1
|
Ghasemi A, Hadei SJ, KamaliZonouzi S, Shahrokhi A, Najmabadi H, Nafissi S. Clinical and genetic diversity in Iranian individuals with RAPSN-related congenital myasthenic syndrome. Neurogenetics 2024; 26:9. [PMID: 39589458 DOI: 10.1007/s10048-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
Congenital myasthenic syndromes (CMSs) are genetic disorders affecting motor function with variable symptoms. RAPSN-related CMS, caused by mutations in the RAPSN gene, leads to muscle weakness. Accurate diagnosis is essential for proper management. This study aims to analyze six Iranian families affected by RAPSN-CMS, focusing on clinical manifestations, genetic variants, treatment response, and outcomes. Clinical assessments, genetic analysis, and whole-exome sequencing were performed on the six families to identify RAPSN gene mutations. The study examined symptoms, disease severity, age of onset, treatment response, and outcomes. Treatment with pyridostigmine and salbutamol was given to assess its effectiveness. Three homozygous known variants in RAPSN gene were identified: c.491G > A in three families, c.264 C > A in two families, and c.-210 A > G in one family. Clinical assessments showed diversity in symptoms and treatment responses. Pyridostigmine and salbutamol treatment improved symptoms and quality of life. This study highlights the significance of molecular diagnosis for RAPSN-related congenital myasthenic syndromes (CMS) in Iran, marking the first comprehensive genetic analysis in the region. The identification of specific pathogenic variants underscores the unique genetic landscape of local patients. Furthermore, our long-term follow-up revealed variable treatment responses, emphasizing the need for personalized care strategies. The clinical variability among patients with identical mutations necessitates a multidisciplinary approach for effective management. By enhancing genetic awareness and refining follow-up methods, we aim to improve diagnosis accuracy and interventions, fostering better outcomes for affected families in the Iranian population.
Collapse
Affiliation(s)
- Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalaleddin Hadei
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara KamaliZonouzi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Shahrokhi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Batheja A, Bayer-Vile J, Silverstein E, Couser N. Congenital Myasthenic Syndrome associated with acetylcholine receptor deficiency: case report and review of the literature. Ophthalmic Genet 2024; 45:481-487. [PMID: 38832364 DOI: 10.1080/13816810.2024.2352391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Congenital Myasthenic Syndromes are a diverse group of conditions with a broad array of genetic underpinnings and phenotypic presentations. Acetylcholine receptor deficiency is one form that usually involves pathogenic variants in the Cholinergic Receptor Nicotinic Epsilon Subunit (CHRNE) gene encoding the ɛ-subunit of the acetylcholine receptor. METHODS We report a case of a 4-year-old male with suspected Congenital Myasthenic Syndrome with Acetylcholine Receptor Deficiency who presented with ocular symptoms and generalized muscle weakness. We additionally summarize published findings regarding the genetic, phenotypic, and clinical considerations of Congenital Myasthenic Syndrome with Acetylcholine Receptor Deficiency. RESULTS Exome sequencing revealed biallelic variants in CHRNE gene with a pathogenic frameshift variant and a variant of uncertain significance. After suboptimal response to pyridostigmine and albuterol, the patient experienced benefit with 3,4-DAP. The most commonly reported clinical characteristics in the literature are ptosis, muscle fatigability or weakness, and ophthalmoplegia. CONCLUSION We present the case of a patient with biallelic variants in CHRNE gene including a variant of uncertain significance. Evaluation of variants of this gene, including the variant of uncertain significance identified in this case report, through further cases and studies may improve our understanding of Congenital Myasthenic Syndrome with Acetylcholine Receptor deficiency.
Collapse
Affiliation(s)
- Aashish Batheja
- School of Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Julie Bayer-Vile
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Evan Silverstein
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Natario Couser
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Smeets N, Gheldof A, Dequeker B, Poleur M, Maldonado Slootjes S, Van Parijs V, Deconinck N, Dontaine P, Alonso-Jimenez A, De Bleecker J, De Ridder W, Herdewyn S, Paquay S, Vanlander A, De Waele L, Peirens G, Beysen D, Claeys KG, Dubuisson N, Hansen I, Remiche G, Seneca S, Bissay V, Régal L. Congenital Myasthenic Syndromes in Belgium: Genetic and Clinical Characterization of Pediatric and Adult Patients. Pediatr Neurol 2024; 158:57-65. [PMID: 38964204 DOI: 10.1016/j.pediatrneurol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are a group of genetic disorders characterized by impaired neuromuscular transmission. CMS typically present at a young age with fatigable muscle weakness, often with an abnormal response after repetitive nerve stimulation (RNS). Pharmacologic treatment can improve symptoms, depending on the underlying defect. Prevalence is likely underestimated. This study reports on patients with CMS followed in Belgium in 2022. METHODS Data were gathered retrospectively from the medical charts. Only likely pathogenic and pathogenic variants were included in the analysis. RESULTS We identified 37 patients, resulting in an estimated prevalence of 3.19 per 1,000,000. The patients harbored pathogenic variants in CHRNE, RAPSN, DOK7, PREPL, CHRNB1, CHRNG, COLQ, MUSK, CHRND, GFPT1, and GMPPB. CHRNE was the most commonly affected gene. Most patients showed disease onset at birth, during infancy, or during childhood. Symptom onset was at adult age in seven patients, caused by variants in CHRNE, DOK7, MUSK, CHRND, and GMPPB. Severity and distribution of weakness varied, as did the presence of respiratory involvement, feeding problems, and extraneuromuscular manifestations. RNS was performed in 23 patients of whom 18 demonstrated a pathologic decrement. Most treatment responses were predictable based on the genotype. CONCLUSIONS This is the first pooled characterization of patients with CMS in Belgium. We broaden the phenotypical spectrum of pathogenic variants in CHRNE with adult-onset CMS. Systematically documenting larger cohorts of patients with CMS can aid in better clinical characterization and earlier recognition of this rare disease. We emphasize the importance of establishing a molecular genetic diagnosis to tailor treatment choices.
Collapse
Affiliation(s)
- Nathalie Smeets
- Child Neurology Unit, Department of Pediatrics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium.
| | - Alexander Gheldof
- Center of Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bart Dequeker
- Center of Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Margaux Poleur
- University Department of Neurology, Citadelle Hospital of Liège, Liège, Belgium
| | | | - Vinciane Van Parijs
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Queen Fabiola Children's University Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Pauline Dontaine
- Department of Pediatric Neurology, Queen Fabiola Children's University Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Alicia Alonso-Jimenez
- Department of Neurology, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Jan De Bleecker
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Willem De Ridder
- Department of Neurology, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Herdewyn
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Stéphanie Paquay
- Department of Neuropediatrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolic Diseases, Ghent University Hospital, Ghent, Belgium
| | - Liesbeth De Waele
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Geertrui Peirens
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Diane Beysen
- Department of Pediatric Neurology, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Nicolas Dubuisson
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Hansen
- Department of Neurology, University of Liège, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Gauthier Remiche
- Department of Neurology, Hôpital Universitaire de Bruxelles - Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sara Seneca
- Center of Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Véronique Bissay
- NEUR Research Group and Department of Neurology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Luc Régal
- Child Neurology Unit, Department of Pediatrics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Zhang Z, Zhang X, Xue H, Chu L, Hu L, Bi X, Zhu P, Zhang D, Chen J, Cui X, Kong L, Liang B, Wu X. Preimplantation genetic testing as a means of preventing hereditary congenital myasthenic syndrome caused by RAPSN. Mol Genet Genomic Med 2024; 12:e2409. [PMID: 38511267 PMCID: PMC10955331 DOI: 10.1002/mgg3.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Congenital myasthenic syndrome is a heterogeneous group of inherited neuromuscular transmission disorders. Variants in RAPSN are a common cause of CMS, accounting for approximately 14%-27% of all CMS cases. Whether preimplantation genetic testing for monogenic disease (PGT-M) could be used to prevent the potential birth of CMS-affected children is unclear. METHODS Application of WES (whole-exome sequencing) for carrier testing and guidance for the PGT-M in the absence of a genetically characterized index patient as well as assisted reproductive technology were employed to prevent the occurrence of birth defects in subsequent pregnancy. The clinical phenotypes of stillborn fetuses were also assessed. RESULTS The family carried two likely pathogenic variants in RAPSN(NM_005055.5): c.133G>A (p.V45M) and c.280G>A (p.E94K). And the potential birth of CMS-affected child was successfully prevented, allowing the family to have offspring devoid of disease-associated variants and exhibiting a normal phenotype. CONCLUSION This report constitutes the first documented case of achieving a CMS-free offspring through PGT-M in a CMS-affected family. By broadening the known variant spectrum of RAPSN in the Chinese population, our findings underscore the feasibility and effectiveness of PGT-M for preventing CMS, offering valuable insights for similarly affected families.
