1
|
Huang J, Li HY, Xu P, Ren XH, Lin S. Effects of Surgical Ventricular Entry on Gliomas Invading the Thalamus: Clinical Outcomes and Economic Burdens. World Neurosurg 2025; 196:123731. [PMID: 39929266 DOI: 10.1016/j.wneu.2025.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Surgical resection in gliomas invading the thalamus poses significant challenges due to the deep location and its localization near the ventricle. Ventricular entry (VE) during such operation is somewhat inevitable. However, the impact of VE on clinical outcomes is unclear. Additionally, it is unknown whether VE is associated with increased medical costs. METHODS This retrospective study was conducted on patients treated at Beijing Tiantan hospital from January 2013 to December 2021. Variables of interest were surgical VE and subventricular (SVZ) contact. Clinical outcomes of interest included perioperative complications, length of stay (LOS), postoperative hydrocephalus, leptomeningeal dissemination and distant parenchymal recurrence, progression-free survival (PFS) and overall survival (OS), and cost of illness was direct medical costs. Analysis was performed using multivariate logistic, Cox regression, and a multivariate generalized linear model. RESULTS Of the 100 patients pathologically diagnosed with glioma invading the thalamus, 64 (64.0%) patients underwent VE during resection. Multivariate analysis after adjusting confounders revealed that surgical VE, but not SVZ contact, was independently associated with the development of perioperative complications (odds ratio [OR] 3.52, 95% CI 1.19-10.40; P = 0.023), postoperative hydrocephalus (OR 3.70, 95%CI 1.10-12.45; P = 0.035), longer LOS (β 5.99, Wald X2 9.12; P = 0.003) and increased direct medical costs (β 5349.2, Wald X2 4.56; P = 0.033), but not with the distant parenchymal recurrence, PFS, and OS. CONCLUSIONS Although surgical VE does not impact survival, it may impose undesirable events and higher financial burdens for patients with gliomas invading the thalamus.
Collapse
Affiliation(s)
- Jian Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Xu
- Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Xiao-Hui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; National Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; National Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Huang Q. Translational Insights into Cancer-Associated Fibroblast Infiltration-Related Biomarkers in Glioblastoma and Their Clinical Prognostic Value. Int J Gen Med 2025; 18:1807-1821. [PMID: 40191237 PMCID: PMC11970315 DOI: 10.2147/ijgm.s512624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose Cancer-associated fibroblasts (CAFs) could promote the progression and migration of tumors. However, the roles of CAFs infiltration related genes in glioblastoma (GBM) were still unclear. Methods GBM-related transcriptome data and clinical information were downloaded from the UCSC Xena and CGGA databases. In this study, the abundance of fibroblasts were calculated by "MCPcounter", and the CAFs infiltration related genes were identified by "WGCNA". Then, the biomarkers of GBM were screened out, and based on it, the survival risk model (risk score) and the prognostic model (nomogram) were constructed to clinical predict the survival of GBM. Moreover, the function and mutation analyses were performed to further study the mechanisms of GBM. Furthermore, the competitive endogenous RNAs (ceRNA) regulatory network were used to reveal the potential regulation of biomarkers. Results Totals of 46 CAFs infiltration related genes were associated with focal adhesion. Four biomarkers, including STC1, BDKRB2, SOCS3 and FURIN were identified, and all of them were negative factors. Nomogram constructed based on risk scores and clinical indicators had good predictive performance (AUC > 0.68). Noticeable, COL5A1 might be the key gene, which were extremely positively associated with all these four biomarkers. Besides, the genes in high-risk groups were associated with the functions of epithelial mesenchymal transition (EMT) and angiogenesis. In addition, hsa-miR-107 could regulate STC1 through the TGF-β signaling pathway and further regulating the migration and invasion of tumour. Conclusion This study identified four CAFs infiltration related biomarkers associated with the prognosis of GBM. This finding might help to deepen the understanding the roles of CAFs in development of GBM.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Qibing Huang
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| |
Collapse
|
3
|
Hu M, Li J, Li Z, Shen J. Prediction of Survival Outcomes in Patients with Glioma Using Magnetic Resonance Imaging (MRI): A Systematic Review and Meta-Analysis. J Integr Neurosci 2025; 24:23389. [PMID: 39862000 DOI: 10.31083/jin23389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate. The present meta-analysis evaluated the association of magnetic resonance imaging (MRI)-derived parameters in glioma patients with progression-free survival (PFS) and overall survival. Eligible clinical articles on glioma patients included those that contained an evaluation of the association between MRI findings, PFS, and overall length of survival. METHODS Review of the literature included the following databases: WHO International Clinical Trials Registry Platform; Google Scholar; Web of Science; PubMed; SIGLE; NYAM; Scopus; Randomized controlled trial (RCT); Virtual Health Library (VHL); Cochrane Collaboration; EMBASE; and Clinical Trials. RESULTS The current review included 20 studies, and covered 2097 patients with gliomas. There were 1310 patients with glioblastoma and 320 with astrocytoma. There were 161 patients with grade-2 gliomas and 111 patients with grade-3. Tumour necrosis, peritumoural oedema, and multiple lesions were associated with PFS, as well as tumour necrosis and peritumoural oedema with overall survival. CONCLUSIONS The present meta-analysis highlighted the ability of MRI to predict PFS and overall survival in patients with gliomas. This is crucial to identify patients at risk for poor survival outcomes and for individualising the treatment plan for such patients. The PROSPERO Registration: CRD42023489535, https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=489535.
Collapse
Affiliation(s)
- Mingfang Hu
- Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Jinge Li
- Department of Radiology, Medical School of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Zhangyu Li
- Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Jian Shen
- Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Wu SK, Tsai CL, Mir A, Marcus SL, Hynynen K. Repeated 5-aminolevulinic acid mediated sonodynamic therapy using magnetic resonance guided focused ultrasound in rat brain tumour models. Sci Rep 2025; 15:1161. [PMID: 39775160 PMCID: PMC11707172 DOI: 10.1038/s41598-025-85314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Sonodynamic therapy is an emerging therapeutic approach against brain tumours. However, the treatment scheme and ultrasound parameters have yet to be explored for clinical translation. Our study aimed to optimize ultrasound parameters for sonodynamic therapy (SDT) with 5-ALA as a sonosensitizing agent and to evaluate its therapeutic outcome on the rodent 9L gliosarcoma and the human U87 glioblastoma models. We stereotactically implanted brain tumour cells in rats and monitored tumour volume via MRI. SDT was conducted weekly using a 60 mg/kg dose of 5-ALA, injected intravenously 6 h before sonication. We used a driving frequency of 580 kHz with 0.75 MPa and evaluated the effect of different burst lengths to optimize ultrasound parameters. We also tested SDT against advanced-stage brain tumours to verify its efficacy further. Our results showed that a longer burst length could improve therapeutic outcomes. Tumour growth inhibition was established only in the first three weeks with 10 ms and 50 ms burst length sonication, but 86 ms burst length greatly improved the survival outcome. Therefore, the therapeutic efficacy is proportionate to the burst length and, thus, the total delivered energy. Repeated SDT using multiple targets to cover the entire tumour volume with optimal ultrasound parameters can achieve significant anti-tumour effects in both 9L and U87 models. Lastly, our results on late-stage tumour treatments showed that SDT can still provide prolonged survival. These promising findings demonstrate that repeated SDT using transcranial-focused ultrasound together with 5-ALA can optimize anti-tumour effects and even lead to complete clearance of the tumours. This weekly treatment with pulsed ultrasound sonication strategy is practical for future clinical translation.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Chia-Lin Tsai
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Neurology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Aisha Mir
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Falchook GS, Battiste JD, Kalra A, Shastry M, Finney L, Hoekstra SJ, Shih MG, Shih KC. A phase Ib study evaluating the c-MET inhibitor INC280 (capmatinib) in combination with bevacizumab in patients with high-grade glioma. Neurooncol Adv 2025; 7:vdae220. [PMID: 39925637 PMCID: PMC11805691 DOI: 10.1093/noajnl/vdae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background To improve survival in patients with high-grade glioma, INC280 (capmatinib) a highly selective and potent oral inhibitor of the MET receptor with robust central nervous system (CNS) penetration, was evaluated in combination with bevacizumab (BEV). Methods There were 2 phases, dose-escalation (3+3 design) and dose-expansion, which included patients (1) who progressed during or after first-line therapy (no prior BEV), (2) who progressed during or after second-line therapy with BEV, and (3) who had unresectable high-grade glioma (no prior BEV). Results Sixty-four patients with high-grade glioma were treated; 18 in escalation cohorts and 46 in expansion Cohorts A (21), B (15), and C (10). The maximum-tolerated dose (MTD) was not reached and the RP2D was 400 mg capmatinib PO BID (800 mg daily). Treatment continued for a median of 14 weeks and up to ~6 years in one patient. Common treatment-related adverse events (65% ≤ Grade 2) included fatigue, peripheral edema, nausea, diarrhea, ALT increased, and constipation. Headaches and seizures occurred in 11 patients; Grade 3+ events included Grade 3 headache (1) and Grade 3 seizures (4). There were no treatment-related deaths. The 12 responders to treatment (2 CRs [1 pt in escalation and 1 pt in Cohort A] and 10 PRs [2 pts in escalation and A = 6, B = 1, and C = 1]) had a median duration of response of 9.2 months. Two patients with durable responses (CR >5 years, PR >1 year) did not harbor baseline c-MET alterations. Conclusion Capmatinib + BEV was well-tolerated but had no clear signal of activity in c-MET non-activated high-grade glioma.
Collapse
Affiliation(s)
- Gerald S Falchook
- Drug Development, Sarah Cannon Research Institute at HealthOne, Denver, CO, USA
| | - James D Battiste
- Neuro-Oncology, Oklahoma University Health, Oklahoma City, OK, USA
| | - Amandeep Kalra
- Medical Oncology, HCA Midwest Kansas City, Kansas City, KS, USA
| | - Mythili Shastry
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Lindsey Finney
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Susan J Hoekstra
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Meredith G Shih
- Greco Hainsworth Centers for Research at Tennessee Oncology, Nashville, TN, USA
| | - Kent C Shih
- Greco Hainsworth Centers for Research at Tennessee Oncology, Nashville, TN, USA
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| |
Collapse
|
6
|
Khalaj K, Jacobs MA, Zhu JJ, Esquenazi Y, Hsu S, Tandon N, Akhbardeh A, Zhang X, Riascos R, Kamali A. The Use of Apparent Diffusion Coefficient Values for Differentiating Bevacizumab-Related Cytotoxicity from Tumor Recurrence and Radiation Necrosis in Glioblastoma. Cancers (Basel) 2024; 16:2440. [PMID: 39001500 PMCID: PMC11240552 DOI: 10.3390/cancers16132440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES Glioblastomas (GBM) are the most common primary invasive neoplasms of the brain. Distinguishing between lesion recurrence and different types of treatment related changes in patients with GBM remains challenging using conventional MRI imaging techniques. Therefore, accurate and precise differentiation between true progression or pseudoresponse is crucial in deciding on the appropriate course of treatment. This retrospective study investigated the potential of apparent diffusion coefficient (ADC) map values derived from diffusion-weighted imaging (DWI) as a noninvasive method to increase diagnostic accuracy in treatment response. METHODS A cohort of 21 glioblastoma patients (mean age: 59.2 ± 11.8, 12 Male, 9 Female) that underwent treatment with bevacizumab were selected. The ADC values were calculated from the DWI images obtained from a standardized brain protocol across 1.5-T and 3-T MRI scanners. Ratios were calculated for rADC values. Lesions were classified as bevacizumab-induced cytotoxicity based on characteristic imaging features (well-defined regions of restricted diffusion with persistent diffusion restriction over the course of weeks without tissue volume loss and absence of contrast enhancement). The rADC value was compared to these values in radiation necrosis and recurrent lesions, which were concluded in our prior study. The nonparametric Wilcoxon signed rank test with p < 0.05 was used for significance. RESULTS The mean ± SD age of the selected patients was 59.2 ± 11.8. ADC values and corresponding mean rADC values for bevacizumab-induced cytotoxicity were 248.1 ± 67.2 and 0.39 ± 0.10, respectively. These results were compared to the ADC values and corresponding mean rADC values of tumor progression and radiation necrosis. Significant differences between rADC values were observed in all three groups (p < 0.001). Bevacizumab-induced cytotoxicity had statistically significant lower ADC values compared to both tumor recurrence and radiation necrosis. CONCLUSION The study demonstrates the potential of ADC values as noninvasive imaging biomarkers for differentiating recurrent glioblastoma from radiation necrosis and bevacizumab-induced cytotoxicity.
