1
|
Mastrangelo M, Manti F, Ricciardi G, Cinnante EMC, Cameli N, Beatrice A, Tolve M, Pisani F. The diagnostic and prognostic role of cerebrospinal fluid biomarkers in glucose transporter 1 deficiency: a systematic review. Eur J Pediatr 2024; 183:3665-3678. [PMID: 38954008 PMCID: PMC11322378 DOI: 10.1007/s00431-024-05657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The purpose of this study is to investigate the diagnostic and prognostic role of cerebrospinal fluid (CSF) biomarkers in the diagnostic work-up of glucose transporter 1 (GLUT1) deficiency. Reported here is a systematic review according to PRISMA guidelines collecting clinical and biochemical data about all published patients who underwent CSF analysis. Clinical phenotypes were compared between groups defined by the levels of CSF glucose (≤ 2.2 mmol/L versus > 2.2 mmol/L), CSF/blood glucose ratio (≤ 0.45 versus > 0.45), and CSF lactate (≤ 1 mmol/L versus > 1 mmol/L). Five hundred sixty-two patients fulfilled the inclusion criteria with a mean age at the diagnosis of 8.6 ± 6.7 years. Patients with CSF glucose ≤ 2.2 mmol/L and CSF/blood glucose ratio ≤ 0.45 presented with an earlier onset of symptoms (16.4 ± 22.0 versus 54.4 ± 45.9 months, p < 0.01; 15.7 ± 23.8 versus 40.9 ± 38.0 months, p < 0.01) and received an earlier molecular genetic confirmation (92.1 ± 72.8 versus 157.1 ± 106.2 months, p < 0.01). CSF glucose ≤ 2.2 mmol/L was consistently associated with response to ketogenic diet (p = 0.018) and antiseizure medications (p = 0.025). CSF/blood glucose ratio ≤ 0.45 was significantly associated with absence seizures (p = 0.048), paroxysmal exercise-induced dyskinesia (p = 0.046), and intellectual disability (p = 0.016) while CSF lactate > 1 mmol/L was associated with a response to antiseizure medications (p = 0.026) but not to ketogenic diet.Conclusions:This systematic review supported the diagnostic usefulness of lumbar puncture for the early identification of patients with GLUT1 deficiency responsive to treatments especially if they present with co-occurring epilepsy, movement, and neurodevelopmental disorders. What is Known: • Phenotypes of GLUT1 deficiency syndrome range between early epileptic and developmental encephalopathy to paroxysmal movement disorders and developmental impairment What is New: • CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with early onset absences • CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with paroxysmal exercise induced dyskinesia and intellectual disability. • CSF glucose may predict better than CSF blood/glucose and lactate the response to ketogenic diet and antiseizure medications.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Woman/Child Health and Urological Sciences Department, Sapienza University of Rome, Via dei Sabelli 108, 00185, Rome, Italy.
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy.
| | - Filippo Manti
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Noemi Cameli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Manuela Tolve
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Hanna G, Khanna T, Islam SA, David A, Sternberg MJE. Missense3D-TM: Predicting the Effect of Missense Variants in Helical Transmembrane Protein Regions Using 3D Protein Structures. J Mol Biol 2024; 436:168374. [PMID: 38182301 PMCID: PMC7617522 DOI: 10.1016/j.jmb.2023.168374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/07/2024]
Abstract
Variant effect predictors assess if a substitution is pathogenic or benign. Most predictors, including those that are structure-based, are designed for globular proteins in aqueous environments and do not consider that the variant residue is located within the membrane. We report Missense3D-TM that provides a structure-based assessment of the impact of a missense variant located within a membrane. On a dataset of 2,078 pathogenic and 1,060 benign variants, spanning 711 proteins from 706 structures, Missense3D-TM achieved an accuracy of 66%, Mathews correlation coefficient of 0.37, sensitivity of 58% and specificity of 81%. Missense3D-TM performed similarly to mCSM-membrane: accuracy 66% vs 61% (p = 0.02) on an unbalanced test set and 70% vs 67% (p = 0.20) on a balanced test set. The Missense3D-TM website provides an analysis of the structural effects of the variant along with its predicted position within the membrane. The web server is available at http://missense3d.bc.ic.ac.uk/.