Collapse
Affiliation(s)
- Zhiping Zhang
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Xueluo Zhang
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Huiqin Xue
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Liming Chu
- Basecare Medical Device Co., LtdSuzhouChina
| | - Lina Hu
- Basecare Medical Device Co., LtdSuzhouChina
| | - Xingyu Bi
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Pengfei Zhu
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Dongdong Zhang
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Jiayao Chen
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | - Xiangrong Cui
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| | | | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xueqing Wu
- Center of Reproductive MedicineAffiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine UniversityTaiyuanShanxiChina
| |
Collapse
|
5
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
6
|
An R, Chen H, Lei S, Li Y, Xu Y, He C. Abnormal decrement on high-frequency repetitive nerve stimulation in congenital myasthenic syndrome with GFPT1 mutations and review of literature. Front Neurol 2022; 13:926786. [PMID: 36188410 PMCID: PMC9520358 DOI: 10.3389/fneur.2022.926786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of inherited disorders characterized by neuromuscular junction defects. Mutations in GFPT1 have been shown to underlie CMS. An increasing number of patients with CMS due to mutations in GFPT1 have been reported. However, a comprehensive review of clinical and genetic analyses of GFPT-related CMS worldwide is lacking, especially, given that the common or hotspot mutations in GFPT1 have not been reported. Here, we described the clinical and genetic findings of three patients with GFPT1 mutations from southwestern China and reviewed the clinical and genetic features of patients with GFPT1-related CMS worldwide. Methods Clinical, laboratory, electrophysiological, myopathological, and genetic analyses of three patients with GFPT1-related CMS from southwestern China were conducted, and a review of previously published or reported cases about congenital myasthenic syndrome with GFPT1 mutations in the PubMed database was made. Results The clinical, laboratory, electrophysiological, and myopathological features by muscle biopsy of three patients with GFPT1-related CMS were consistent with those of previously reported patients with GFPT1 mutations. Additionally, an abnormal decrement in high-frequency RNS was found. Two different homozygous missense mutations (c.331C>T, p.R111C; c.44C>T, p.T15M) were detected by whole-exome sequencing (WES) or targeted neuromuscular disorder gene panels. Conclusion A distinct decremental response to high-frequency RNS was found in three patients with GFPT1-related CMS from southwestern China, which has never been reported thus far. In addition, the location and degree of tubular aggregates (TAs) seemed to be associated with the severity of clinical symptoms and serum creatine kinase levels, further expanding the phenotypic spectrum of GFPT1-related CMS. Lastly, some potential hotspot mutations in GFPT1 have been found in GFPT1-CMS worldwide.
Collapse
Affiliation(s)
- Ran An
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yanming Xu
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
- Chengqi He
| |
Collapse
|
7
|
Zou S, Pan BX. Post-synaptic specialization of the neuromuscular junction: junctional folds formation, function, and disorders. Cell Biosci 2022; 12:93. [PMID: 35718785 PMCID: PMC9208267 DOI: 10.1186/s13578-022-00829-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/05/2022] [Indexed: 11/14/2022] Open
Abstract
Post-synaptic specialization is critical to the neurotransmitter release and action potential conduction. The neuromuscular junctions (NMJs) are the synapses between the motor neurons and muscle cells and have a more specialized post-synaptic membrane than synapses in the central nervous system (CNS). The sarcolemma within NMJ folded to form some invagination portions called junctional folds (JFs), and they have important roles in maintaining the post-synaptic membrane structure. The NMJ formation and the acetylcholine receptor (AChR) clustering signal pathway have been extensively studied and reviewed. Although it has been suggested that JFs are related to maintaining the safety factor of neurotransmitter release, the formation mechanism and function of JFs are still unclear. This review will focus on the JFs about evolution, formation, function, and disorders. Anticipate understanding of where they are coming from and where we will study in the future.
Collapse
Affiliation(s)
- Suqi Zou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| |
Collapse
|
8
|
Saito M, Ogasawara M, Inaba Y, Osawa Y, Nishioka M, Yamauchi S, Atsumi K, Takeuchi S, Imai K, Motobayashi M, Misawa Y, Iida A, Nishino I. Successful treatment of congenital myasthenic syndrome caused by a novel compound heterozygous variant in RAPSN. Brain Dev 2022; 44:50-55. [PMID: 34565654 DOI: 10.1016/j.braindev.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous neuromuscular disorder characterized by muscle weakness and caused by mutations in more than 35 different genes. This condition should not be overlooked as a subset of patients with CMS are treatable. However, the diagnosis of CMS is often difficult due to the broad variability in disease severity and course. CASE REPORT A five-year-old boy without remarkable family history was born with marked general muscle hypotonia and weakness, respiratory insufficiency, anomalies, and multiple joint contractures. Congenital myopathy was suspected based upon type 1 fiber predominance on muscle biopsy. However, he was diagnosed with CMS at age 4 years when his ptosis and ophthalmoplegia were found to be improved by edrophonium chloride and repetitive nerve stimulation showed attenuation of compound muscle action potentials. An exome sequencing identified a compound heterozygous missense variant of c.737C > T (p.A246V) and a novel intronic insertion c.1166 + 4_1166 + 5insAAGCCCACCAC in RAPSN. RT-PCR analysis which showed the skipping of exon 7 in a skeletal muscle sample confirmed that the intronic insertion was pathogenic. His myasthenic symptoms were remarkably improved by pyridostigmine. CONCLUSION The patient's diagnosis of CMS was confirmed by exome sequencing, and RT-PCR revealed that the skipping of exon 7 in RAPSN was caused by a novel intronic insertion. The genetic information uncovered in this case should therefore be added to the collection of tools for diagnosing and treating CMS.