Collapse
Affiliation(s)
- Kamand Khalaj
- Department of Diagnostic and Interventional Imaging, UTHealth Houston, Houston, TX 77030, USA
| | - Michael A Jacobs
- Department of Diagnostic and Interventional Imaging, UTHealth Houston, Houston, TX 77030, USA
- The Department of Radiology and Oncology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Jay-Jiguang Zhu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX 77030, USA
| | - Yoshua Esquenazi
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX 77030, USA
| | - Sigmund Hsu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX 77030, USA
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth Houston, Houston, TX 77030, USA
| | - Alireza Akhbardeh
- Department of Diagnostic and Interventional Imaging, UTHealth Houston, Houston, TX 77030, USA
| | - Xu Zhang
- Division of Clinical and Translational Sciences, Department of Internal Medicine, UTHealth, Houston, TX 77030, USA
| | - Roy Riascos
- Department of Diagnostic and Interventional Imaging, UTHealth Houston, Houston, TX 77030, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Imaging, UTHealth Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
8
|
Sener U, Islam M, Webb M, Kizilbash SH. Antiangiogenic exclusion rules in glioma trials: Historical perspectives and guidance for future trial design. Neurooncol Adv 2024; 6:vdae039. [PMID: 38596714 PMCID: PMC11003534 DOI: 10.1093/noajnl/vdae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background Despite the lack of proven therapies for recurrent high-grade glioma (HGG), only 8%-11% of patients with glioblastoma participate in clinical trials, partly due to stringent eligibility criteria. Prior bevacizumab treatment is a frequent exclusion criterion, due to difficulty with response assessment and concerns for rebound edema following antiangiogenic discontinuation. There are no standardized trial eligibility rules related to prior antiangiogenic use. Methods We reviewed ClinicalTrials.gov listings for glioma studies starting between May 2009 and July 2022 for eligibility rules related to antiangiogenics. We also reviewed the literature pertaining to bevacizumab withdrawal. Results Two hundred and ninety-seven studies for patients with recurrent glioma were reviewed. Most were phase 1 (n = 145, 49%), non-randomized (n = 257, 87%), evaluated a drug-only intervention (n = 223, 75%), and had a safety and tolerability primary objective (n = 181, 61%). Fifty-one (17%) excluded participants who received any antiangiogenic, one (0.3%) excluded participants who received any non-temozolomide systemic therapy. Fifty-nine (20%) outlined washout rules for bevacizumab (range 2-24 weeks, 4-week washout n = 35, 12% most common). Seventy-eight required a systemic therapy washout (range 1-6 weeks, 4-week washout n = 34, 11% most common). Nine permitted prior bevacizumab use with limitations, 18 (6%) permitted any prior bevacizumab, 5 (2%) were for bevacizumab-refractory disease, and 76 (26%) had no rules regarding antiangiogenic use. A literature review is then presented to define standardized eligibility criteria with a 6-week washout period proposed for future trial design. Conclusions Interventional clinical trials for patients with HGG have substantial heterogeneity regarding eligibility criteria pertaining to bevacizumab use, demonstrating a need for standardizing clinical trial design.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mahnoor Islam
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mason Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sani H Kizilbash
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Ahluwalia MS, Rogers LR, Chaudhary R, Newton H, Ozair A, Khosla AA, Nixon AB, Adams BJ, Seon BK, Peereboom DM, Theuer CP. Endoglin inhibitor TRC105 with or without bevacizumab for bevacizumab-refractory glioblastoma (ENDOT): a multicenter phase II trial. COMMUNICATIONS MEDICINE 2023; 3:120. [PMID: 37684373 PMCID: PMC10491825 DOI: 10.1038/s43856-023-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM), the most lethal primary brain tumor, has limited treatment options upon recurrence after chemoradiation and bevacizumab. TRC105 (carotuximab), a chimeric anti-endoglin (CD105) antibody, inhibits angiogenesis and potentiates activity of VEGF inhibitor bevacizumab in preclinical models. This study sought to assess safety, pharmacokinetics, and efficacy of TRC105 for bevacizumab-refractory GBM. METHODS We conducted a pre-registered (NCT01564914), multicenter, open-label phase II clinical trial (ENDOT). We administered 10 mg/kg TRC105 monotherapy (first cohort) in adults with GBM and radiographic progression following radiation, temozolomide and bevacizumab therapy. Primary outcome was median time-to-progression (TTP), amended after first cohort's enrollment to median overall survival (mOS). Secondary outcomes were objective response rate, safety and tolerability, and progression-free survival (PFS). RESULTS 6 patients were enrolled in TRC105 monotherapy cohort. Median TTP and PFS of 5 evaluable patients receiving monotherapy was 1.4 months, in whom plasma VEGF-A levels were elevated post-therapy. Lack of response led to protocol amendment, and second cohort's addition of bevacizumab+TRC105 with primary endpoint of mOS. 16 patients were enrolled in bevacizumab+TRC105 cohort. mOS of 15 evaluable patients was 5.7 (95%CI: 4.2-9.8) months. All 22 patients had measurable disease at baseline. Median PFS of 14 evaluable patients receiving bevacizumab+TRC105 was 1.8 months (95%CI 1.2-2.1). Serum TRC105 was measurable above target concentration of 25 ug/mL in all evaluable patients. Study medications were well-tolerated in both cohorts. Combined administration did not potentiate known toxicities of either medication, with cerebral hemorrhage not observed. CONCLUSIONS Single-agent TRC105 lacks activity in bevacizumab-refractory GBM, possibly secondary to upregulated VEGF-A expression. Meaningful mOS in bevacizumab+TRC105 cohort warrants further trials to investigate efficacy of combination therapy.
Collapse
Affiliation(s)
- Manmeet S Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Lisa R Rogers
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, USA
| | - Rekha Chaudhary
- Division of Hematology & Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Herbert Newton
- Department of Neurology, Ohio State University, Columbus, OH, USA
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Atulya A Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Department of Internal Medicine, William Beaumont University Hospital, Royal Oak, MI, USA
| | | | | | - Ben K Seon
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - David M Peereboom
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
10
|
Martucci M, Russo R, Giordano C, Schiarelli C, D’Apolito G, Tuzza L, Lisi F, Ferrara G, Schimperna F, Vassalli S, Calandrelli R, Gaudino S. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15:3790. [PMID: 37568606 PMCID: PMC10417432 DOI: 10.3390/cancers15153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Chiara Schiarelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Laura Tuzza
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesca Lisi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Giuseppe Ferrara
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesco Schimperna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Stefania Vassalli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| |
Collapse
|
11
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Tsien CI, Pugh SL, Dicker AP, Raizer JJ, Matuszak MM, Lallana EC, Huang J, Algan O, Deb N, Portelance L, Villano JL, Hamm JT, Oh KS, Ali AN, Kim MM, Lindhorst SM, Mehta MP. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J Clin Oncol 2023; 41:1285-1295. [PMID: 36260832 PMCID: PMC9940937 DOI: 10.1200/jco.22.00164] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess whether reirradiation (re-RT) and concurrent bevacizumab (BEV) improve overall survival (OS) and/or progression-free survival (PFS), compared with BEV alone in recurrent glioblastoma (GBM). The primary objective was OS, and secondary objectives included PFS, response rate, and treatment adverse events (AEs) including delayed CNS toxicities. METHODS NRG Oncology/RTOG1205 is a prospective, phase II, randomized trial of re-RT and BEV versus BEV alone. Stratification factors included age, resection, and Karnofsky performance status (KPS). Patients with recurrent GBM with imaging evidence of tumor progression ≥ 6 months from completion of prior chemo-RT were eligible. Patients were randomly assigned 1:1 to re-RT, 35 Gy in 10 fractions, with concurrent BEV IV 10 mg/kg once in every 2 weeks or BEV alone until progression. RESULTS From December 2012 to April 2016, 182 patients were randomly assigned, of whom 170 were eligible. Patient characteristics were well balanced between arms. The median follow-up for censored patients was 12.8 months. There was no improvement in OS for BEV + RT, hazard ratio, 0.98; 80% CI, 0.79 to 1.23; P = .46; the median survival time was 10.1 versus 9.7 months for BEV + RT versus BEV alone. The median PFS for BEV + RT was 7.1 versus 3.8 months for BEV, hazard ratio, 0.73; 95% CI, 0.53 to 1.0; P = .05. The 6-month PFS rate improved from 29.1% (95% CI, 19.1 to 39.1) for BEV to 54.3% (95% CI, 43.5 to 65.1) for BEV + RT, P = .001. Treatment was well tolerated. There were a 5% rate of acute grade 3+ treatment-related AEs and no delayed high-grade AEs. Most patients died of recurrent GBM. CONCLUSION To our knowledge, NRG Oncology/RTOG1205 is the first prospective, randomized multi-institutional study to evaluate the safety and efficacy of re-RT in recurrent GBM using modern RT techniques. Overall, re-RT was shown to be safe and well tolerated. BEV + RT demonstrated a clinically meaningful improvement in PFS, specifically the 6-month PFS rate but no difference in OS.
Collapse
Affiliation(s)
| | - Stephanie L. Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | | | | | | | | - Jiayi Huang
- Washington University School of Medicine in St Louis-Siteman Cancer Center, St. Louis, MO
| | - Ozer Algan
- University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nimisha Deb
- St Luke's University Hospital & Health Network accruals Thomas Jefferson University Hospital, Bethlehem, PA
| | - Lorraine Portelance
- University of Miami Miller School of Medicine-Sylvester Comprehensive Cancer Center, Miami, FL
| | | | - John T. Hamm
- Norton Hospital Pavilion and Medical Campus, Louisville, KY
| | - Kevin S. Oh
- Dana-Farber/Harvard Cancer Center, Boston, MA
| | - Arif N. Ali
- The Hope Center accruals Emory University/Winship Cancer Institute, Dalton, GA
| | - Michelle M. Kim
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Scott M. Lindhorst
- Medical University of South Carolina Minority Underserved NCORP, Charleston, SC
| | | |
Collapse
|
13
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
14
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Initial results of a phase II trial of 18F-DOPA PET-guided re-irradiation for recurrent high-grade glioma. J Neurooncol 2022; 158:323-330. [PMID: 35583721 DOI: 10.1007/s11060-022-04011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE In-field high-grade glioma (HGG) recurrence is a common challenge with limited treatment options, including re-irradiation. The radiotracer 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) crosses the blood brain barrier and demonstrates high uptake in tumor, but low uptake in normal tissue. This study investigated whether 18F-DOPA positron emission tomography (PET) and MRI guided re-irradiation for recurrent HGG may improve progression free survival (PFS). METHODS Adults with recurrent or progressive HGG previously treated with radiation were eligible. The primary endpoint was a 20% improvement from the historical control PFS at 3 months (PFS3) of 20% with systemic therapy alone. Re-RT dose was 35 Gy in 10 fractions. The target volume was MRI T1 contrast-enhancement defined tumor plus 18F-DOPA PET defined tumor. RESULTS Twenty patients completed treatment per protocol. Diagnosis was most commonly glioblastoma, IDH-wildtype (60%). MRI-defined volumes were expanded by a median 43% (0-436%) by utilizing 18F-DOPA PET. PFS3 was 85% (95% CI 63.2-95.8%), meeting the primary endpoint of PFS3 ≥ 40%. With 9.7 months median follow-up, 17 (85%) had progressed and 15 (75%) had died. Median OS from re-RT was 8.8 months. Failure following re-RT was within both the MRI and PET tumor volumes in 75%, MRI only in 13%, PET only in 0%, and neither in 13%. Four (20%) patients experienced grade 3 toxicity, including CNS necrosis (n = 2, both asymptomatic with bevacizumab initiation for radiographic findings), seizures (n = 1), fatigue (n = 1), and nausea (n = 1). No grade 4-5 toxicities were observed. CONCLUSION 18F-DOPA PET-guided re-irradiation for progressive high-grade glioma appears safe and promising for further investigation.