Collapse
Affiliation(s)
- Gordon Hanna
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tarun Khanna
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Suhail A Islam
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Pavone P, Pappalardo XG, Ruggieri M, Falsaperla R, Parano E. Alternating hemiplegia of childhood: a distinct clinical entity and ATP1A3-related disorders: A narrative review. Medicine (Baltimore) 2022; 101:e29413. [PMID: 35945798 PMCID: PMC9351909 DOI: 10.1097/md.0000000000029413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/05/2023] Open
Abstract
Alternating Hemiplegia of Childhood (AHC) is a rare disorder with onset in the first 18 months of life characterized by stereotyped paroxysmal manifestations of tonic and dystonic attacks, nystagmus with other oculomotor abnormalities, respiratory and autonomic dysfunctions. AHC is often associated with epileptic seizures and developmental delay. Hemiplegic paroxysm is the most remarkable symptom, although AHC includes a large series of clinical manifestations that interfere with the disease course. No cure is available and the treatment involves many specialists and therapies. Flunarizine is the most commonly used drug for reducing the frequency and intensity of paroxysmal events. Mutations in ATP1A2, particularly in ATP1A3, are the main genes responsible for AHC. Some disorders caused by ATP1A3 variants have been defined as ATP1A3-related disorders, including rapid-onset dystonia-parkinsonism, cerebellar ataxia, pes cavus, optic atrophy, sensorineural hearing loss, early infant epileptic encephalopathy, child rapid-onset ataxia, and relapsing encephalopathy with cerebellar ataxia. Recently, the term ATP1A3 syndrome has been identified as a fever-induced paroxysmal weakness and encephalopathy, slowly progressive cerebellar ataxia, childhood-onset schizophrenia/autistic spectrum disorder, paroxysmal dyskinesia, cerebral palsy/spastic paraparesis, dystonia, dysmorphism, encephalopathy, MRI abnormalities without hemiplegia, and congenital hydrocephalus. Herewith, we discussed about historical annotations of AHC, symptoms, signs and associated morbidities, diagnosis and differential diagnosis, treatment, prognosis, and genetics. We also reported on the ATP1A3-related disorders and ATP1A3 syndrome, as 2 recently established and expanded genetic clinical entities.
Collapse
Affiliation(s)
- Piero Pavone
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University Hospital AOU “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Catania, Italy, AOU “Policlinico PO San Marco, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU “Policlinico”, PO “San Marco”, University of Catania, Catania, Italy
| | - Enrico Parano
- Unit of Catania, National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Catania, Italy
| |
Collapse
|
4
|
Scoppola C, Magli G, Conti M, Fadda M, Luzzu GM, Simula DM, Carta A, Sotgiu S, Casellato S. CACNA1A-Linked Hemiplegic Migraine in GLUT 1 Deficiency Syndrome: A Case Report. Front Neurol 2021; 12:679354. [PMID: 34135856 PMCID: PMC8200771 DOI: 10.3389/fneur.2021.679354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Glucose-transporter-1 deficiency syndrome (GLUT1-DS), due to SLC2A1 gene mutation, is characterized by early-onset seizures, which are often drug-resistant, developmental delay, and hypotonia. Hemiplegic migraine (HM) is a rare form of migraine, defined by headache associated with transient hemiplegia, and can be caused by mutations in either CACNA1A, ATP1A2, or SCN1A. Paroxysmal movements, other transient neurological disorders, or hemiplegic events can occur in GLUT1-DS patients with a mild phenotype. Case: We report on a girl with GLUT1-DS, due to SLC2A1 mutation, with a mild phenotype. In early childhood, she developed epilepsy and mild cognitive impairment, balance disorders, and clumsiness. At the age of 9, the patient reported a first hemiplegic episode, which regressed spontaneously. Over the next 3 years, two similar episodes occurred, accompanied by headache. Therefore, in the hypothesis of HM, genetic testing was performed and CACNA1A mutation was identified. The treatment with Lamotrigine avoided the recurrence of HM episodes. Discussion: To our knowledge, among the several cases of GLUT1-DS with HM symptoms described in the literature, genetic testing was only performed in two of them, which eventually proved to be negative. In all other cases, no other genes except for SLC2A1 were examined. Consequently, our patient would be the first description of GLUT1-DS with HM due to CACNA1A mutation. We would emphasize the importance of performing specific genetic testing in patients with GLUT1-DS with symptoms evocative of HM, which may allow clinicians to use specific pharmacotherapy.