Collapse
Affiliation(s)
- Maki Saito
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Yuji Inaba
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan.
| | - Yoshihiro Osawa
- Department of Pediatrics, Iida Municipal Hospital, Iida, Japan
| | - Makoto Nishioka
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| | - Shoko Yamauchi
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan
| | - Kana Atsumi
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan
| | - Shihoko Takeuchi
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan
| | - Ken Imai
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan
| | - Mitsuo Motobayashi
- Division of Neuropediatrics, Nagano Children's Hospital, Azumino, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| | - Yuka Misawa
- Division of Rehabilitation, Nagano Children's Hospital, Azumino, Japan
| | | | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| |
Collapse
|
9
|
Ramdas S, Beeson D. Congenital myasthenic syndromes: where do we go from here? Neuromuscul Disord 2021; 31:943-954. [PMID: 34736634 DOI: 10.1016/j.nmd.2021.07.400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Congenital myasthenia syndromes are rare but often treatable conditions affecting neuromuscular transmission. They result from loss or impaired function of one of a number of proteins secondary to a genetic defect. An estimate of the prevalence in the UK gave 9.2 cases per million, however, this is likely an underestimate since the adoption of next generation sequencing for diagnosis away from specialist centres is enhancing the 'pick up' rate. Next generation sequencing has helped identify a series of novel genes that harbour mutations causative for congenital myasthenic syndrome that include not only genes that encode proteins specifically expressed at the neuromuscular junction but also those that are ubiquitously expressed. The list of genes harbouring disease-causing mutations for congenital myasthenic syndrome continues to expand and is now over 30, but with many of the newly identified genes it is increasingly being recognised that abnormal neuromuscular transmission is only one component of a multifaceted phenotype in which muscle, the central nervous system, and other organs may also be affected. Treatment can be tailored to the underlying molecular mechanism for impaired neuromuscular transmission but treating the more complex multifaceted disorders and will require development of new therapies.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular centre, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK.
| |
Collapse
|
10
|
Bai G, Zhang M. Clustering acetylcholine receptors in neuromuscular junction by phase-separated Rapsn condensates. Neuron 2021; 109:1907-1909. [PMID: 34139178 DOI: 10.1016/j.neuron.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this issue of Neuron, Xing et al. (2021) demonstrate that the multidomain scaffold protein Rapsn can form dense molecular condensates in vitro and in vivo via phase separation. The formation of Rapsn condensates is essential for clustering acetylcholine receptors on muscle membranes and for forming neuromuscular junctions.
Collapse
Affiliation(s)
- Guanhua Bai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Xing G, Jing H, Yu Z, Chen P, Wang H, Xiong WC, Mei L. Membraneless condensates by Rapsn phase separation as a platform for neuromuscular junction formation. Neuron 2021; 109:1963-1978.e5. [PMID: 34033754 DOI: 10.1016/j.neuron.2021.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/27/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022]
Abstract
Our daily life depends on muscle contraction, a process that is controlled by the neuromuscular junction (NMJ). However, the mechanisms of NMJ assembly remain unclear. Here we show that Rapsn, a protein critical for NMJ formation, undergoes liquid-liquid phase separation (LLPS) and condensates into liquid-like assemblies. Such assemblies can recruit acetylcholine receptors (AChRs), cytoskeletal proteins, and signaling proteins for postsynaptic differentiation. Rapsn LLPS requires multivalent binding of tetratricopeptide repeats (TPRs) and is increased by Musk signaling. The capacity of Rapsn to condensate and co-condensate with interaction proteins is compromised by mutations of congenital myasthenic syndromes (CMSs). NMJ formation is impaired in mutant mice carrying a CMS-associated, LLPS-deficient mutation. These results reveal a critical role of Rapsn LLPS in forming a synaptic semi-membraneless compartment for NMJ formation.
Collapse
Affiliation(s)
- Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Congenital myasthenic syndromes in the Thai population: Clinical findings and novel mutations. Neuromuscul Disord 2020; 30:851-858. [PMID: 32978031 DOI: 10.1016/j.nmd.2020.08.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
Congenital myasthenic syndromes (CMS) comprise a heterogeneous group of genetic disorders of the neuromuscular junction. Next generation sequencing has been increasingly used for molecular diagnosis in CMS patients. This study aimed to identify the disease-causing variants in Thai patients. We recruited patients with a diagnosis of CMS based on clinical and electrophysiologic findings, and whole exome sequencing was performed. Thirteen patients aged from 2 to 54 years (median: 8 years) from 12 families were enrolled. Variants were identified in 9 of 13 patients (69%). Five novel variants and two previously reported variant were found in the COLQ, RAPSN and CHRND gene. The previously reported c.393+1G>A splice site variant in the COLQ gene was found in a majority of patients. Five patients harbor the homozygous splice site c.393+1G>A variant, and two patients carry compound heterozygous c.393+1G>A, c.718-1G>T, and c.393+1G>A, c.865G>T (p.Gly289Ter) variants. The novel variants were also found in RAPSN (p.Cys251del, p.Arg282Cys) and CHRND (p.Met481del). Molecular diagnosis in CMS patients can guide treatment decisions and may be life changing, especially in patients with COLQ mutations.
Collapse
|
13
|
Lee J, Hong SE. Functional annotation of de novo variants from healthy individuals. Genomics Inform 2019; 17:e46. [PMID: 31896246 PMCID: PMC6944041 DOI: 10.5808/gi.2019.17.4.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022] Open
Abstract
The implications of germline de novo variants (DNVs) in diseases are well documented. Despite extensive research, inconsistencies between studies remain a challenge, and the distribution and genetic characteristics of DNVs need to be precisely evaluated. To address this issue at the whole-genome scale, a large number of DNVs identified from the whole-genome sequencing of 1,902 healthy trios (i.e., parents and progeny) from the Simons Foundation for Autism Research Initiative study and 20 healthy Korean trios were analyzed. These apparently nonpathogenic DNVs were enriched in functional elements of the genome but relatively depleted in regions of common copy number variants, implying their potential function as triggers of evolution even in healthy groups. No strong mutational hotspots were identified. The pathogenicity of the DNVs was not strongly elevated, reflecting the health status of the cohort. The mutational signatures were consistent with previous studies. This study will serve as a reference for future DNV studies.
Collapse
Affiliation(s)
- Jean Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung Eun Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
Xing G, Jing H, Zhang L, Cao Y, Li L, Zhao K, Dong Z, Chen W, Wang H, Cao R, Xiong WC, Mei L. A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome. eLife 2019; 8:e49180. [PMID: 31549961 PMCID: PMC6779466 DOI: 10.7554/elife.49180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Neuromuscular junction is a synapse between motoneurons and skeletal muscles, where acetylcholine receptors (AChRs) are concentrated to control muscle contraction. Studies of this synapse have contributed to our understanding of synapse assembly and pathological mechanisms of neuromuscular disorders. Nevertheless, underlying mechanisms of NMJ formation was not well understood. To this end, we took a novel approach - studying mutant genes implicated in congenital myasthenic syndrome (CMS). We showed that knock-in mice carrying N88K, a prevalent CMS mutation of Rapsyn (Rapsn), died soon after birth with profound NMJ deficits. Rapsn is an adapter protein that bridges AChRs to the cytoskeleton and possesses E3 ligase activity. In investigating how N88K impairs the NMJ, we uncovered a novel signaling pathway by which Agrin-LRP4-MuSK induces tyrosine phosphorylation of Rapsn, which is required for its self-association and E3 ligase activity. Our results also provide insight into pathological mechanisms of CMS.
Collapse
Affiliation(s)
- Guanglin Xing
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Hongyang Jing
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Lei Zhang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Yu Cao
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaUnited States
| | - Lei Li
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Kai Zhao
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaUnited States
| | - Zhaoqi Dong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Wenbing Chen
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Hongsheng Wang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Rangjuan Cao
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandUnited States
| | - Lin Mei
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandUnited States
| |
Collapse
|
15
|
Espinoza IO, Reynoso C, Chávez G, Engel AG. Congenital myasthenic syndrome due to rapsyn deficiency: A case report with a new mutation and compound heterozygosity. Medwave 2019; 19:e7645. [PMID: 31226102 DOI: 10.5867/medwave.2019.05.7645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/19/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction The congenital myasthenic syndromes are a heterogeneous group of genetic disorders characterized by an abnormal synaptic transmission in the neuromuscular plate. Report We present a two-year-old patient, male, with hypotonia, palpebral ptosis, and proximal symmetric weakness with a neonatal onset that motivated several and prolonged hospitalizations for pneumonia and respiratory failure. From two years of age, the parents noticed that the facial and general weakness worsened in the afternoons and with repeated or prolonged physical activity. The physical examination showed palpebral ptosis, predominantly proximal weakness, and fatigability with sustained muscular effort. The electromyography showed a 27% decrement in the Compound Muscular Action Potential and the case-parents genetic study showed compound heterozygosity with the transmission of two different mutations in the rapsyn gene from both parents. The patient received pyridostigmine with great improvement, achieving optimal performance in school, sports, and daily life activities. Conclusions Weakness and fatigability with neonatal onset, mainly affecting the muscles with brain stem innervation and the decrement greater than 10 percent in the Compound Muscular Action Potential in the electromyographic studies, should make us suspect in a congenital myasthenic syndrome. We review the literature and key clinical points to establish a timely diagnosis and effective treatment in some of these syndromes.