Collapse
|
16
|
Gahrmann R, Smits M, Vernhout RM, Taal W, Kapsas G, de Groot JC, Hanse M, Vos M, Beerepoot LV, Buter J, Flach ZH, van der Holt B, van den Bent M. The impact of different volumetric thresholds to determine progressive disease in patients with recurrent glioblastoma treated with bevacizumab. Neurooncol Adv 2022; 4:vdac032. [PMID: 35419519 PMCID: PMC9000300 DOI: 10.1093/noajnl/vdac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The optimal volumetric threshold for determining progressive disease (PD) in recurrent glioblastoma is yet to be determined. We investigated a range of thresholds in association with overall survival (OS). Methods First recurrent glioblastoma patients treated with bevacizumab and/or lomustine were included from the phase II BELOB and phase III EORTC26101 trials. Enhancing and nonenhancing tumor volumes were measured at baseline, first (6 weeks), and second (12 weeks) follow-up. Hazard ratios (HRs) for the appearance of new lesions and several thresholds for tumor volume increase were calculated using cox regression analysis. Results were corrected in a multivariate analysis for well-established prognostic factors. Results At first and second follow-up, 138 and 94 patients respectively, were deemed eligible for analysis of enhancing volumes, while 89 patients were included in the analysis of nonenhancing volumes at first follow-up. New lesions were associated with a significantly worse OS (3.2 versus 11.2 months, HR = 7.03, P < .001). At first follow-up a threshold of enhancing volume increase of ≥20% provided the highest HR (5.55, p = .001. At second follow-up, any increase in enhancing volume (≥0%) provided the highest HR (9.00, p < .001). When measuring nonenhancing volume at first follow-up, only 6 additional patients were scored as PD with the highest HR of ≥25% increase in volume (HR=3.25, p = .008). Conclusion Early appearing new lesions were associated with poor OS. Lowering the volumetric threshold for PD at both first and second follow-up improved survival prediction. However, the additional number of patients categorized as PD by lowering the threshold was very low. The per-RANO added change in nonenhancing volumes to the analyses was of limited value.
Collapse
Affiliation(s)
- Renske Gahrmann
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - René Michel Vernhout
- Clinical Trial Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Walter Taal
- The Brain Tumor Center at Erasmus MC Cancer Institute Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giorgios Kapsas
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan Cees de Groot
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Monique Hanse
- Department of Neurology, Catharina Hospital Eindhoven, The Netherlands
| | - Maaike Vos
- Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands
| | | | - Jan Buter
- Department of Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bronno van der Holt
- Clinical Trial Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Carrete LR, Young JS, Cha S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front Neurosci 2022; 16:787755. [PMID: 35281485 PMCID: PMC8904563 DOI: 10.3389/fnins.2022.787755] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Management of gliomas following initial diagnosis requires thoughtful presurgical planning followed by regular imaging to monitor treatment response and survey for new tumor growth. Traditional MR imaging modalities such as T1 post-contrast and T2-weighted sequences have long been a staple of tumor diagnosis, surgical planning, and post-treatment surveillance. While these sequences remain integral in the management of gliomas, advances in imaging techniques have allowed for a more detailed characterization of tumor characteristics. Advanced MR sequences such as perfusion, diffusion, and susceptibility weighted imaging, as well as PET scans have emerged as valuable tools to inform clinical decision making and provide a non-invasive way to help distinguish between tumor recurrence and pseudoprogression. Furthermore, these advances in imaging have extended to the operating room and assist in making surgical resections safer. Nevertheless, surgery, chemotherapy, and radiation treatment continue to make the interpretation of MR changes difficult for glioma patients. As analytics and machine learning techniques improve, radiomics offers the potential to be more quantitative and personalized in the interpretation of imaging data for gliomas. In this review, we describe the role of these newer imaging modalities during the different stages of management for patients with gliomas, focusing on the pre-operative, post-operative, and surveillance periods. Finally, we discuss radiomics as a means of promoting personalized patient care in the future.
Collapse
Affiliation(s)
- Luis R. Carrete
- University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young,
| | - Soonmee Cha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Funakoshi Y, Takigawa K, Hata N, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Otsuji R, Sako A, Yoshitake T, Togao O, Hiwatashi A, Iwaki T, Mizoguchi M, Yoshimoto K. Changes in the Relapse Pattern and Prognosis of Glioblastoma After Approval of First-Line Bevacizumab: A Single-Center Retrospective Study. World Neurosurg 2021; 159:e479-e487. [PMID: 34958993 DOI: 10.1016/j.wneu.2021.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Controversies exist regarding the aggressive recurrence of glioblastoma after bevacizumab treatment. We analyzed the clinical impact of bevacizumab approval in Japan by evaluating the clinical course and relapse pattern in patients with glioblastoma. METHODS We included 100 patients with IDH-wildtype glioblastoma from September 2006 to February 2018 in our institution. The patients were classified into pre-bevacizumab (n = 51) and post-bevacizumab (n = 49) groups. Overall, progression-free, deterioration-free, and post-progression survivals were compared. We analyzed the relapse pattern of 72 patients, whose radiographic progressions were evaluated. RESULTS Significant improvement in progression-free (pre-bevacizumab, 7.5 months; post-bevacizumab, 9.9 months; P = 0.0153) and deterioration-free (pre-bevacizumab, 8.5 months; post-bevacizumab, 13.8 months; P = 0.0046) survivals were seen. These survival prolongations were strongly correlated (r: 0.91, P < 0.0001). The non-enhancing tumor pattern was novel in the post-bevacizumab era (5/33). The presence of a non-enhancing tumor did not indicate poor post-progression survival (hazard ratio: 0.82 [0.26-2.62], P = 0.7377). The rate of early focal recurrence was significantly lower (P = 0.0155) in the post-bevacizumab (4/33) than in the pre-bevacizumab (18/39) era. There was a significant decrease in early focal recurrence after approval of bevacizumab in patients with unresectable tumors (P = 0.0110). The treatment era was significantly correlated with a decreased rate of early focal recurrence (P = 0.0021, univariate analysis; P = 0.0144, multivariate analysis). CONCLUSIONS Approval of first-line bevacizumab in Japan for unresectable tumors may prevent early progression and clinical deterioration of glioblastoma without worsening the clinical course following relapse.
Collapse
Affiliation(s)
- Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan.
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| |
Collapse
|
19
|
Zalles M, Smith N, Saunders D, Lerner M, Fung KM, Battiste J, Towner RA. A tale of two multi-focal therapies for glioblastoma: An antibody targeting ELTD1 and nitrone-based OKN-007. J Cell Mol Med 2021; 26:570-582. [PMID: 34910361 PMCID: PMC8743651 DOI: 10.1111/jcmm.17133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti‐ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN‐007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti‐ELTD1 and OKN‐007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti‐ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti‐ELTD1 was also shown to significantly affect other pro‐angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti‐ELTD1 and OKN treatments did not induce a pro‐migratory phenotype within the tumours. Anti‐ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti‐ELTD1 therapies show promise as potential single‐agent multi‐focal therapies for GBM patients.
Collapse
Affiliation(s)
- Michelle Zalles
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Megan Lerner
- SurgeryResearch Laboratory, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
20
|
A multi-center prospective study of re-irradiation with bevacizumab and temozolomide in patients with bevacizumab refractory recurrent high-grade gliomas. J Neurooncol 2021; 155:297-306. [PMID: 34689306 DOI: 10.1007/s11060-021-03875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Survival is dismal for bevacizumab refractory high-grade glioma patients. We prospectively investigated the efficacy of re-irradiation, bevacizumab, and temozolomide in bevacizumab-naïve and bevacizumab-exposed recurrent high-grade glioma, without volume limitations, in a single arm trial. METHODS Recurrent high-grade glioma patients were stratified based on WHO grade (4 vs. < 4) and prior exposure to bevacizumab (yes vs. no). Eligible patients received radiation using a simultaneous integrated boost technique (55 Gy to enhancing disease, 45 Gy to non-enhancing disease in 25 fractions) with bevacizumab 10 mg/kg every 2 weeks IV and temozolomide 75 mg/m2 daily followed by maintenance bevacizumab 10 mg/kg every 2 weeks and temozolomide 50 mg/m2 daily for 6 weeks then a 2 week holiday until progression. Primary endpoint was overall survival. Quality of life was studied using FACT-Br and FACT-fatigue scales. RESULTS Fifty-four patients were enrolled. The majority (n = 36, 67%) were bevacizumab pre-exposed GBM. Median OS for all patients was 8.5 months and 7.9 months for the bevacizumab pre-exposed GBM group. Patients ≥ 36 months from initial radiation had a median OS of 13.3 months compared to 7.5 months for those irradiated < 36 months earlier (p < 0.01). FACT-Br and FACT-Fatigue scores initially declined during radiation but returned to pretreatment baseline. Treatment was well tolerated with 5 patients experiencing > grade 3 lymphopenia and 2 with > grade 3 thrombocytopenia. No radiographic or clinical radiation necrosis occurred. CONCLUSIONS Re-irradiation with bevacizumab and temozolomide is a safe and feasible salvage treatment for patients with large volume bevacizumab-refractory high-grade glioma. Patients further from their initial radiotherapy may derive greater benefit with this regimen.
Collapse
|
21
|
Warfield BM, Matheson CJ, McArthur DG, Backos DS, Reigan P. Evaluation of Thymidine Phosphorylase Inhibitors in Glioblastoma and Their Capacity for Temozolomide Potentiation. ACS Chem Neurosci 2021; 12:3477-3486. [PMID: 34472849 DOI: 10.1021/acschemneuro.1c00494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A number of studies have shown high levels of thymidine phosphorylase (TP) expression in glioblastoma (GBM), with trace or undetectable TP levels in normal developed brain tissue. TP catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate, maintaining nucleoside homeostasis for efficient DNA replication and cell division. The TP-mediated catabolism of thymidine is responsible for multiple protumor processes and can support angiogenesis, glycation of proteins, and alternative metabolism. In this study, we examined the effect of TP inhibition in GBM using the known nanomolar TP inhibitors 5-chloro-6-[1-(2'-iminopyrrolidin-1'-yl)methyl]uracil (TPI) and the analogous 6-[(2'-aminoimidazol-1'-yl)methyl]uracils. Although these TP inhibitors did not demonstrate any appreciable cytotoxicity in GBM cell lines as single agents, they did enhance the cytotoxicity of temozolomide (TMZ). This pontetiated action of TMZ by TP inhibition may be due to limiting the availability of thymine for DNA repair and replication. These studies support that TP inhibitors could be used as chemosensitizing agents in GBM to improve the efficacy of TMZ.