Collapse
Affiliation(s)
- Chiara Scoppola
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Giorgio Magli
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Marta Conti
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Maria Fadda
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Giovanni M Luzzu
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Delia M Simula
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Alessandra Carta
- Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Stefano Sotgiu
- Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| | - Susanna Casellato
- Center for Diagnosis and Care of Pediatric Epilepsy, University Hospital of Sassari, Sassari, Italy.,Department of Medical, Surgical and Experimental Sciences, Section of Child Neuropsychiatry, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Cordani R, Stagnaro M, Pisciotta L, Tiziano FD, Calevo MG, Nobili L, De Grandis E. Alternating Hemiplegia of Childhood: Genotype-Phenotype Correlations in a Cohort of 39 Italian Patients. Front Neurol 2021; 12:658451. [PMID: 33897609 PMCID: PMC8060701 DOI: 10.3389/fneur.2021.658451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare neurological disease characterized by paroxysmal movement disorders and chronic neurological disturbances, with onset before 18 months of age. Mutations in the ATP1A3 gene have been identified in up to 80% of patients. Thirty-nine patients [20 females, 19 males, mean age 25.32 years (7.52–49.34)] have been recruited through the Italian Biobank and Clinical Registry for Alternating Hemiplegia of Childhood. Demographic data, genotype, paroxysmal movement disorders, chronic neurological features, and response to flunarizine have been analyzed. ATP1A3 gene mutations have been detected in 92.3% of patients. Patients have been divided into three groups—p.Asp801Asn mutation patients (26%), p.Glu815Lys cases (23%), and patients with other ATP1A3 mutations—and statistically compared. The Italian cohort has a higher percentage of ATP1A3 gene mutation than reported in literature (92.3%). Our data confirm a more severe phenotype in patients with p.Glu815Lys mutation, with an earlier age of onset of plegic (p = 0.02 in the correlation with other mutations) and tonic attacks. P.Glu815Lys patients most frequently present altered muscle tone, inability to walk (p = 0.01 comparing p.Glu815Lys and p.Asp801Asn mutations), epilepsy, and a more severe grade of dystonia (p < 0.05 comparing p.Glu815Lys and p.Asp801Asn mutations). They have moderate/severe intellectual disability and severe language impairment (p < 0.05). Interestingly, flunarizine seems to be more efficacious in patients with p.Glu815Lys mutation than p.Asp801Asn. In conclusion, our research suggests a genotype–phenotype correlation and provides information on this disorder's features, clinical course, and treatment.
Collapse
Affiliation(s)
- Ramona Cordani
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michela Stagnaro
- Child Neuropsychiatry Unit, Department of Clinical and Surgical Neurosciences and Rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova, Italy
| | - Livia Pisciotta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Azienda Socio Sanitaria Territoriale Fatebenefratelli- Sacco, Milano, Italy
| | - Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Life Science and Public Health, Catholic University of Sacred Heart, Roma, Italy
| | - Maria Grazia Calevo
- Epidemiology, Biostatistics and Committees Unit, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Department of Clinical and Surgical Neurosciences and Rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova, Italy
| | | | - Elisa De Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Department of Clinical and Surgical Neurosciences and Rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova, Italy
| |
Collapse
|
6
|
de Gusmão CM, Garcia L, Mikati MA, Su S, Silveira-Moriyama L. Paroxysmal Genetic Movement Disorders and Epilepsy. Front Neurol 2021; 12:648031. [PMID: 33833732 PMCID: PMC8021799 DOI: 10.3389/fneur.2021.648031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Paroxysmal movement disorders include paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and episodic ataxias. In recent years, there has been renewed interest and recognition of these disorders and their intersection with epilepsy, at the molecular and pathophysiological levels. In this review, we discuss how these distinct phenotypes were constructed from a historical perspective and discuss how they are currently coalescing into established genetic etiologies with extensive pleiotropy, emphasizing clinical phenotyping important for diagnosis and for interpreting results from genetic testing. We discuss insights on the pathophysiology of select disorders and describe shared mechanisms that overlap treatment principles in some of these disorders. In the near future, it is likely that a growing number of genes will be described associating movement disorders and epilepsy, in parallel with improved understanding of disease mechanisms leading to more effective treatments.