Collapse
Affiliation(s)
- Ivan O Espinoza
- Unidad de Neurología Pediátrica, Departamento de Clínicas Médicas, Universidad Peruana Cayetano Heredia, Lima, Perú. Address: Servicio de Especialidades Pediátricas del Hospital Cayetano Heredia, Avenida Honorio Delgado 262, San Martín de Porres, Lima, Perú, CP: 15102.
| | - Carolina Reynoso
- Unidad de Neurología Pediátrica, Departamento de Clínicas Médicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Giulliana Chávez
- Servicio de Especialidades Pediátricas, Departamento de Pediatría, Hospital Cayetano Heredia, Lima, Perú
| | - Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Abstract
OBJECTIVES Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. METHODS Systematic literature review. RESULTS Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. CONCLUSIONS CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
17
|
Targeted therapies for congenital myasthenic syndromes: systematic review and steps towards a treatabolome. Emerg Top Life Sci 2019; 3:19-37. [PMID: 30931400 PMCID: PMC6436731 DOI: 10.1042/etls20180100] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent scientific advances, most rare genetic diseases — including most neuromuscular diseases — do not currently have curative gene-based therapies available. However, in some cases, such as vitamin, cofactor or enzyme deficiencies, channelopathies and disorders of the neuromuscular junction, a confirmed genetic diagnosis provides guidance on treatment, with drugs available that may significantly alter the disease course, improve functional ability and extend life expectancy. Nevertheless, many treatable patients remain undiagnosed or do not receive treatment even after genetic diagnosis. The growth of computer-aided genetic analysis systems that enable clinicians to diagnose their undiagnosed patients has not yet been matched by genetics-based decision-support systems for treatment guidance. Generating a ‘treatabolome’ of treatable variants and the evidence for the treatment has the potential to increase treatment rates for treatable conditions. Here, we use the congenital myasthenic syndromes (CMS), a group of clinically and genetically heterogeneous but frequently treatable neuromuscular conditions, to illustrate the steps in the creation of a treatabolome for rare inherited diseases. We perform a systematic review of the evidence for pharmacological treatment of each CMS type, gathering evidence from 207 studies of over 1000 patients and stratifying by genetic defect, as treatment varies depending on the underlying cause. We assess the strength and quality of the evidence and create a dataset that provides the foundation for a computer-aided system to enable clinicians to gain easier access to information about treatable variants and the evidence they need to consider.
Collapse
|
18
|
Moss HE. Eyelid and Facial Nerve Disorders. LIU, VOLPE, AND GALETTA'S NEURO-OPHTHALMOLOGY 2019:449-488. [DOI: 10.1016/b978-0-323-34044-1.00014-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
PARVIZI OMRAN S, HOUSHMAND M, DOMINIC D, FARJAMI Z, KARIMZADEH P. No Hot Spot Mutations CHRNE c.1327 delG, CHAT c.914T>C, and RAPSN c.264C>A in Iranian Patients with Congenital Myasthenic Syndrome. IRANIAN JOURNAL OF CHILD NEUROLOGY 2019; 13:135-143. [PMID: 31037086 PMCID: PMC6451864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 08/18/2018] [Accepted: 11/18/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES We aimed to perform genetic testing and clinical data of patients with Congenital Myasthenic Syndrome, a rare disorder caused by mutations in genes encoding molecules expressed in the neuromuscular junction and constitutes fatigable muscle weakness. MATERIALS & METHODS Sixteen patients were screened in Taban Clinic, Tehran, Iran from 2014 to 2015 for the hot spot mutations in known CMSs genes (CHRNE, CHAT, RAPSN) based on clinical data. PCR was performed and then direct DNA sequencing was done for mutation identification. RESULTS Most patients represented the criteria of Congenital Myasthenic Syndrome in view of early ptosis, motor delay, normal mental development, easy fatigability, decrement in repetitive nerve stimulation test of EMG-NCV and a negative result for antibody against of acetylcholine receptor. No variations were found in the mutational analysis of the CHRNE gene. Analysis of CHAT gene revealed c.358G>A (P. A120T) variation in 9 patients. In the gene RAPSN, polymorphism c.456T>C )P.Y152Y) and polymorphism c.193-15C>T (IVS1-15C>T) were identified in 11 and one patients, respectively. CONCLUSION The common founder mutations of involved genes in CMSs could be very rare among ethnic Iranian. Screening of the entire genes would be efficient to distinguish the specific mutations in specific ethnicity.
Collapse
Affiliation(s)
- Sima PARVIZI OMRAN
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Massod HOUSHMAND
- Department of Human Genetics, National Institute of Genetic Engineerin -Biotechnology, Tehran, Iran
| | - Donkor DOMINIC
- Department of Biology, Concordia University, Montreal, Canada
| | - Zahra FARJAMI
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences
| | - Parvaneh KARIMZADEH
- Pediatric Neurology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran,6.Pediatric Neurology Department, Mofid Children’s Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Italian recommendations for diagnosis and management of congenital myasthenic syndromes. Neurol Sci 2018; 40:457-468. [PMID: 30554356 DOI: 10.1007/s10072-018-3682-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders due to mutations in genes encoding proteins involved in the neuromuscular junction structure and function. CMS usually present in young children, but perinatal and adult onset has been reported. Clinical presentation is highly heterogeneous, ranging from mild symptoms to severe manifestations, sometimes with life-threatening respiratory episodes, especially in the first decade of life. Although considered rare, CMS are probably underestimated due to diagnostic difficulties. Because of the several therapeutic opportunities, CMS should be always considered in the differential diagnosis of neuromuscular disorders. The Italian Network on CMS proposes here recommendations for proper CMS diagnosis and management, aiming to guide clinicians in their practical approach to CMS patients.
Collapse
|
21
|
Kao JC, Milone M, Selcen D, Shen XM, Engel AG, Liewluck T. Congenital myasthenic syndromes in adult neurology clinic: A long road to diagnosis and therapy. Neurology 2018; 91:e1770-e1777. [PMID: 30291185 PMCID: PMC6251603 DOI: 10.1212/wnl.0000000000006478] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate the diagnostic challenges of congenital myasthenic syndromes (CMS) in adult neuromuscular practice. METHODS We searched the Mayo Clinic database for patients with CMS diagnosed in adulthood in the neuromuscular clinic between 2000 and 2016. Clinical, laboratory, and electrodiagnostic data were reviewed. RESULTS We identified 34 patients with CMS, 30 of whom had a molecular diagnosis (14 DOK7, 6 RAPSN, 2 LRP4, 2 COLQ, 2 slow-channel syndrome, 1 primary acetylcholine receptor deficiency, 1 AGRN, 1 GFPT1, and 1 SCN4A). Ophthalmoparesis was often mild and present in 13 patients. Predominant limb-girdle weakness occurred in 19 patients. Two patients had only ptosis. Age at onset ranged from birth to 39 years (median 5 years). The median time from onset to diagnosis was 26 years (range 4-56 years). Thirteen patients had affected family members. Fatigable weakness was present when examined. Creatine kinase was elevated in 4 of 23 patients (range 1.2-4.2 times the upper limit of normal). Repetitive nerve stimulation revealed a decrement in 30 patients. Thirty-two patients were previously misdiagnosed with seronegative myasthenia gravis (n = 16), muscle diseases (n = 15), weakness of undetermined cause (n = 8), and others (n = 4). Fifteen patients received immunotherapy or thymectomy without benefits. Fourteen of the 25 patients receiving pyridostigmine did not improve or worsen. CONCLUSION Misdiagnosis occurred in 94% of the adult patients with CMS and causes a median diagnostic delay of nearly 3 decades from symptom onset. Seronegative myasthenia gravis and muscle diseases were the 2 most common misdiagnoses, which led to treatment delay and unnecessary exposure to immunotherapy, thymectomy, or muscle biopsy.