Collapse
Affiliation(s)
- Becka M. Warfield
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Christopher J. Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Debbie G. McArthur
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Donald S. Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| |
Collapse
|
22
|
Schulte JD, Aghi MK, Taylor JW. Anti-angiogenic therapies in the management of glioblastoma. Chin Clin Oncol 2021; 10:37. [PMID: 32389001 PMCID: PMC10631456 DOI: 10.21037/cco.2020.03.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/13/2020] [Indexed: 11/06/2022]
Abstract
Angiogenesis is a central feature of glioblastoma (GBM), with contribution from several mechanisms and signaling pathways to produce an irregular, poorly constructed, and poorly connected tumor vasculature. Targeting angiogenesis has been efficacious for disease control in other cancers, and given the (I) highly vascularized environment in GBM and (II) correlation between glioma grade and prognosis, angiogenesis became a prime target of therapy in GBM as well. Here, we discuss the therapies developed to target these pathways including vascular endothelial growth factor (VEGF) signaling, mechanisms of tumor resistance to these drugs in the context of disease progression, and the evolving role of anti-angiogenic therapy in GBM.
Collapse
Affiliation(s)
- Jessica D. Schulte
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jennie W. Taylor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Yonezawa H, Ohno M, Igaki H, Miyakita Y, Takahashi M, Tamura Y, Shima S, Matsushita Y, Ichimura K, Narita Y. Outcomes of salvage fractionated re-irradiation combined with bevacizumab for recurrent high-grade gliomas that progressed after bevacizumab treatment*. Jpn J Clin Oncol 2021; 51:1028-1035. [PMID: 33959771 DOI: 10.1093/jjco/hyab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is no standard treatment for patients with recurrent high-grade gliomas who progress after bevacizumab treatment. We evaluated the outcomes of re-irradiation combined with bevacizumab for patients refractory to bevacizumab. METHODS Between January 2015 and September 2019, patients with progression after bevacizumab treatment were treated with re-irradiation combined with bevacizumab (25 Gy in five fractions). RESULTS Fourteen patients [glioblastoma, isocitrate dehydrogenase (IDH) wild type (N = 6), glioblastoma, IDH mutant (N = 4), anaplastic astrocytoma, IDH wild type (N = 1), anaplastic astrocytoma, IDH mutant (N = 1), glioblastoma, not otherwise specified (N = 1) and radiologically diagnosed brainstem glioma (N = 1)] were included in this study. The median survival and progression-free survival times after re-irradiation combined with bevacizumab were 6.1 and 3.8 months, respectively. The 6-month survival and progression-free survival rates were 54.5 and 15.7%, respectively. Patients with a Karnofsky performance status of ≥70 tended to have longer median survival time (9.3 vs. 5.4 months, respectively; P = 0.058) and had a significantly longer median progression-free survival time (4.2 vs. 3.7 months, respectively; P = 0.046) than those with a Karnofsky performance status of <70. Four patients (28.6%) achieved a complete or partial radiological response, and three patients (21.4%) had an improved Karnofsky performance status after re-irradiation combined with bevacizumab. Grade 3/4 toxicities included leukopenia in four patients (28.6%), hypertension in three (21.4%), proteinuria in one (7.1%) and gastrointestinal hemorrhage in one (7.1%). CONCLUSIONS Re-irradiation combined with bevacizumab for patients with recurrent high-grade gliomas who progress after bevacizumab treatment was feasible. Re-irradiation combined with bevacizumab is a potential treatment option, especially for patients with a Karnofsky performance status of ≥70.
Collapse
Affiliation(s)
- Hajime Yonezawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukie Tamura
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Haider AS, van den Bent M, Wen PY, Vogelbaum MA, Chang S, Canoll PD, Horbinski CM, Huse JT. Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort. Neuro Oncol 2021; 22:450-456. [PMID: 31844891 DOI: 10.1093/neuonc/noz233] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regardless of subtype, diffuse gliomas of adulthood are characterized by inexorable progression through treatment. Cancer recurrence in the context of therapy is by no means unique to gliomas. For many tumors residing outside the central nervous system (CNS), tissue-based analyses are routinely employed to document the molecular and cellular features of disease recurrence. Such interventions are inconsistently applied for gliomas, however, and lack rigorous standardization when they are. While many of the reasons underlying these discrepancies reflect pragmatic realities inherent to CNS disease, the suboptimal employment of histological and molecular assessment at recurrence nevertheless represents a missed opportunity to proactively guide patient management and increase knowledge. Herein, we address this quandary by pairing a succinct description of the histological, biological, and molecular characteristics of recurrent glioma with recommendations for how to better standardize and implement quality pathological assessment into patient management. We hope this review will prompt thoughtful revision of standard operating procedures to maximize the utility of glioma re-biopsy.
Collapse
Affiliation(s)
- Ali S Haider
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A Vogelbaum
- Departments of Neurosurgery and Neuro-Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Peter D Canoll
- Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Craig M Horbinski
- Departments of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason T Huse
- Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Oronsky B, Reid TR, Oronsky A, Sandhu N, Knox SJ. A Review of Newly Diagnosed Glioblastoma. Front Oncol 2021; 10:574012. [PMID: 33614476 PMCID: PMC7892469 DOI: 10.3389/fonc.2020.574012] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is an aggressive and inevitably recurrent primary intra-axial brain tumor with a dismal prognosis. The current mainstay of treatment involves maximally safe surgical resection followed by radiotherapy over a 6-week period with concomitant temozolomide chemotherapy followed by temozolomide maintenance. This review provides a summary of the epidemiological, clinical, histologic and genetic characteristics of newly diagnosed disease as well as the current standard of care and potential future therapeutic prospects.
Collapse
Affiliation(s)
- Bryan Oronsky
- Department of Clinical Research, EpicentRx, San Diego, CA, United States
| | - Tony R. Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| | - Arnold Oronsky
- Department of Clinical Research, InterWest Partners, Menlo Park, CA, United States
| | - Navjot Sandhu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan J. Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Brenner AJ, Floyd J, Fichtel L, Michalek J, Kanakia KP, Huang S, Reardon D, Wen PY, Lee EQ. Phase 2 trial of hypoxia activated evofosfamide (TH302) for treatment of recurrent bevacizumab-refractory glioblastoma. Sci Rep 2021; 11:2306. [PMID: 33504881 PMCID: PMC7841164 DOI: 10.1038/s41598-021-81841-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Evofosfamide (Evo or TH302) is a hypoxia-activated prodrug which is reduced leading to the release of alkylating agent bromo-isophosphoramide mustard, which has shown safety and signals of efficacy in a prior phase 1 study in recurrent glioblastoma. We performed a dual center single-arm Phase II study to expand on the safety and efficacy of Evo plus bevacizumab in bevacizumab refractory glioblastoma. 33 patients with bevacizumab refractory GBM received Evo 670 mg/m2 in combination with Bevacizumab 10 mg/kg IV every 2 weeks. Assessments included adverse events, response, and survival. Median age of patients was 47 (range 19-76) and 24 (69%) were male. At the time of study entry, 9 (26%) had ongoing corticosteroid use. ECOG performance status was 0 or 1 in 83% of patients. Patients were mostly heavily pretreated with 77% have three or more prior regimens. A total of 12 patients (36%) suffered grade 3-4 drug associated adverse event (AE); no grade 5 AE were reported. Of the 33 evaluable patients, best response was PR in 3 (9%), SD in 14 (43%), and PD in 16 (48%) with responses confirmed by a second reviewer. Median time to progression of disease was 53 days (95% CI 42-113) and Median time to death was 129 days (95% CI 86-199 days). Progression free survival at 4 months (PFS-4) on Evo-Bev was 31%, which was a statistically significant improvement over the historical rate of 3%. The median overall survival of patients receiving Evo-Bevacizumab was 4.6 months (95% CI 2.9-6.6). The progression free survival of patients on Evo-Bevacizumab met the primary endpoint of progression free survival at 4 months of 31%, although the clinical significance of this may be limited. Given the patient population and Phase II design, these clinical outcomes will need further validation.
Collapse
Affiliation(s)
- Andrew J Brenner
- Mays Cancer Center (A.J.B.), The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, USA.
| | - John Floyd
- Mays Cancer Center (A.J.B.), The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, USA
| | - Lisa Fichtel
- South Texas Oncology and Hematology, San Antonio, TX, USA
| | - Joel Michalek
- Mays Cancer Center (A.J.B.), The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, USA
| | - Kunal P Kanakia
- Mays Cancer Center (A.J.B.), The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, USA
| | - Shiliang Huang
- Mays Cancer Center (A.J.B.), The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, USA
| | | | | | | |
Collapse
|
27
|
Funakoshi Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Mizoguchi M. Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma. Pharmaceuticals (Basel) 2020; 13:E470. [PMID: 33339404 PMCID: PMC7766528 DOI: 10.3390/ph13120470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most common primary brain tumor in adults, has one of the most dismal prognoses in cancer. In 2009, bevacizumab was approved for recurrent glioblastoma in the USA. To evaluate the clinical impact of bevacizumab as a first-line drug for glioblastoma, two randomized clinical trials, AVAglio and RTOG 0825, were performed. Bevacizumab was found to improve progression-free survival (PFS) and was reported to be beneficial for maintaining patient performance status as an initial treatment. These outcomes led to bevacizumab approval in Japan in 2013 as an insurance-covered first-line drug for glioblastoma concurrently with its second-line application. However, prolongation of overall survival was not evinced in these clinical trials; hence, the clinical benefit of bevacizumab for newly diagnosed glioblastomas remains controversial. A recent meta-analysis of randomized controlled trials of bevacizumab combined with temozolomide in recurrent glioblastoma also showed an effect only on PFS, and the benefit of bevacizumab even for recurrent glioblastoma is controversial. Here, we discuss the clinical impact of bevacizumab for glioblastoma treatment by reviewing previous clinical trials and real-world evidence by focusing on Japanese experiences. Moreover, the efficacy and safety of bevacizumab are summarized, and we provide suggestions for updating the approaches and management of bevacizumab.
Collapse
Affiliation(s)
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan; (Y.F.); (D.K.); (R.H.); (Y.S.); (Y.F.); (K.T.); (M.M.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Cho SJ, Kim HS, Suh CH, Park JE. Radiological Recurrence Patterns after Bevacizumab Treatment of Recurrent High-Grade Glioma: A Systematic Review and Meta-Analysis. Korean J Radiol 2020; 21:908-918. [PMID: 32524791 PMCID: PMC7289701 DOI: 10.3348/kjr.2019.0898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To categorize the radiological patterns of recurrence after bevacizumab treatment and to derive the pooled proportions of patients with recurrent malignant glioma showing the different radiological patterns. Materials and Methods A systematic literature search in the Ovid-MEDLINE and EMBASE databases was performed to identify studies reporting radiological recurrence patterns in patients with recurrent malignant glioma after bevacizumab treatment failure until April 10, 2019. The pooled proportions according to radiological recurrence patterns (geographically local versus non-local recurrence) and predominant tumor portions (enhancing tumor versus non-enhancing tumor) after bevacizumab treatment were calculated. Subgroup and meta-regression analyses were also performed. Results The systematic review and meta-analysis included 17 articles. The pooled proportions were 38.3% (95% confidence interval [CI], 30.6–46.1%) for a geographical radiologic pattern of non-local recurrence and 34.2% (95% CI, 27.3–41.5%) for a non-enhancing tumor-predominant recurrence pattern. In the subgroup analysis, the pooled proportion of non-local recurrence in the patients treated with bevacizumab only was slightly higher than that in patients treated with the combination with cytotoxic chemotherapy (34.9% [95% CI, 22.8–49.4%] versus 22.5% [95% CI, 9.5–44.6%]). Conclusion A substantial proportion of high-grade glioma patients show non-local or non-enhancing radiologic patterns of recurrence after bevacizumab treatment, which may provide insight into surrogate endpoints for treatment failure in clinical trials of recurrent high-grade glioma.
