but not in control brains have rekindled interest in BMAA as a possible trigger for Guamanian ALS/PDC. Perhaps most intriguing is the finding that BMAA is present in brain tissues of North American patients who had died of Alzheimer's disease (average concentration 95 microg/g, 0.8mM); this suggests a possible etiological role for BMAA in non-Guamanian neurodegenerative diseases. Cyanobacteria are ubiquitous throughout the world, so it is possible that all humans are exposed to low amounts of cyanobacterial BMAA, that protein-bound BMAA in human brains is a reservoir for chronic neurotoxicity, and that cyanobacterial BMAA is a major cause of progressive neurodegenerative diseases including ALS worldwide. Though Montine et al., using different HPLC method and assay techniques from those used by Cox and colleagues, were unable to reproduce the findings of Murch et al., Mash and colleagues using the original techniques of Murch et al. have recently confirmed the presence of protein-bound BMAA in the brains of North American patients dying with ALS and Alzheimer's disease (concentrations >100 microg/g) but not in the brains of non-neurological controls or Huntington's disease. We hypothesize that individuals who develop neurodegenerations may have a genetic susceptibility because of inability to prevent BMAA accumulation in brain proteins and that the particular pattern of neurodegeneration that develops depends on the polygenic background of the individual.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, 1120 NW 14 Street, Miami, FL 33136, USA.
| | | |
Collapse
|
35
|
Stewart I. Environmental risk factors for temporal lobe epilepsy – Is prenatal exposure to the marine algal neurotoxin domoic acid a potentially preventable cause? Med Hypotheses 2010; 74:466-81. [DOI: 10.1016/j.mehy.2009.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 10/04/2009] [Indexed: 01/29/2023]
|
36
|
Parkinson-dementia complex and development of a new stable isotope dilution assay for BMAA detection in tissue. Toxicol Appl Pharmacol 2009; 240:180-8. [PMID: 19716838 DOI: 10.1016/j.taap.2009.06.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 01/19/2023]
Abstract
Beta-methylamino-L-alanine (BMAA) has been proposed as a global contributor to neurodegenerative diseases, including Parkinson-dementia complex (PDC) of Guam and Alzheimer's disease (AD). The literature on the effects of BMAA is conflicting with some but not all in vitro data supporting a neurotoxic action, and experimental animal data failing to replicate the pattern of neurodegeneration of these human diseases, even at very high exposures. Recently, BMAA has been reported in human brain from individuals afflicted with PDC or AD. Some of the BMAA in human tissue reportedly is freely extractable (free) while some is protein-associated and liberated by techniques that hydrolyze the peptide bond. The latter is especially intriguing since BMAA is a non-proteinogenic amino acid that has no known tRNA. We attempted to replicate these findings with techniques similar to those used by others; despite more than adequate sensitivity, we were unable to detect free BMAA. Recently, using a novel stable isotope dilution assay, we again were unable to detect free or protein-associated BMAA in human cerebrum. Here we review the development of our new assay for tissue detection of BMAA and show that we are able to detect free BMAA in liver but not cerebrum, nor do we detect any protein-associated BMAA in mice fed this amino acid. These studies demonstrate the importance of a sensitive and specific assay for tissue BMAA and seriously challenge the proposal that BMAA is accumulating in human brain.
Collapse
|
37
|
Karlsson O, Roman E, Brittebo EB. Long-term Cognitive Impairments in Adult Rats Treated Neonatally with β-N-Methylamino-L-Alanine. Toxicol Sci 2009; 112:185-95. [DOI: 10.1093/toxsci/kfp196] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|