Collapse
Affiliation(s)
- Justin C Kao
- From the Department of Neurology (J.C.K., M.M., D.S., X.-M.S., A.G.E., T.L.), Mayo Clinic, Rochester, MN; and Department of Neurology (J.C.K.), Auckland City Hospital, New Zealand
| | - Margherita Milone
- From the Department of Neurology (J.C.K., M.M., D.S., X.-M.S., A.G.E., T.L.), Mayo Clinic, Rochester, MN; and Department of Neurology (J.C.K.), Auckland City Hospital, New Zealand
| | - Duygu Selcen
- From the Department of Neurology (J.C.K., M.M., D.S., X.-M.S., A.G.E., T.L.), Mayo Clinic, Rochester, MN; and Department of Neurology (J.C.K.), Auckland City Hospital, New Zealand
| | - Xin-Ming Shen
- From the Department of Neurology (J.C.K., M.M., D.S., X.-M.S., A.G.E., T.L.), Mayo Clinic, Rochester, MN; and Department of Neurology (J.C.K.), Auckland City Hospital, New Zealand
| | - Andrew G Engel
- From the Department of Neurology (J.C.K., M.M., D.S., X.-M.S., A.G.E., T.L.), Mayo Clinic, Rochester, MN; and Department of Neurology (J.C.K.), Auckland City Hospital, New Zealand
| | - Teerin Liewluck
- From the Department of Neurology (J.C.K., M.M., D.S., X.-M.S., A.G.E., T.L.), Mayo Clinic, Rochester, MN; and Department of Neurology (J.C.K.), Auckland City Hospital, New Zealand.
| |
Collapse
|
22
|
Estephan EDP, Zambon AA, Marchiori PE, da Silva AMS, Caldas VM, Moreno CAM, Reed UC, Horvath R, Töpf A, Lochmüller H, Zanoteli E. Clinical variability of early-onset congenital myasthenic syndrome due to biallelic RAPSN mutations in Brazil. Neuromuscul Disord 2018; 28:961-964. [DOI: 10.1016/j.nmd.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
|
23
|
Kumar A, Asghar S, Kavanagh R, Wicklund MP. Unique presentation of rapidly fluctuating symptoms in a child with congenital myasthenic syndrome due to RAPSN mutation. Muscle Nerve 2018; 58:E23-E24. [PMID: 30028532 DOI: 10.1002/mus.26200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Ashutosh Kumar
- Division of Pediatric Neurology, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, Pennsylvania, 17033, USA
| | - Sheila Asghar
- Division of Pediatric Neurology, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, Pennsylvania, 17033, USA
| | - Robert Kavanagh
- Division of Pediatric Critical Care, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Matthew P Wicklund
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
24
|
|
25
|
Farmakidis C, Pasnoor M, Barohn RJ, Dimachkie MM. Congenital Myasthenic Syndromes: a Clinical and Treatment Approach. Curr Treat Options Neurol 2018; 20:36. [DOI: 10.1007/s11940-018-0520-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Abstract
PURPOSE OF REVIEW Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years. RECENT FINDINGS Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter. Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
28
|
|
29
|
Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:565-589. [PMID: 29478601 DOI: 10.1016/b978-0-444-64076-5.00037-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. The disease proteins reside in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region, or at multiple sites at the neuromuscular junction as well as in other tissues. Targeted mutation analysis by Sanger or exome sequencing has been facilitated by characteristic phenotypic features of some CMS. No fewer than 20 disease genes have been recognized to date. In one-half of the currently identified probands, the disease stems from mutations in genes encoding subunits of the muscle form of the acetylcholine receptor (CHRNA1, CHRNB, CHRNAD1, and CHRNE). In 10-14% of the probands the disease is caused by mutations in RAPSN, DOK 7, or COLQ, and in 5% by mutations in CHAT. Other less frequently identified disease genes include LAMB2, AGRN, LRP4, MUSK, GFPT1, DPAGT1, ALG2, and ALG 14 as well as SCN4A, PREPL, PLEC1, DNM2, and MTM1. Identification of the genetic basis of each CMS is important not only for genetic counseling and disease prevention but also for therapy, because therapeutic agents that benefit one type of CMS can be harmful in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States.
| |
Collapse
|
30
|
LoRusso SJ, Iyadurai SJ. Decrement with high frequency repetitive nerve stimulation in a RAPSN
congenital myasthenic syndrome. Muscle Nerve 2017; 57:E106-E108. [DOI: 10.1002/mus.25995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/24/2017] [Accepted: 10/15/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Samantha J. LoRusso
- Wexner Medical Center Department of Neurology, Division of Neuromuscular Medicine; Ohio State University; Columbus Ohio USA
| | - Stanley J. Iyadurai
- Wexner Medical Center Department of Neurology, Division of Neuromuscular Medicine; Ohio State University; Columbus Ohio USA
| |
Collapse
|
31
|
Winters L, Van Hoof E, De Catte L, Van Den Bogaert K, de Ravel T, De Waele L, Corveleyn A, Breckpot J. Massive parallel sequencing identifies RAPSN and PDHA1 mutations causing fetal akinesia deformation sequence. Eur J Paediatr Neurol 2017; 21:745-753. [PMID: 28495245 DOI: 10.1016/j.ejpn.2017.04.641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Fetal akinesia deformation sequence (FADS) or arthrogryposis multiplex congenita (AMC) is characterized by clinical ambiguity and genetic heterogeneity, hampering genetic diagnosis via traditional sequencing methods. Next generation sequencing (NGS) of all known disease-causing genes offers an elegant solution to identify the genetic etiology of AMC/FADS in a diagnostic setting. METHODS An in-house developed disease-associated gene panel was conducted in two unrelated fetuses with FADS. First, a de novo analysis was performed on the entire disease-associated gene panel. If no pathogenic mutation was identified, analysis of variants retained in a specific subpanel with arthrogryposis/fetal akinesia-causing genes was performed. RESULTS In the first family, FADS relates to a homozygous c.484G > A (p.Glu162Lys) mutation in the gene RAPSN. The second case concerns a sporadic patient with brain anomalies and arthrogryposis due to a de novo hemizygous c.498C > T splice-site mutation in the pyruvate dehydrogenase-alpha 1 (PDHA1) gene. DISCUSSION NGS facilitated genetic diagnosis, and hence genetic counseling, for both families with AMC/FADS. Biallelic RAPSN mutations typically result in congenital myasthenia syndrome, or occasionally in FADS. This is the first report attributing the RAPSN mutation c.484G > A, identified in a homozygous state in patient 1, to FADS. The second patient represents the first case of AMC due to a PDHA1 mutation, advocating that pyruvate dehydrogenase deficiency should be considered in the differential diagnosis of fetal akinesia. This study illustrates the relevance of a disease-associated-gene panel as a diagnostic tool in pregnancies complicated by this genetically heterogeneous condition.