Collapse
Affiliation(s)
- Se Jin Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
29
|
Li Y, Guo S, Zhao K, Conrad C, Driescher C, Rothbart V, Schlomann U, Guerreiro H, Bopp MH, König A, Carl B, Pagenstecher A, Nimsky C, Bartsch JW. ADAM8 affects glioblastoma progression by regulating osteopontin-mediated angiogenesis. Biol Chem 2020; 402:195-206. [PMID: 33544472 DOI: 10.1515/hsz-2020-0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer with a median survival of only 15 months. To complement standard treatments including surgery, radiation and chemotherapy, it is essential to understand the contribution of the GBM tumor microenvironment. Brain macrophages and microglia particularly contribute to tumor angiogenesis, a major hallmark of GBM. ADAM8, a metalloprotease-disintegrin strongly expressed in tumor cells and associated immune cells of GBMs, is related to angiogenesis and correlates with poor clinical prognosis. However, the specific contribution of ADAM8 to GBM tumorigenesis remains elusive. Knockdown of ADAM8 in U87 glioma cells led to significantly decreased angiogenesis and tumor volumes of these cells after stereotactic injection into striate body of mice. We found that the angiogenic potential of ADAM8 in GBM cells and in primary macrophages is mediated by the regulation of osteopontin (OPN), an important inducer of tumor angiogenesis. By in vitro cell signaling analyses, we demonstrate that ADAM8 regulates OPN via JAK/STAT3 pathway in U87 cells and in primary macrophages. As ADAM8 is a dispensable protease for physiological homeostasis, we conclude that ADAM8 could be a tractable target to modulate angiogenesis in GBM with minor side-effects.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Songbo Guo
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Caroline Driescher
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Vanessa Rothbart
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Helena Guerreiro
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Miriam H Bopp
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Alexander König
- Department of Diagnostic and Interventional Radiology, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, D-35033 Marburg, Germany.,Center for Mind, Brain and Behavior, Marburg University, Hans-Meerwein-Straße 6, D-35032 MarburgGermany
| |
Collapse
|
30
|
Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers (Basel) 2020; 12:cancers12061649. [PMID: 32580319 PMCID: PMC7352192 DOI: 10.3390/cancers12061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
The history of modern oncology started around eighty years ago with the introduction of cytotoxic agents such as nitrogen mustard into the clinic, followed by multi-agent chemotherapy protocols. Early success in radiation therapy in Hodgkin lymphoma gave birth to the introduction of radiation therapy into different cancer treatment protocols. Along with better understanding of cancer biology, we developed drugs targeting cancer-related cellular and genetic aberrancies. Discovery of the crucial role of vasculature in maintenance, survival, and growth of a tumor opened the way to the development of anti-angiogenic agents. A better understanding of T-cell regulatory pathways advanced immunotherapy. Awareness of stem-like cancer cells and their role in cancer metastasis and local recurrence led to the development of drugs targeting them. At the same time, sequential and rapidly accelerating advances in imaging and surgical technology have markedly increased our ability to safely remove ≥90% of tumor cells. While we have advanced our ability to kill cells from multiple directions, we have still failed to stop most types of cancer from recurring. Here we analyze the tactics employed in cancer evolution; namely, chromosomal instability (CIN), intra-tumoral heterogeneity (ITH), and cancer-specific metabolism. These tactics govern the resistance to current cancer therapeutics. It is time to focus on maximally delaying the time to recurrence, with drugs that target these fundamental tactics of cancer evolution. Understanding the control of CIN and the optimal state of ITH as the most important tactics in cancer evolution could facilitate the development of improved cancer therapeutic strategies designed to transform cancer into a manageable chronic disease.
Collapse
|
31
|
Lee EQ, Zhang P, Wen PY, Gerstner ER, Reardon DA, Aldape KD, deGroot JF, Pan E, Raizer JJ, Kim LJ, Chmura SJ, Robins HI, Connelly JM, Battiste JD, Villano JL, Wagle N, Merrell RT, Wendland MM, Mehta MP. NRG/RTOG 1122: A phase 2, double-blinded, placebo-controlled study of bevacizumab with and without trebananib in patients with recurrent glioblastoma or gliosarcoma. Cancer 2020; 126:2821-2828. [PMID: 32154928 PMCID: PMC7245544 DOI: 10.1002/cncr.32811] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Targeting vascular endothelial growth factor (VEGF) alone does not improve overall survival (OS) in recurrent glioblastoma (rGBM). The angiopoiein (Ang)-TIE2 system may play a role in tumor survival under VEGF inhibition. We conducted a phase 2, double-blinded, placebo-controlled trial of bevacizumab plus trebananib (a novel Fc fusion protein that sequesters Ang1/Ang2) over bevacizumab alone in rGBM. METHODS Patients ≥18 years of age with a Karnofsky performance status ≥70 and GBM or variants in first or second relapse were randomized to bevacizumab 10 mg/kg every 2 weeks plus trebananib 15 mg/kg every week or bevacizumab plus placebo. The primary endpoint was 6-month progression-free survival (PFS). RESULTS After an initial 6-patient lead-in cohort confirmed the safety of combining bevacizumab and trebananib, 115 eligible patients were randomized to the control (n = 58) or experimental treatment (n = 57). In the control arm, 6-month PFS was 41.1%, median survival time was 11.5 months (95% CI, 8.4-14.2 months), median PFS was 4.8 months (95% CI, 3.8-7.1 months), and radiographic response (RR) was 5.9%. In the experimental arm, 6-month PFS was 22.6%, median survival time was 7.5 months (95% CI, 6.8-10.1 months), median PFS was 4.2 months (95% CI, 3.7-5.6 months), and RR was 4.2%. The rate of severe toxicities was not significantly different between arms. CONCLUSION The combination of bevacizumab and trebananib was well tolerated but did not significantly improve 6-month PFS rate, PFS, or OS for patients with rGBM over bevacizumab alone. The shorter PFS in the experimental arm with a hazard ratio of 1.51 (P = .04) suggests that the addition of trebananib to bevacizumab is detrimental.
Collapse
Affiliation(s)
- Eudocia Q Lee
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Peixin Zhang
- NRG Oncology Statistics and Data Management Center, American College of Radiology, Philadelphia, Pennsylvania
| | - Patrick Y Wen
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | | | - David A Reardon
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | | | - John F deGroot
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edward Pan
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Lyndon J Kim
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Steven J Chmura
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - H Ian Robins
- University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | | | - James D Battiste
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Naveed Wagle
- University of Southern California, Los Angeles, California
| | - Ryan T Merrell
- North Shore University Health System, Evanston, Illinois
| | | | | |
Collapse
|
32
|
Simulating glioblastoma growth consisting both visible and invisible parts of the tumor using a diffusion-reaction model followed by resection and radiotherapy. Acta Neurol Belg 2020; 120:629-637. [PMID: 29869778 DOI: 10.1007/s13760-018-0952-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/23/2018] [Indexed: 02/04/2023]
Abstract
Glioblastoma is known to be among one of the deadliest brain tumors in the world today. There have been major improvements in the detection of cancerous cells in the twenty-first century. However, the threshold of detection of these cancerous cells varies in different scanning techniques such as magnetic resonance imaging (MRI) and computed tomography (CT). The growth of these tumors and different treatments have been modeled to assist medical experts in better predictions of the related tumor growth and in the selection of more accurate treatments. In clinical terms the tumor consisted of two parts known as the visible part, which is the part of the tumor that is above the threshold of the detecting device and the invisible part, which is below the detecting threshold. In this study, the common reaction-diffusion model of tumor growth is used to simulate the growth of the glioblastoma tumor. Also resection and radiotherapy have been modeled as methods to prevent the growth of the tumor. The results demonstrate that although the selected treatments were effective in reducing the number of cancerous cells to under the threshold of detection, they did not eliminate all cancerous cells and if no further treatments were applied, the cancerous cells would spread and become malignant again. Although previous studies have suggested that the ratio of proliferation to diffusion could describe the malignancy of the tumor, this study in addition shows the importance of each of the coefficients regarding the malignancy of the tumor.
Collapse
|
33
|
Tripathi M, Ahuja CK, Mukherjee KK, Kumar N, Dhandapani S, Dutta P, Kaur R, Rekhapalli R, Batish A, Gurnani J, Kamboj P, Agrahari A, Kataria K. The Safety and Efficacy of Bevacizumab for Radiosurgery - Induced Steroid - Resistant Brain Edema; Not the Last Part in the Ship of Theseus. Neurol India 2020; 67:1292-1302. [PMID: 31744962 DOI: 10.4103/0028-3886.271242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Radiation-induced brain edema (RIBE) is a serious complication of radiation therapy. It may result in dramatic clinico-radiological deterioration. At present, there are no definite guidelines for management of the complication. Corticosteroids are the usual first line of treatment, which frequently fails to provide long-term efficacy in view of its adverse complication profile. Bevacizumab has been reported to show improvement in cases of steroid-resistant radiation injury. The objective of this study is to evaluate the role of Bevacizumab in post-radiosurgery RIBE. Material and Methods Since 2012, 189 out of 1241 patients who underwent radiosurgery at our institution developed post-radiosurgery RIBE, 17 of which did not respond to high-dose corticosteroids. We systematically reviewed these 17 patients of various intracranial pathologies with clinic-radiological evidence of RIBE following gamma knife radiosurgery (GKRS). All patients received protocol-based Bevacizumab therapy. The peer-reviewed literature was evaluated. Results 82 percent of the patients showed improvement after starting Bevacizumab. The majority began to improve after the third cycle started improvement after the third cycle of Bevacizumab. Clinical improvement preceded radiological improvement by an average of eight weeks. The first dose was 5 mg/kg followed by 7.5-10 mg/kg at with two-week intervals. Bevacizumab needs to be administered for an average of seven cycles (range 5-27, median 7) for best response. Steroid therapy could be tapered in most patients by the first follow-up. One patient did not respond to Bevacizumab and needed surgical decompression for palliative care. One noncompliant patient died due to radiation injury. Conclusion Bevacizumab is a effective and safe for treatment of RIBE after GKRS. A protocol-based dose schedule in addition to frequent clinical and radiological evaluations are required. Bevacizumab should be considered as an early treatment option for RIBE.