Collapse
Affiliation(s)
- Claudio M. de Gusmão
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Lucas Garcia
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
| | - Mohamad A. Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samantha Su
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
- Education Unit, University College London Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Abstract
BACKGROUND Glucose Transporter-1 (GLUT1) Deficiency Syndrome (GLUT1DS) is caused by defective transport of glucose across the blood-brain barrier into brain cells resulting in hypoglycorrhachia due to the heterozygous pathogenic variants in SLC2A1. We report on the phenotypic spectrum of patients with pediatric GLUT1DS as well as their diagnostic methods from a single center in Canada. METHODS We reviewed patient charts for clinical features, biochemical and molecular genetic investigations, neuroimaging, treatment modalities, and outcomes of patients with GLUT1DS at our institution. RESULTS There were 13 patients. The most common initial symptom was seizures, with the most common seizure type being absence seizures (85%). Seventy-seven percent of the patients had movement disorders, and dystonia and ataxia were the most common movement disorders. Fifty-four percent of the patients did not have a history of developmental delay during their initial presentation, whereas all patients had developmental delay, intellectual disability, or cognitive dysfunction during their follow-up. All patients had a pathogenic or likely pathogenic variant in SLC2A1 and missense variants were the most common variant type. CONCLUSION We present 13 patients with GLUT1DS in the pediatric patient population. Atypical clinical features such as hemiplegia and hemiplegic migraine were present in an infant; there was a high prevalence of absence seizures and movement disorders in our patient population. We report an increased number of patients with GLUT1DS since the introduction of next-generation sequencing in the clinical settings. We believe that GLUT1DS should be included in the differential diagnosis of seizures, movement disorders, and hemiplegic migraine.
Collapse
|
8
|
Gburek-Augustat J, Heinze A, Abou Jamra R, Merkenschlager A. Hemiplegic Migraine in Glut1 Deficiency Syndrome and Paroxysmal Dyskinesia at Ketogenic Diet Induction: Case Report and Literature Review. Mov Disord Clin Pract 2020; 7:965-970. [PMID: 33163569 DOI: 10.1002/mdc3.13087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background A rare symptom of Glut1 deficiency syndrome (Glut1 DS) is hemiplegic migraine (HM). Case We report a patient with Glut1 DS with a mild phenotype. His leading symptom was HM. As an unusual complication of the initiation of a ketogenic diet (KD), our patient developed paroxysmal nonkinesigenic dyskinesia. Paroxysmal dyskinesia occurred first and exclusively at the initiation of KD. Literature Review There are a few case reports for HM in Glut1 DS. All patients had additional neurological symptoms. Regarding central nervous system symptoms such as paroxysmal dyskinesia triggered by KD, we found only 1 other case report. Discussion HM is part of the symptom complex of Glut1 DS and can be effectively treated by KD. Paroxysmal dyskinesia trigged by the initiation of KD should not lead to the discontinuation of the diet in Glut1 DS.
Collapse
Affiliation(s)
- Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents University Hospital Leipzig Leipzig Germany
| | - Anja Heinze
- Institute of Human Genetics University Hospital Leipzig Leipzig Germany
| | - Rami Abou Jamra
- Institute of Human Genetics University Hospital Leipzig Leipzig Germany
| | - Andreas Merkenschlager
- Division of Neuropaediatrics, Hospital for Children and Adolescents University Hospital Leipzig Leipzig Germany
| |
Collapse
|
9
|
Winczewska-Wiktor A, Hoffman-Zacharska D, Starczewska M, Kaczmarek I, Badura-Stronka M, Steinborn B. Variety of symptoms of GLUT1 deficiency syndrome in three-generation family. Epilepsy Behav 2020; 106:107036. [PMID: 32247176 DOI: 10.1016/j.yebeh.2020.107036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Glucose transporter type 1 deficiency (G1D) syndrome is generally a genetic disorder because of a mutation of the SLC2A1 gene. The clinical picture of G1D is heterogeneous. The aim of this paper was to present the case of G1D, recognized in a three-generation family, caused by missense mutation p.Arg92Trp in SLC2A1 gene, and showing high clinical heterogeneity and evolution of symptoms over time. METHODS Three-generation family members, showing symptoms suggesting G1D, have been characterized in terms of the clinical picture, electroencephalogram (EEG) recordings, brain neuroimaging, and the psychological assessment data. All subjects were offered genetic testing of the SLC2A1 gene. RESULTS We sequenced the SLC2A1 gene in the proband of the family and identified the c.274C > T variant (p.Arg92Trp). The presence of the same mutation was confirmed in all affected family members; however, significant variations in the clinical picture among them were observed. In addition to the typical symptoms for G1D (e.g., epilepsy, intellectual disability), patients presented movement disorders, stiffness, and dysarthria, as well as psychiatric symptoms. After using the ketogenic diet, epileptic seizures disappeared, but the rest of the symptoms were resistant to treatment. CONCLUSIONS Despite the same underlying mutation, clinical symptoms may vary among members of one family. Different clinical symptoms are observed depending on the patient's age. Not all symptoms occur in all patients within one family despite the same genetic background. However, the importance of early therapy for the clinical course of the disease requires further study.