Collapse
Affiliation(s)
- Lore Winters
- Department of Pediatrics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Luc De Catte
- Division of Woman and Child, Clinical Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospitals Leuven, Leuven, Belgium
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Lam CW, Wong KS, Leung HW, Law CY. Limb girdle myasthenia with digenic RAPSN and a novel disease gene AK9 mutations. Eur J Hum Genet 2016; 25:192-199. [PMID: 27966543 DOI: 10.1038/ejhg.2016.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Though dysfunction of neuromuscular junction (NMJ) is associated with congenital myasthenic syndrome (CMS), the proteins involved in neuromuscular transmission have not been completely identified. In this study, we aimed to identify a novel CMS gene in a consanguineous family with limb-girdle type CMS. Homozygosity mapping of the novel CMS gene was performed using high-density single-nucleotide polymorphism microarrays. The variants in CMS gene were identified by whole-exome sequencing (WES) and Sanger sequencing. A 20 MB-region of homozygosity (ROH) was mapped on chromosome 6q15-21. This was the only ROH that present in all clinically affected siblings and absent in all clinically unaffected siblings. WES showed a novel variant of AK9 gene located in this ROH. This variant was a start-gain mutation and introduced a cryptic 5'-UTR signal in intron 5 of the AK9 gene. The normal splicing signal would be interfered by the cryptic translation signal leading to defective splicing. Another 25 MB-ROH was found on chromosome 11p13-q12 in all siblings. WES showed a homozygous RAPSN pathogenic variant in this ROH. Since RAPSN-associated limb-girdle type CMS was only manifested in AK9 homozygous variant carriers, the disease phenotype was of digenic inheritance, and was determined by the novel disease modifier AK9 which provides NTPs for N-glycosylation. This is the first time that this specific genotype-phenotype correlation is reported. Importantly, the AK9-associated nucleotide deficiency may replete by dietary supplements. Since AK9 is a disease modifier, enhancing N-glycosylation by increasing dietary nucleotides may be a new therapeutic option for CMS patients.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Ka-Sing Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Wan Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Yiu Law
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Visser AC, Laughlin RS, Litchy WJ, Benarroch EE, Milone M. Rapsyn congenital myasthenic syndrome worsened by fluoxetine. Muscle Nerve 2016; 55:131-135. [DOI: 10.1002/mus.25244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Amy C. Visser
- Department of NeurologyMayo Clinic200 First Street SWRochester Minnesota55905 USA
| | - Ruple S. Laughlin
- Department of NeurologyMayo Clinic200 First Street SWRochester Minnesota55905 USA
| | - William J. Litchy
- Department of NeurologyMayo Clinic200 First Street SWRochester Minnesota55905 USA
| | - Eduardo E. Benarroch
- Department of NeurologyMayo Clinic200 First Street SWRochester Minnesota55905 USA
| | - Margherita Milone
- Department of NeurologyMayo Clinic200 First Street SWRochester Minnesota55905 USA
| |
Collapse
|
34
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
35
|
Garg N, Yiannikas C, Hardy TA, Belaya K, Cheung J, Beeson D, Reddel SW. Late presentations of congenital myasthenic syndromes: How many do we miss? Muscle Nerve 2016; 54:721-7. [DOI: 10.1002/mus.25085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Nidhi Garg
- Neuroimmunology Clinic; Concord Hospital and University of Sydney; NSW Australia
| | - Con Yiannikas
- Departments of Neurology and Molecular Medicine; University of Sydney, Concord Hospital; Sydney New South Wales 2139 Australia
| | - Todd A. Hardy
- Neuroimmunology Clinic; Concord Hospital and University of Sydney; NSW Australia
| | - Katsiaryna Belaya
- The Weatherall Institute of Molecular Medicine; University of Oxford, John Radcliffe Hospital; Oxford UK
| | - Jonathan Cheung
- The Weatherall Institute of Molecular Medicine; University of Oxford, John Radcliffe Hospital; Oxford UK
| | - David Beeson
- The Weatherall Institute of Molecular Medicine; University of Oxford, John Radcliffe Hospital; Oxford UK
| | - Stephen W. Reddel
- Neuroimmunology Clinic; Concord Hospital and University of Sydney; NSW Australia
| |
Collapse
|
36
|
IntSplice: prediction of the splicing consequences of intronic single-nucleotide variations in the human genome. J Hum Genet 2016; 61:633-40. [PMID: 27009626 DOI: 10.1038/jhg.2016.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
Abstract
Precise spatiotemporal regulation of splicing is mediated by splicing cis-elements on pre-mRNA. Single-nucleotide variations (SNVs) affecting intronic cis-elements possibly compromise splicing, but no efficient tool has been available to identify them. Following an effect-size analysis of each intronic nucleotide on annotated alternative splicing, we extracted 105 parameters that could affect the strength of the splicing signals. However, we could not generate reliable support vector regression models to predict the percent-splice-in (PSI) scores for normal human tissues. Next, we generated support vector machine (SVM) models using 110 parameters to directly differentiate pathogenic SNVs in the Human Gene Mutation Database and normal SNVs in the dbSNP database, and we obtained models with a sensitivity of 0.800±0.041 (mean and s.d.) and a specificity of 0.849±0.021. Our IntSplice models were more discriminating than SVM models that we generated with Shapiro-Senapathy score and MaxEntScan::score3ss. We applied IntSplice to a naturally occurring and nine artificial intronic mutations in RAPSN causing congenital myasthenic syndrome. IntSplice correctly predicted the splicing consequences for nine of the ten mutants. We created a web service program, IntSplice (http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice) to predict splicing-affecting SNVs at intronic positions from -50 to -3.
Collapse
|
37
|
Potentially Treatable Disorder Diagnosed Post Mortem by Exome Analysis in a Boy with Respiratory Distress. Int J Mol Sci 2016; 17:306. [PMID: 26927095 PMCID: PMC4813169 DOI: 10.3390/ijms17030306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/27/2022] Open
Abstract
We highlight the importance of exome sequencing in solving a clinical case of a child who died at 14 months after a series of respiratory crises. He was the half-brother of a girl diagnosed at 7 years with the early-onset seizure variant of Rett syndrome due to CDKL5 mutation. We performed a test for CDKL5 in the boy, which came back negative. Driven by the mother’s compelling need for a diagnosis, we moved forward performing whole exome sequencing analysis. Surprisingly, two missense mutations in compound heterozygosity were identified in the RAPSN gene encoding a receptor-associated protein with a key role in clustering and anchoring nicotinic acetylcholine receptors at synaptic sites. This gene is responsible for a congenital form of myasthenic syndrome, a disease potentially treatable with cholinesterase inhibitors. Therefore, an earlier diagnosis in this boy would have led to a better clinical management and prognosis. Our study supports the key role of exome sequencing in achieving a definite diagnosis in severe perinatal diseases, an essential step especially when a specific therapy is available.
Collapse
|
38
|
Natera-de Benito D, Bestué M, Vilchez JJ, Evangelista T, Töpf A, García-Ribes A, Trujillo-Tiebas MJ, García-Hoyos M, Ortez C, Camacho A, Jiménez E, Dusl M, Abicht A, Lochmüller H, Colomer J, Nascimento A. Long-term follow-up in patients with congenital myasthenic syndrome due to RAPSN mutations. Neuromuscul Disord 2015; 26:153-9. [PMID: 26782015 DOI: 10.1016/j.nmd.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Abstract
Rapsyn (RAPSN) mutations are a common cause of postsynaptic congenital myasthenic syndromes. We present a comprehensive description of the clinical and molecular findings of ten patients with CMS due to mutations in RAPSN, mostly with a long-term follow-up. Two patients were homozygous and eight were heterozygous for the common p.Asn88Lys mutation. In three of the heterozygous patients we have identified three novel mutations (c.869T > C; p.Leu290Pro, c.1185delG; p.Thr396Profs*12, and c.358delC; p.Gln120Serfs*8). In our cohort, the RAPSN mutations lead to a relatively homogeneous phenotype, characterized by fluctuating ptosis, occasional bulbar symptoms, neck muscle weakness, and mild proximal muscle weakness with exacerbations precipitated by minor infections. Interestingly, episodic exacerbations continue to occur during adulthood. These were characterized by proximal limb girdle weakness and ptosis, and not so much by respiratory insufficiency after age 6. All patients presented during neonatal period and responded to cholinergic agonists. In most of the affected patients, additional use of 3,4-diaminopyridine resulted in significant clinical benefit. The disease course is stable except for intermittent worsening.