Collapse
Affiliation(s)
- Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag K Ahuja
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajashekhar Rekhapalli
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Batish
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jenil Gurnani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parwinder Kamboj
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhinav Agrahari
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ketan Kataria
- Department of Anaesthesia, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
34
|
Faria GM, Soares IDP, D'Alincourt Salazar M, Amorim MR, Pessoa BL, da Fonseca CO, Quirico-Santos T. Intranasal perillyl alcohol therapy improves survival of patients with recurrent glioblastoma harboring mutant variant for MTHFR rs1801133 polymorphism. BMC Cancer 2020; 20:294. [PMID: 32264844 PMCID: PMC7137265 DOI: 10.1186/s12885-020-06802-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Polymorphisms in MTHFR gene influence risk and overall survival of patients with brain tumor. Global genomic DNA (gDNA) methylation profile from tumor tissues is replicated in peripheral leukocytes. This study aimed to draw a correlation between rs1801133 MTHFR variants, gDNA methylation and overall survival of patients with recurrent glioblastoma (rGBM) under perillyl alcohol (POH) treatment. Methods gDNA from whole blood was extracted using a commercially available kit (Axygen) and quantified by spectrophotometry. Global gDNA methylation was determined by ELISA and rs1801133 polymorphism by PCR-RFLP. Statistical analysis of gDNA methylation profile and rs1801133 variants included Mann-Whitney, Kruskal-Wallis, Spearman point-biserial correlation tests (SPSS and Graphpad Prism packages; significant results for effect size higher than 0.4). Prognostic value of gDNA methylation and rs1801133 variants considered survival profiles at 25 weeks of POH treatment, having the date of protocol adhesion as starting count and death as the final event. Results Most rGBM patients showed global gDNA hypomethylation (median = 31.7%) and a significant, moderate and negative correlation between TT genotype and gDNA hypomethylation (median = 13.35%; rho = − 0.520; p = 0.003) compared to CC variant (median = 32.10%), which was not observed for CT variant (median = 33.34%; rho = − 0.289; p = 0.06). gDNA hypermethylated phenotype (median = 131.90%) exhibited significant, moderate and negative correlations between TT genotype (median = 112.02%) and gDNA hypermethylation levels when compared to CC (median = 132.45%; rho = − 0,450; p = 0.04) or CT (median = 137.80%; rho = − 0.518; p = 0.023) variants. TT variant of rs1801133 significantly decreased gDNA methylation levels for both patient groups, when compared to CC (d values: hypomethylated = 1.189; hypermethylated = 0.979) or CT (d values: hypomethylated = 0.597; hypermethylated = 1.167) variants. Positive prognostic for rGBM patients may be assigned to gDNA hypermethylation for survivors above 25 weeks of treatment (median = 88 weeks); and TT variant of rs1801133 regardless POH treatment length. Conclusion rGBM patients under POH-based therapy harboring hypermethylated phenotype and TT variant for rs1801133 had longer survival. Intranasal POH therapy mitigates detrimental effects of gDNA hypomethylation and improved survival of patients with rGBM harboring TT mutant variant for MTHFR rs1801133 polymorphism. Trial registration CONEP -9681- 25,000.009267 / 2004. Registered 12th July, 2004.
Collapse
Affiliation(s)
- Giselle M Faria
- Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, ZC, 24020-141, Brazil.,Programa de Pós-graduação em Neurologia, Faculdade de Medicina, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, 24020-141, Brazil
| | - Igor D P Soares
- Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, ZC, 24020-141, Brazil
| | | | - Marcia R Amorim
- Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, ZC, 24020-141, Brazil
| | - Bruno L Pessoa
- Programa de Pós-graduação em Neurologia, Faculdade de Medicina, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, 24020-141, Brazil.,Departamento de Medicina Especializada, Unidade de Pesquisa Clínica (UPC-HUAP), Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Clovis O da Fonseca
- Departamento de Medicina Especializada, Unidade de Pesquisa Clínica (UPC-HUAP), Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Thereza Quirico-Santos
- Instituto de Biologia, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, ZC, 24020-141, Brazil. .,Programa de Pós-graduação em Neurologia, Faculdade de Medicina, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, 24020-141, Brazil. .,Programa de Pós-graduação em Ciencia e Biotecnologia, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, 24020-141, Brazil.
| |
Collapse
|
35
|
Chan J, Jayamanne D, Wheeler H, Khasraw M, Wong M, Kastelan M, Guo L, Back M. The role of large volume re-irradiation with Bevacizumab in chemorefractory high grade glioma. Clin Transl Radiat Oncol 2020; 22:33-39. [PMID: 32195378 PMCID: PMC7075764 DOI: 10.1016/j.ctro.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Large volume reRT is a viable treatment for refractory recurrent high-grade glioma. Bevacizumab facilitates large volume reRT by reducing the risk of CNS radionecrosis. Patient selection for reRT needs more work but should be guided by performance status.
Background and purpose Current practice in re-irradiation (reRT) of previously treated high-grade gliomas (HGG) has generally been limited to small volume reRT with stereotactic procedures. Less evidence exists for large volume reRT involving treatment volumes equivalent to that used at initial diagnosis. The primary aim of this study was to investigate the outcome of large volume reRT delivered in combination with Bevacizumab (BEV) in patients with recurrent chemorefractory HGG. Methods and materials Patients with HGG managed with reRT were entered prospectively into a database. Clinicopathological features were recorded including timing of reRT, use of BEV and Dosimetric data. Median survival following reRT was the primary endpoint and association with clinicopathological factors was assessed with cox regression models. Results Sixty seven patients in total were managed with reRT, 51 patients had glioblastoma and 16 had anaplastic glioma. The median PTV was 145.3 cm3. Median OS post reRT was 7.8 months (95% CI 6.3–9.2 months) in the total cohort and 7.5 months (95% CI: 6.6–8.3 months) for GBM patients. In multivariate analysis of the whole cohort, IDH1 mutation status (p = 0.041) and ECOG status prior to reRT (<0.001) were significantly associated with OS. In terms of safety and toxicity, the majority of patients (66.5%) were ECOG 0–2 three months after treatment. In total, four episodes of suspected radiation necrosis occurred, all in patients treated without upfront BEV. Conclusion Large volume reRT with bevacizumab is a feasible late salvage option in patients with recurrent HGG and offers meaningful prolongation of survival with low toxicity.
Collapse
Affiliation(s)
- Joseph Chan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Dasantha Jayamanne
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Helen Wheeler
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,The Brain Cancer Group, Sydney, Australia
| | - Mustafa Khasraw
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,The Brain Cancer Group, Sydney, Australia
| | - Matthew Wong
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| | - Marina Kastelan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,The Brain Cancer Group, Sydney, Australia
| | - Lesley Guo
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Michael Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia.,Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia.,Genesis Cancer Care, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,The Brain Cancer Group, Sydney, Australia
| |
Collapse
|
36
|
Ramezani S, Vousooghi N, Joghataei MT, Chabok SY. The Role of Kinase Signaling in Resistance to Bevacizumab Therapy for Glioblastoma Multiforme. Cancer Biother Radiopharm 2020; 34:345-354. [PMID: 31411929 DOI: 10.1089/cbr.2018.2651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and is characterized by vascular hyperplasia, necrosis, and high cell proliferation. Despite current standard therapies, including surgical resection and chemoradiotherapy, GBM patients survive for only about 15 months after diagnosis. Recently, the U.S. Food and Drug Administration (FDA) has approved an antiangiogenesis medication for recurrent GBM-bevacizumab-which has improved progression-free survival in GBM patients. Although bevacizumab has resulted in significant early clinical benefit, it inescapably predisposes tumor to relapse that can be represented as an infiltrative phenotype. Fundamentally, bevacizumab antagonizes the vascular endothelial growth factor A (VEGFA), which is consistently released on both endothelial cells (ECs) and GBM cells. Actually, VEGFA inhibition on the ECs leads to the suppression of vascular progression, permeability, and the vasogenic edema. However, the consequence of the VEGFA pathway blockage on the GBM cells remains controversial. Nevertheless, a piece of evidence supports the relationship between bevacizumab application and compensatory activation of kinase signaling within GBM cells, leading to a tumor cell invasion known as the main mechanism of bevacizumab-induced tumor resistance. A complete understanding of kinase responses associated with tumor invasion in bevacizumab-resistant GBMs offers new therapeutic opportunities. Thus, this study aimed at presenting a brief overview of preclinical and clinical data of the tumor invasion and resistance induced by bevacizumab administration in GBMs, with a focus on the kinase responses during treatment. The novel therapeutic strategies to overcome this resistance by targeting protein kinases have also been summarized.
Collapse
Affiliation(s)
- Sara Ramezani
- 1Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,2Guilan Road Trauma Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasim Vousooghi
- 3Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,4Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.,5Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- 6Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,7Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Yousefzadeh Chabok
- 1Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,2Guilan Road Trauma Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
37
|
Impact of adverse events of bevacizumab on survival outcomes of patients with recurrent glioblastoma. J Clin Neurosci 2020; 74:36-40. [PMID: 31982279 DOI: 10.1016/j.jocn.2020.01.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Bevacizumab is widely used for treatment of recurrent glioblastoma (rGB). It is well known that adverse events (AEs) due to bevacizumab can cause early discontinuation of treatment. However, the association between AEs and survival outcomes is not well defined. METHODS We retrospectively identified patients with rGB, who were treated with single-agent bevacizumab or bevacizumab-based combination regimens from 07/2005 through 07/2014, and who discontinued bevacizumab due to either AEs or physician's decision. Those who discontinued bevacizumab because of tumor progression were excluded. Demographic, treatment, and survival data were collected from the database. RESULTS Of 298 adults with rGB treated with bevacizumab in our database, 65 patients discontinued bevacizumab due to AEs (n = 39, 60%) or physician's decision (n = 26, 40%). There were no statistically significant differences in regards to age, performance status, extent of resection, number of lesions, the time between diagnosis and first recurrence, time between diagnosis and initiation of bevacizumab, number of recurrences before bevacizumab initiation, and duration of bevacizumab treatment between the two groups. Interestingly, patients who discontinued bevacizumab because of AEs progressed earlier after bevacizumab discontinuation (3.9 months vs 5.7 months; p = 0.02), had significantly shorter progression-free survival (PFS) (10.4 months vs 14.2 months; p = 0.01) and shorter overall survival (OS) from bevacizumab initiation (13.9 months vs 32.5 months; p = 0.01) as well as shorter OS from tumor diagnosis (20 months vs 49.3 months; p = 0.007) when compared to patients who discontinued bevacizumab due to a physician's decision. CONCLUSIONS Our results indicate that the development of AEs to bevacizumab or bevacizumab-containing regimens is associated with unfavorable glioma-related survival outcomes in patients with rGB.
Collapse
|
38
|
Ramezani S, Vousooghi N, Ramezani Kapourchali F, Yousefzadeh-Chabok S, Reihanian Z, Alizadeh AM, Khodayari S, Khodayari H. Rolipram optimizes therapeutic effect of bevacizumab by enhancing proapoptotic, antiproliferative signals in a glioblastoma heterotopic model. Life Sci 2019; 239:116880. [PMID: 31678282 DOI: 10.1016/j.lfs.2019.116880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/18/2019] [Accepted: 09/15/2019] [Indexed: 01/24/2023]
Abstract
The unstable response to bevacizumab is a big dilemma in the antiangiogenic therapy of high-grade glioma that appears to be linked to an increase in the post-treatment intratumor levels of hypoxia-inducible factor 1 α (HIF1α) and active AKT. Particularly, a selective phosphodiesterase IV (PDE4) inhibitor, rolipram is capable of inhibiting HIF1α and AKT in cancer cells. Here, the effect of bevacizumab alone and in presence of rolipram on therapeutic efficacy, intratumor hypoxia levels, angiogenesis, apoptosis and proliferation mechanisms were evaluated. BALB/c mice bearing C6 glioma were received bevacizumab and rolipram either alone or combined for 30 days (n = 11/group). At the last day of treatments, apoptosis, proliferation and microvessel density, in xenografts (3/group) were detected by TUNEL staining, Ki67 and CD31 markers, respectively. Relative expression of target proteins was measured using western blotting. Bevacizumab initially hindered the tumor progression but its antitumor effect was weakened later despite the vascular regression and apoptosis induction. Unpredictably, bevacizumab-treated tumors exhibited the highest cell proliferation coupled with PDE4A, HIF1α and AKT upregulation and p53 downregulation and reversed by co-treatment with rolipram. Unlike a similar antivascular pattern to bevacizumab, rolipram consistently led to a more tumor growth suppression and proapoptotic effect versus bevacizumab. Co-treatment maximally hampered the tumor progression and elongated survival along with the major vascular regression, hypoxia, apoptosis induction, p53 and caspase activities. In conclusion, superior and persistent therapeutic efficacy of co-treatment provides a new insight into antiangiogenic therapy of malignant gliomas, suggesting to be a potential substitute in selected patients.