Collapse
Affiliation(s)
- D Natera-de Benito
- Department of Pediatrics, Hospital Universitario de Fuenlabrada, Madrid, Spain.
| | - M Bestué
- Department of Neurology, Hospital General San Jorge, Huesca, Spain
| | - J J Vilchez
- Department of Neurology, Hospital Universitari La Fe, Valencia, Spain
| | - T Evangelista
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - A Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - A García-Ribes
- Department of Pediatrics, Hospital Universitario Cruces, Bilbao, Spain
| | - M J Trujillo-Tiebas
- Department of Genetics, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - M García-Hoyos
- Department of Genetics, Instituto de Medicina Genómica, Valencia, Spain
| | - C Ortez
- Department of Neuromuscular Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Camacho
- Department of Pediatric Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - E Jiménez
- Department of Pediatrics, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - M Dusl
- Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich 80336,Germany
| | - A Abicht
- Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich 80336,Germany; Medical Genetics Center, Munich, Germany
| | - H Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - J Colomer
- Department of Neuromuscular Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Nascimento
- Department of Neuromuscular Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
39
|
Syndromes myasthéniques congénitaux de l’enfant : stratégies thérapeutiques médicamenteuses. Arch Pediatr 2015; 22:724-8. [DOI: 10.1016/j.arcped.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022]
|
40
|
Pfeffer G, Povitz M, Gibson GJ, Chinnery PF. Diagnosis of muscle diseases presenting with early respiratory failure. J Neurol 2015; 262:1101-14. [PMID: 25377282 DOI: 10.1007/s00415-014-7526-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Here we describe a clinical approach and differential diagnosis for chronic muscle diseases which include early respiratory failure as a prominent feature in their presentation (i.e. respiratory failure whilst still ambulant). These patients typically present to neurology or respiratory medicine out-patient clinics and a distinct differential diagnosis of neuromuscular aetiologies should be considered. Amyotrophic lateral sclerosis and myasthenia gravis are the important non-muscle diseases to consider, but once these have been excluded there remains a challenging differential diagnosis of muscle conditions, which will be the focus of this review. The key points in the diagnosis of these disorders are being aware of relevant symptoms, which are initially caused by nocturnal hypoventilation or diaphragmatic weakness; and identifying other features which direct further investigation. Important muscle diseases to identify, because their diagnosis has disease-specific management implications, include adult-onset Pompe disease, inflammatory myopathy, and sporadic adult-onset nemaline myopathy. Cases which are due to metabolic myopathy or muscular dystrophy are important to diagnose because of their implications for genetic counselling. Myopathy from sarcoidosis and colchicine each has a single reported case with this presentation, but should be considered because they are treatable. Disorders which have recently had their genetic aetiologies identified include hereditary myopathy with early respiratory failure (due to TTN mutations), the FHL1-related syndromes, and myofibrillar myopathy due to BAG3 mutation. Recently described syndromes include oculopharyngodistal muscular dystrophy that awaits genetic characterisation.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK,
| | | | | | | |
Collapse
|
41
|
Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015; 14:420-34. [PMID: 25792100 PMCID: PMC4520251 DOI: 10.1016/s1474-4422(14)70201-7] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The congenital myasthenic syndromes (CMS) are a diverse group of genetic disorders caused by abnormal signal transmission at the motor endplate, a special synaptic contact between motor axons and each skeletal muscle fibre. Most CMS stem from molecular defects in the muscle nicotinic acetylcholine receptor, but they can also be caused by mutations in presynaptic proteins, mutations in proteins associated with the synaptic basal lamina, defects in endplate development and maintenance, or defects in protein glycosylation. The specific diagnosis of some CMS can sometimes be reached by phenotypic clues pointing to the mutated gene. In the absence of such clues, exome sequencing is a useful technique for finding the disease gene. Greater understanding of the mechanisms of CMS have been obtained from structural and electrophysiological studies of the endplate, and from biochemical studies. Present therapies for the CMS include cholinergic agonists, long-lived open-channel blockers of the acetylcholine receptor ion channel, and adrenergic agonists. Although most CMS are treatable, caution should be exercised as some drugs that are beneficial in one syndrome can be detrimental in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Das AS, Agamanolis DP, Cohen BH. Use of next-generation sequencing as a diagnostic tool for congenital myasthenic syndrome. Pediatr Neurol 2014; 51:717-20. [PMID: 25194721 DOI: 10.1016/j.pediatrneurol.2014.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The clinical presentation of congenital myasthenic syndromes is similar to many other neuromuscular disorders of infancy, and with 12 known discrete genetic forms of congenital myasthenic syndromes, both the diagnosis and treatment decisions present clinical challenges. PATIENT DESCRIPTION We report a 20-month-old boy with rapsyn deficiency. At birth, he presented with a weak cry, hypotonia, joint contractures, and facial deformity. Because of respiratory difficulty associated with muscle fatigue, he spent a total of 71 days in the neonatal intensive care unit and 47 days in the pediatric intensive care unit. Imaging study results were normal, along with a battery of metabolic tests and electrodiagnostic studies. A limited genetic evaluation for reversible cytochrome c oxidase deficiency was negative, as was the oligonucleotide microarray. A muscle biopsy demonstrated myofiber atrophy in a pattern consistent with early denervation. Based on nonspecific and nondiagnostic results, whole-exome (next generation) sequencing was performed. This study identified two confirmed pathogenic mutations in the RAPSN gene that are associated with congenital myasthenic syndrome (OMIM 608931). The patient was treated with pyridostigmine at 16 months of age, which resulted in a dramatic improvement in muscle tone and strength and a steady resolution of joint contractures. Four months after treatment was initiated, he was beginning to bear weight and was able to sit unsupported and vocalize full words. CONCLUSIONS This patient serves to highlight next-generation sequencing as an important diagnostic tool that can result in life-saving treatment.
Collapse
Affiliation(s)
- Alvin S Das
- Northeast Ohio Medical University, Rootstown, Ohio
| | - Dimitri P Agamanolis
- Department of Pathology and Laboratory Medicine, Akron Children's Hospital, Akron, Ohio; Department of Pathology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Bruce H Cohen
- Division of Neurology, NeuroDevelopmental Science Center, Akron Children's Hospital, Akron, Ohio; Department of Pediatrics, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
43
|
Eymard B, Hantaï D, Fournier E, Nicole S, Sternberg D, Richard P, Fardeau M. Syndromes myasthéniques congénitaux — L’expérience française. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2014. [DOI: 10.1016/s0001-4079(19)31341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Eymard B, Stojkovic T, Sternberg D, Richard P, Nicole S, Fournier E, Béhin A, Laforêt P, Servais L, Romero N, Fardeau M, Hantaï D. [Congenital myasthenic syndromes: difficulties in the diagnosis, course and prognosis, and therapy--The French National Congenital Myasthenic Syndrome Network experience]. Rev Neurol (Paris) 2013; 169 Suppl 1:S45-55. [PMID: 23452772 DOI: 10.1016/s0035-3787(13)70060-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders caused by genetic defects affecting neuromuscular transmission and leading to muscle weakness accentuated by exertion. Three different aspects have been investigated by members of the national French CMS Network: the difficulties in making a proper diagnosis; the course and long-term prognosis; and the response to therapy, especially for CMS that do not respond to cholinesterase inhibitors. CMS diagnosis is late in most cases because of confusion with other entities such as: congenital myopathies, due to the frequent presentation in patients of myopathies such as permanent muscle weakness, atrophy and scoliosis, and the abnormalities of internal structure, diameter and distribution of fibers (type I predominance, type II atrophy) seen on biopsy; seronegative autoimmune myasthenia gravis, when CMS is of late onset; and metabolic myopathy, with the presence of lipidosis in muscle. The long-term prognosis of CMS was studied in a series of 79 patients recruited with the following gene mutations: CHRNA; CHRNE; DOK7; COLQ; RAPSN; AGRN; and MUSK. Disease-course patterns (progressive worsening, exacerbation, stability, improvement) could be variable throughout life in a given patient. DOK7 patients had the most severe disease course with progressive worsening: of the eight wheelchair-bound and ventilated patients, six had mutations of this gene. Pregnancy was a frequent cause of exacerbation. Anticholinesterase agents are the first-line therapy for CMS patients, except for cases of slow-channel CMS, COLQ and DOK7. In our experience, 3,4-DAP was a useful complement for several patients harboring CMS with AChR loss or RAPSN gene mutations. Ephedrine was given to 18 patients (eight DOK7, five COLQ, four AGRN and one RAPSN). Tolerability was good. Therapeutic responses were encouraging even in the most severely affected patients, particularly with DOK7 and COLQ. Salbutamol was a good alternative in one patient who was allergic to ephedrine.
Collapse
Affiliation(s)
- B Eymard
- Centre de référence des affections neuromusculaires Paris-Est, service de Neurologie 2, Institut de Myologie, Hôpital de la Pitié-Salpêtrière, 47 bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pavone P, Praticò AD, Pavone V, Falsaperla R. Congenital familial myasthenic syndromes: disease and course in an affected dizygotic twin pair. BMJ Case Rep 2013; 2013:bcr2012007651. [PMID: 23365176 PMCID: PMC3603822 DOI: 10.1136/bcr-2012-007651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The present report describes clinical variability in an affected dizygotic twin pair. Twin 1 showed classical features of the congenital myasthenic syndromes (CMS), that is, ptosis, dysphonia, asthenia and hypotonia. In twin 2, these clinical signs were less pronounced, but subtle resulting in severe lumbar hyperlordosis. Molecular analysis, performed for both twins, revealed the presence of three polymorphisms in the heterozygous form in RAPSN gene. The present report highlights the clinical variability of the CMS.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital OVE-Policlinico, Catania, Italy.
| | | | | | | |
Collapse
|
46
|
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders caused by genetic defects affecting neuromuscular transmission and leading to muscle weakness accentuated by exertion. The characterization of CMS comprises two complementary steps: establishing the diagnosis and identifying the pathophysiological type of CMS. The combination of clinical, electrophysiological, and morphological studies allows the physician to refer a given CMS to mutation(s) in one of the 18 causative genes discovered to date and, in turn, to classify the CMS according to the location of the mutated proteins at the neuromuscular junction into presynaptic compartment, synaptic basal lamina, and postsynaptic compartment CMS. This complete characterization is essential for counseling and therapy of the patient, depending on the molecular background of the respective CMS. Despite comprehensive characterization, the phenotypic expression of one given gene involved is variable, and the etiology of many CMS remains to be discovered.
Collapse
Affiliation(s)
- Bruno Eymard
- Reference Center for Neuromuscular Diseases, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|
47
|
Pavone P, Polizzi A, Longo MR, Romano K, Vecchio M, Praticò AD, Falsaperla R. Congenital myasthenic syndromes: Clinical and molecular report on 7 Sicilian patients. J Pediatr Neurosci 2013; 8:19-21. [PMID: 23772238 PMCID: PMC3680889 DOI: 10.4103/1817-1745.111416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMS) are a heterogeneous group of diseases involving neuromuscular transmission. The classification of these syndromes is based on the localization of the defect (pre-synaptic, post-synaptic, and neuromuscular junction) and on the molecular analysis. AIM To report on a series of 7 patients affected by post-synaptic CMS. PATIENTS AND METHODS We examined sex, familiarity, age of onset, clinical symptoms, and response to tensilon test, patellar and pupillary reflexes, presence of cranial nerve involvement, Gowers' sign, presence of ptosis, grade of muscular weakness, and response to the treatment and gene deletions. RESULTS Ptosis, muscular hypotonia, and light variability in muscular weakness were the main clinical signs. Cholinergic receptor, nicotinic, epsilon (CHRNE) gene mutations were mainly reported. CONCLUSIONS The study points out that the clinical and molecular pattern reported in our patients do not differentiate from the data reported in the literature. Treatment with pyridostigmine and modulation of the therapy allows a good quality of life.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| | - Agata Polizzi
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| | - Maria Roberta Longo
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| | - Katia Romano
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Department of Pediatric and Pediatric Neurology, Azienda Ospedaliera Universitaria OVE-Policlinico, University of Catania, Catania, Italy
| |
Collapse
|
48
|
Leshinsky-Silver E, Shapira D, Yosovitz K, Ginsberg M, Lerman-Sagie T, Lev D. A novel mutation in the TPR6 domain of the RAPSN gene associated with congenital myasthenic syndrome. J Neurol Sci 2012; 316:112-5. [PMID: 22326364 DOI: 10.1016/j.jns.2012.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/20/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
Congenital myasthenic syndromes (CMS) are rare genetic disorders characterized by impaired neuromuscular transmission. They are caused by mutations in synaptic, presynaptic and post synaptic proteins. Rapsyn is a postsynaptic peripheral membrane protein that anchors the nicotinic acetylcholine receptor to the motor endplate. CMS patients of Iraqi and Persian Jewish origin, carry a common founder mutation in the E box of the RAPSN promoter region (-38A-G) that causes impaired transcriptional activities of the promoter region. We describe a Persian Jewish family with two siblings affected with typical CMS, harboring the common heterozygous (-38A-G) E-box mutation associated with a previously unreported heterozygous p.224 insT causing an insertion of Threonine in the TPR6 domain. To the best of our knowledge, this is the first mutation in the TPR6 domain and might give supportive evidence to the role of this domain in rapsyn self association and consequently co-clustering with AchR in the post synaptic membrane.
Collapse
|
49
|
Abstract
Congenital myasthenic syndromes (CMS) represent a heterogeneous group of disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Clinical, electrophysiologic, and morphologic studies have paved the way for detecting CMS-related mutations in proteins residing in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region of the motor endplate. The disease proteins identified to date include the acetylcholine receptor, acetylcholinesterase, choline acetyltransferase, rapsyn, and Na(v)1.4, muscle-specific kinase, agrin, β2-laminin, downstream of tyrosine kinase 7, and glutamine-fructose-6-phosphate transaminase 1. Analysis of electrophysiologic and biochemical properties of mutant proteins expressed in heterologous systems have contributed crucially to defining the molecular consequences of the observed mutations and have resulted in improved therapy of most CMS.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
50
|
Engel AG. Current status of the congenital myasthenic syndromes. Neuromuscul Disord 2012; 22:99-111. [PMID: 22104196 PMCID: PMC3269564 DOI: 10.1016/j.nmd.2011.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 01/04/2023]
Abstract
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Clinical, electrophysiologic, and morphologic studies have paved the way for detecting CMS-related mutations in proteins residing in the nerve terminal, the synaptic basal lamina, and in the postsynaptic region of the motor endplate. The disease proteins identified to date include choline acetyltransferase (ChAT), the endplate species of acetylcholinesterase (AChE), β2-laminin, the acetylcholine receptor (AChR), rapsyn, plectin, Na(v)1.4, the muscle specific protein kinase (MuSK), agrin, downstream of tyrosine kinase 7 (Dok-7), and glutamine-fructose-6-phosphate transaminase 1 (GFPT1). Myasthenic syndromes associated with centronuclear myopathies were recently recognized. Analysis of properties of expressed mutant proteins contributed to finding improved therapy for most CMS. Despite these advances, the molecular basis of some phenotypically characterized CMS remains elusive. Moreover, other types of CMS and disease genes likely exist and await discovery.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|