Collapse
Affiliation(s)
- Sara Ramezani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Guilan Road Trauma Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shahrokh Yousefzadeh-Chabok
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Guilan Road Trauma Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zoheir Reihanian
- Neurosurgery Department, Guilan University of Medical Sciences, Guilan, Iran
| | | | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J Neurooncol 2019; 144:303-311. [PMID: 31392595 DOI: 10.1007/s11060-019-03227-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Current bevacizumab-based regimens have failed to improve survival in patients with recurrent glioblastoma. To improve treatment efficacy, we evaluated bevacizumab + BKM120, an oral pan-class I PI3K inhibitor, in this patient population. METHODS A brief phase I study established the optimal BKM120 dose to administer with standard-dose bevacizumab. BKM120 60 mg PO daily + bevacizumab 10 mg/kg IV every 2 weeks in 28-day cycles was then administered to patients with relapsed/refractory glioblastoma in the phase II portion. RESULTS Eighty-eight patients enrolled (phase I, 12; phase II, 76). In phase I, BKM120 80 mg PO daily produced dose limiting toxicity in 3 of 6 patients; a BKM120 dose of 60 mg PO daily was established as the maximum tolerated dose. In phase II, the median progression-free survival (PFS) was 4.0 months (95% CI 3.4, 5.4), PFS at 6 months was 36.5%, and the overall response rate was 26%. Forty-two patients (57%) experienced one or more serious treatment related toxicities. The most common CNS toxicities included mood alteration (17%) and confusion (12%); however, these were often difficult to classify as treatment- versus tumor-related. CONCLUSIONS The efficacy seen in this study is similar to the efficacy previously reported with single-agent bevacizumab. This regimen was poorly tolerated, despite the low daily dose of BKM120. Further development of this combination for the treatment of glioblastoma is not recommended.
Collapse
|
40
|
Liu LY, Ji MS, Nguyen NT, Chow FE, Molaie DM, Pianka ST, Green RM, Liau LM, Ellingson BM, Nghiemphu PL, Cloughesy TF, Lai A. Patterns of long-term survivorship following bevacizumab treatment for recurrent glioma: a case series. CNS Oncol 2019; 8:CNS35. [PMID: 31293169 PMCID: PMC6713025 DOI: 10.2217/cns-2019-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Long-term survivors (LTS) after glioma recurrence while on bevacizumab (Bev) therapy are rarely reported in the current literature. The purpose of this case series is to confirm the existence of and describe a large cohort of recurrent glioma LTS treated with Bev (Bev-LTS). Patients & methods: We identified Bev-LTS as patients with post-Bev initiation survival times of ≥3 years among 1397 Bev treated recurrent glioma patients. Results: Among 962 grade-IV, 221 grade III, and 214 grade II Bev-treated glioma patients, we identified 28 (2.9%), 14 (6.3%) and 8 (3.7%) Bev-LTS patients, respectively. 45 Bev-LTS patients recurred on Bev, with 36 of those patients continuing therapy. Conclusion: Our study shows that a small portion of grade-IV, -III, and -II glioma patients can have long-term survival on Bev therapy even after Bev recurrence.
Collapse
Affiliation(s)
- Liang Yen Liu
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Matthew S Ji
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Nhung T Nguyen
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Frances E Chow
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Donna M Molaie
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Sean T Pianka
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Richard M Green
- Department of Neurology, Kaiser Permanente, Southern California, 4867 W Sunset Blvd, Los Angeles, CA 90027, US
| | - Linda M Liau
- Department of Neurosurgery, University of California, Los Angeles, Edie & Lew Wasserman Building, 300 Stein Plaza, Ste. 420, Los Angeles, CA 90095, USA
| | - Benjamin M Ellingson
- Department of Radiological Sciences & Psychiatry, University of California, Los Angeles, 924 Westwood Blvd, Ste. 615, Los Angeles, CA 90024, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Timothy F Cloughesy
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| | - Albert Lai
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza RNRC #1-230, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Lee CY, Kalra A, Spampinato MV, Tabesh A, Jensen JH, Helpern JA, de Fatima Falangola M, Van Horn MH, Giglio P. Early assessment of recurrent glioblastoma response to bevacizumab treatment by diffusional kurtosis imaging: a preliminary report. Neuroradiol J 2019; 32:317-327. [PMID: 31282311 DOI: 10.1177/1971400919861409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The purpose of this preliminary study is to apply diffusional kurtosis imaging to assess the early response of recurrent glioblastoma to bevacizumab treatment. METHODS This prospective cohort study included 10 patients who had been diagnosed with recurrent glioblastoma and scheduled to receive bevacizumab treatment. Diffusional kurtosis images were obtained from all the patients 0-7 days before (pre-bevacizumab) and 28 days after (post-bevacizumab) initiating bevacizumab treatment. The mean, 10th, and 90th percentile values were derived from the histogram of diffusional kurtosis imaging metrics in enhancing and non-enhancing lesions, selected on post-contrast T1-weighted and fluid-attenuated inversion recovery images. Correlations of imaging measures with progression-free survival and overall survival were evaluated using Spearman's rank correlation coefficient. The significance level was set at P < 0.05. RESULTS Higher pre-bevacizumab non-enhancing lesion volume was correlated with poor overall survival (r = -0.65, P = 0.049). Higher post-bevacizumab mean diffusivity and axial diffusivity (D∥, D∥10% and D∥90%) in non-enhancing lesions were correlated with poor progression-free survival (r = -0.73, -0.83, -0.71 and -0.85; P < 0.05). Lower post-bevacizumab axial kurtosis (K∥10%) in non-enhancing lesions was correlated with poor progression-free survival (r = 0.81, P = 0.008). CONCLUSIONS This preliminary study demonstrates that diffusional kurtosis imaging metrics allow the detection of tissue changes 28 days after initiating bevacizumab treatment and that they may provide information about tumor progression.
Collapse
Affiliation(s)
- Chu-Yu Lee
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA
| | - Amandeep Kalra
- 3 Department of Neuroscience, Medical University of South Carolina, USA.,4 Sarah Cannon Cancer Institute, USA
| | - Maria V Spampinato
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA
| | - Ali Tabesh
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA
| | - Jens H Jensen
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA.,3 Department of Neuroscience, Medical University of South Carolina, USA
| | - Joseph A Helpern
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA.,3 Department of Neuroscience, Medical University of South Carolina, USA.,5 Department of Neurology, Medical University of South Carolina, USA
| | - Maria de Fatima Falangola
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA.,3 Department of Neuroscience, Medical University of South Carolina, USA
| | - Mark H Van Horn
- 1 Department of Radiology and Radiological Science, Medical University of South Carolina, USA.,2 Center for Biomedical Imaging, Medical University of South Carolina, USA
| | - Pierre Giglio
- 3 Department of Neuroscience, Medical University of South Carolina, USA.,6 Department of Neurology, The Ohio State University Wexner Medical Center, USA
| |
Collapse
|
42
|
Seyfried TN, Shelton L, Arismendi-Morillo G, Kalamian M, Elsakka A, Maroon J, Mukherjee P. Provocative Question: Should Ketogenic Metabolic Therapy Become the Standard of Care for Glioblastoma? Neurochem Res 2019; 44:2392-2404. [PMID: 31025151 DOI: 10.1007/s11064-019-02795-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
No major advances have been made in improving overall survival for glioblastoma (GBM) in almost 100 years. The current standard of care (SOC) for GBM involves immediate surgical resection followed by radiotherapy with concomitant temozolomide chemotherapy. Corticosteroid (dexamethasone) is often prescribed to GBM patients to reduce tumor edema and inflammation. The SOC disrupts the glutamate-glutamine cycle thus increasing availability of glucose and glutamine in the tumor microenvironment. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive GBM growth through substrate level phosphorylation in the cytoplasm and the mitochondria, respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability while elevating ketone bodies that are neuroprotective and non-fermentable. Information is presented from preclinical and case report studies showing how KMT could target tumor cells without causing neurochemical damage thus improving progression free and overall survival for patients with GBM.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Laura Shelton
- Human Metabolome Technologies America, 24 Denby Rd., Boston, MA, 02134, USA
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, 526, Venezuela
| | | | - Ahmed Elsakka
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Joseph Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St., Pittsburgh, PA, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
43
|
Supratentorial high-grade astrocytoma with leptomeningeal spread to the fourth ventricle: a lethal dissemination with dismal prognosis. J Neurooncol 2019; 142:253-261. [PMID: 30604394 DOI: 10.1007/s11060-018-03086-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Leptomeningeal spread to the fourth ventricle (LSFV) from supratentorial high-grade astrocytoma (HGA) is rarely investigated. The incidence and prognostic merit of LSFV were analyzed in this study. METHODS A consecutive cohort of 175 patients with pathologically diagnosed HGA according to the 2016 WHO classification of brain tumors was enrolled. LSFV was defined as radiological occupation in the fourth ventricle at the moment of initial progression. Clinical, radiological, and pathological data were analyzed to explore the difference between HGA patients with and without LSFV. RESULTS There were 18 of 175 (10.3%) HGAs confirmed with LSFV. The difference of survival rate between patients with LSFV or not was significant in both overall survival (OS) (14.5 vs. 24 months, P = 0.0007) and post progression survival (PPS) (6.0 vs. 11.5 months, P = 0.0004), while no significant difference was observed in time to progression (TTP) (8.5 months vs. 9.5 months P = 0.6795). In the Cox multivariate analysis, LSFV was confirmed as an independent prognostic risk factor for OS (HR 2.06, P = 0.010). LSFV was correlated with younger age (P = 0.044), ventricle infringement of primary tumor (P < 0.001) and higher Ki-67 index (P = 0.013) in further analysis, and the latter two have been validated in the Logistic regression analysis (OR 18.16, P = 0.006; OR 4.04, P = 0.012, respectively). CONCLUSION LSFV was indicative of end-stage for supratentorial HGA patients, which shortened patients' PPS and OS instead of TTP. It's never too cautious to alert this lethal event when tumor harbored ventricle infringement and higher Ki-67 index in routine clinical course.
Collapse
|
44
|
Brown D, Chen ZP, Guo C, Yang Q, Li J, Wu S, Deng M, Du X, Sai K, Jiang X, Chen Z, Zhang J, Lin F, Wang J, Chen Y, Ke C, Zhang X, Ju X, Mou Y, Bacha J, Steino A, Kanekal S, Kwan C, Johnson G, Schwartz R, Langlands J. Phase 2 clinical trial of VAL-083 as first-line treatment in newly-diagnosed MGMT-unmethylated glioblastoma multiforme (GBM): Halfway report. GLIOMA 2019. [DOI: 10.4103/glioma.glioma_25_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Falchetti ML, D'Alessandris QG, Pacioni S, Buccarelli M, Morgante L, Giannetti S, Lulli V, Martini M, Larocca LM, Vakana E, Stancato L, Ricci-Vitiani L, Pallini R. Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1. Int J Cancer 2018; 144:1331-1344. [PMID: 30414187 PMCID: PMC6590500 DOI: 10.1002/ijc.31983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bevacizumab, a VEGF‐targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t‐test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t‐test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over‐expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient‐derived glioma stem‐like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab‐treated rats. Our study indicates that bevacizumab‐induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells. What's new? Bevacizumab, a VEGF‐targeting monoclonal antibody, has been observed to trigger an infiltrative growth pattern in glioblastoma as an escape mechanism. The mechanisms underlying this gliomatosis‐like growth pattern, however, remain unclear. Here, the authors found that the infiltrative growth pattern occurs mostly along perivascular spaces and relies on the over‐expression of PLXDC1 by tumor cells and on the restoration of the endothelial component of blood brain barrier. Altogether, the data show that the brain infiltration induced by bevacizumab is mainly driven by the vascular endothelium. Importantly, inhibition of PLXDC1 prevents bevacizumab‐induced infiltrative growth, resulting in significant increase of survival.
Collapse
Affiliation(s)
| | - Quintino Giorgio D'Alessandris
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Liliana Morgante
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Maria Larocca
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliza Vakana
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Louis Stancato
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
46
|
Xue J, Wu Y, Liu N. Ultrasound Enhanced Anti-tumor Effect of Temozolomide in Glioblastoma Cells and Glioblastoma Mouse Model. Cell Mol Bioeng 2018; 12:99-106. [PMID: 31719901 DOI: 10.1007/s12195-018-0553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022] Open
Abstract
Introduction Glioblastoma is the most aggressive cancer that begins within the brain. In clinic, temozolomide was used as anti-tumor drugs for glioblastoma chemotherapy, but showed limited effect. Therefore, how to improve the effect of temozolomide to glioblastoma is urgently needed. Methods The cell viability of T98G cells was detected by cell counting kit-8 (CCK-8) assay. Apoptosis was detected using the Annexin-V-FITC & PI apoptosis kit and assessed by flow cytometry. The expression levels of Bax, B cell lymphoma 2 (Bcl-2), phos-Jun N-terminal kinases (JNK), phos-extracellular signal-regulated kinases (ERK) and phos-p38 were determined by western blot. The effect of ultrasound and temozolomide combination in mice was determined by survival analysis. Results Compared with temozolomide treatment alone, ultrasound and temozolomide combination inhibited the cell viability, and promotes apoptosis of human glioblastoma T98G cells. Bax level increased, while Bcl-2 level decreased in combination group. Mechanically, combination treatment promoted apoptosis via JNK and p38 pathways. In mouse glioblastoma model, combination treatment improved overall survival. Conclusions Ultrasound enhanced anti-tumor effect of temozolomide in glioblastoma cells via JNK and p38 pathways.
Collapse
Affiliation(s)
- Jie Xue
- Department of Ultrasonography, Yantai Yuhuangding Hospital, 20# Yuhuangding East Road, Zhifu District, Yantai, 264000 Shandong China
| | - Yuanyuan Wu
- Department of Ultrasound, Central Hospital of Weihai, 3 West Mi Shan East Road, Wendeng District, Weihai, 264400 Shandong China
| | - Na Liu
- Department of Special Inspection, Yantai Yeda Hospital, Yantai Economic and Technological Development Area, No. 23-1 the Yellow River Road, Yantai, 264006 Shandong China
| |
Collapse
|
47
|
Eijgelaar RS, Bruynzeel AME, Lagerwaard FJ, Müller DMJ, Teunissen FR, Barkhof F, van Herk M, De Witt Hamer PC, Witte MG. Earliest radiological progression in glioblastoma by multidisciplinary consensus review. J Neurooncol 2018; 139:591-598. [PMID: 29777418 PMCID: PMC6132963 DOI: 10.1007/s11060-018-2896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Detection of glioblastoma progression is important for clinical decision-making on cessation or initiation of therapy, for enrollment in clinical trials, and for response measurement in time and location. The RANO-criteria are considered standard for the timing of progression. To evaluate local treatment, we aim to find the most accurate progression location. We determined the differences in progression free survival (PFS) and in tumor volumes at progression (Vprog) by three definitions of progression. METHODS In a consecutive cohort of 73 patients with newly-diagnosed glioblastoma between 1/1/2012 and 31/12/2013, progression was established according to three definitions. We determined (1) earliest radiological progression (ERP) by retrospective multidisciplinary consensus review using all available imaging and follow-up, (2) clinical practice progression (CPP) from multidisciplinary tumor board conclusions, and (3) progression by the RANO-criteria. RESULTS ERP was established in 63 (86%), CPP in 64 (88%), RANO progression in 42 (58%). Of the 63 patients who had died, 37 (59%) did with prior RANO-progression, compared to 57 (90%) for both ERP and CPP. The median overall survival was 15.3 months. The median PFS was 8.8 months for ERP, 9.5 months for CPP, and 11.8 months for RANO. The PFS by ERP was shorter than CPP (HR 0.57, 95% CI 0.38-0.84, p = 0.004) and RANO-progression (HR 0.29, 95% CI 0.19-0.43, p < 0.001). The Vprog were significantly smaller for ERP (median 8.8 mL), than for CPP (17 mL) and RANO (22 mL). CONCLUSION PFS and Vprog vary considerably between progression definitions. Earliest radiological progression by retrospective consensus review should be considered to accurately localize progression and to address confounding of lead time bias in clinical trial enrollment.
Collapse
Affiliation(s)
- Roelant S Eijgelaar
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Domenique M J Müller
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Freek R Teunissen
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health, University of Manchester and Christie NHS Trust, Manchester, UK
| | - Philip C De Witt Hamer
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marnix G Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Brenner A, Zuniga R, Sun JD, Floyd J, Hart CP, Kroll S, Fichtel L, Cavazos D, Caflisch L, Gruslova A, Huang S, Liu Y, Lodi A, Tiziani S. Hypoxia-activated evofosfamide for treatment of recurrent bevacizumab-refractory glioblastoma: a phase I surgical study. Neuro Oncol 2018; 20:1231-1239. [PMID: 29415215 PMCID: PMC6071657 DOI: 10.1093/neuonc/noy015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Anti-angiogenic therapy is known to induce a greater degree of hypoxia, including in glioblastoma (GBM). Evofosfamide (Evo) is a hypoxia-activated prodrug which is reduced, leading to the release of the alkylating agent bromo-isophosphoramide mustard. We assessed the safety, tolerability, preliminary efficacy, and biomarkers of Evo plus bevacizumab (Bev) in Bev-refractory GBM. Methods Twenty-eight patients with Bev-refractory GBM were enrolled in a dose escalation study receiving from 240 mg/m2 (cohort 1) to 670 mg/m2 (cohort 4) of Evo every 2 weeks in combination with Bev. Patients deemed surgical candidates underwent a single dose of Evo or placebo with pimonidazole immediately prior to surgery for biomarker evaluation, followed by dose escalation upon recovery. Assessments included adverse events, response, and survival. Results Evo plus Bev was well tolerated up to and including the maximum dose of 670 mg/m2, which was determined to be the recommended phase II dose. Overall response rate was 17.4%, with disease control (complete response, partial response, and stable disease) observed in 14 (60.9%) of the 23 patients. The ratio of enhancement to non-enhancement was significant on log-rank analysis with time to progression (P = 0.023), with patients having a ratio of less than 0.37 showing a median progression-free survival of 98 days versus 56 days for those with more enhancement. Conclusions Evo plus Bev was well tolerated in patients with Bev-refractory GBM, with preliminary evidence of activity that merits further investigation.
Collapse
Affiliation(s)
- Andrew Brenner
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Richard Zuniga
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Jessica D Sun
- Threshold Pharmaceuticals, South San Francisco, California
| | - John Floyd
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Charles P Hart
- Threshold Pharmaceuticals, South San Francisco, California
| | - Stew Kroll
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas
| | - Lisa Fichtel
- South Texas Oncology and Hematology, San Antonio, Texas
| | - David Cavazos
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Laura Caflisch
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Aleksandra Gruslova
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Shiliang Huang
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Yichu Liu
- University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | | | | |
Collapse
|
49
|
Piper RJ, Senthil KK, Yan JL, Price SJ. Neuroimaging classification of progression patterns in glioblastoma: a systematic review. J Neurooncol 2018; 139:77-88. [PMID: 29603080 DOI: 10.1007/s11060-018-2843-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. METHODS We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. RESULTS From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. CONCLUSIONS Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.
Collapse
Affiliation(s)
- Rory J Piper
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK.
| | - Keerthi K Senthil
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| | - Jiun-Lin Yan
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
50
|
Schaub C, Kebir S, Junold N, Hattingen E, Schäfer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, Niessen M, Mack F, Stuplich M, Tzaridis T, Bähr O, Kortmann RD, Schlegel U, Schmidt-Graf F, Rohde V, Braun C, Hänel M, Sabel M, Gerlach R, Krex D, Belka C, Vatter H, Proescholdt M, Herrlinger U, Glas M. Tumor growth patterns of MGMT-non-methylated glioblastoma in the randomized GLARIUS trial. J Cancer Res Clin Oncol 2018; 144:1581-1589. [PMID: 29808316 DOI: 10.1007/s00432-018-2671-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND We evaluated patterns of tumor growth in patients with newly diagnosed MGMT-non-methylated glioblastoma who were assigned to undergo radiotherapy in conjunction with bevacizumab/irinotecan (BEV/IRI) or standard temozolomide (TMZ) within the randomized phase II GLARIUS trial. METHODS In 142 patients (94 BEV/IRI, 48 TMZ), we reviewed magnetic resonance imaging scans at baseline and first tumor recurrence. Based on contrast-enhanced T1-weighted and fluid-attenuated inversion recovery images, we assessed tumor growth patterns and tumor invasiveness. Tumor growth patterns were classified as either multifocal or local at baseline and recurrence; at first recurrence, we additionally assessed whether distant lesions appeared. Invasiveness was determined as either diffuse or non-diffuse. Associations with treatment arms were calculated using Fisher's exact test. RESULTS At baseline, 115 of 142 evaluable patients (81%) had a locally confined tumor. Between treatment arms, there was no significant difference in the fraction of tumors that changed from an initially local tumor growth pattern to a multifocal pattern (12 and 13%, p = 0.55). Distant lesions appeared in 17% (BEV/IRI) and 13% (TMZ) of patients (p = 0.69). 15% of patients in the BEV/IRI arm and 8% in the TMZ arm developed a diffuse growth pattern from an initially non-diffuse pattern (p = 0.42). CONCLUSIONS The tumor growth and invasiveness patterns do not differ between BEV/IRI and TMZ-treated MGMT-non-methylated glioblastoma patients in the GLARIUS trial. BEV/IRI was not associated with an increased rate of multifocal, distant, or highly invasive tumors at the time of recurrence.
Collapse
Affiliation(s)
- Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
- West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Junold
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Elke Hattingen
- Neuroradiology; Department of Radiology, University of Bonn Medical Center, Bonn, Germany
| | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
- West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander NeuroOncology Unit, University of Regensburg, Regensburg, Germany
| | | | - Michael Niessen
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Frederic Mack
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Moritz Stuplich
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | | | - Uwe Schlegel
- Department of Neurology, Knappschaftskrankenhaus Klinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg-August-University, Göttingen, Germany
| | - Christian Braun
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Rüdiger Gerlach
- Department of Neurosurgery, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Technical University Dresden, Dresden, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU Munich, Munich, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany.
- West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|