Collapse
Affiliation(s)
- Anna Winczewska-Wiktor
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | - Dorota Hoffman-Zacharska
- Institute of Mother and Child, Department of Medical Genetics, ul. Kasprzaka 17A, 01-211 Warsaw, Poland.
| | - Monika Starczewska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | - Izabela Kaczmarek
- The Neuropsychology Laboratory, Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | - Magdalena Badura-Stronka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland.
| | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| |
Collapse
|
10
|
Mohammad SS, Paget SP, Dale RC. Current therapies and therapeutic decision making for childhood-onset movement disorders. Mov Disord 2019; 34:637-656. [PMID: 30919519 DOI: 10.1002/mds.27661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Movement disorders differ in children to adults. First, neurodevelopmental movement disorders such as tics and stereotypies are more prevalent than parkinsonism, and second, there is a genomic revolution which is now explaining many early-onset dystonic syndromes. We outline an approach to children with movement disorders starting with defining the movement phenomenology, determining the level of functional impairment due to abnormal movements, and screening for comorbid psychiatric conditions and cognitive impairments which often contribute more to disability than the movements themselves. The rapid improvement in our understanding of the etiology of movement disorders has resulted in an increasing focus on precision medicine, targeting treatable conditions and defining modifiable disease processes. We profile some of the key disease-modifying therapies in metabolic, neurotransmitter, inflammatory, and autoimmune conditions and the increasing focus on gene or cellular therapies. When no disease-modifying therapies are possible, symptomatic therapies are often all that is available. These classically target dopaminergic, cholinergic, alpha-adrenergic, or GABAergic neurochemistry. Increasing interest in neuromodulation has highlighted that some clinical syndromes respond better to DBS, and further highlights the importance of "disease-specific" therapies with a future focus on individualized therapies according to the genomic findings or disease pathways that are disrupted. We summarize some pragmatic applications of symptomatic therapies, neuromodulation techniques, and some rehabilitative interventions and provide a contemporary overview of treatment in childhood-onset movement disorders. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shekeeb S Mohammad
- Kids Neuroscience Centre, The Kids Research Institute at the Children's Hospital at Westmead, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.,Movement Disorders Unit, T.Y. Nelson Department of Neurology, the Children's Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Simon P Paget
- Kids Rehab, the Children's Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Kids Research Institute at the Children's Hospital at Westmead, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.,Movement Disorders Unit, T.Y. Nelson Department of Neurology, the Children's Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Ebrahimi‐Fakhari D, Van Karnebeek C, Münchau A. Movement Disorders in Treatable Inborn Errors of Metabolism. Mov Disord 2018; 34:598-613. [DOI: 10.1002/mds.27568] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Darius Ebrahimi‐Fakhari
- Department of Neurology, Boston Children's HospitalHarvard Medical School Boston Massachusetts USA
| | - Clara Van Karnebeek
- Departments of Pediatrics and Clinical GeneticsAmsterdam University Medical Centres Amsterdam The Netherlands
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| |
Collapse
|
12
|
Di Vito L, Licchetta L, Pippucci T, Baldassari S, Stipa C, Mostacci B, Alvisi L, Tinuper P, Bisulli F. Phenotype variability of GLUT1 deficiency syndrome: Description of a case series with novel SLC2A1 gene mutations. Epilepsy Behav 2018; 79:169-173. [PMID: 29306089 DOI: 10.1016/j.yebeh.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Lidia Di Vito
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy
| | - Laura Licchetta
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Tommaso Pippucci
- U.O. Medical Genetics, Sant'Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Sara Baldassari
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy.
| | - Carlotta Stipa
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy.
| | - Lara Alvisi
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Paolo Tinuper
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Francesca Bisulli
- IRCCS Institute of Neurological Sciences, Via Altura 3, 40137 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
13
|
Pellegrin S, Cantalupo G, Opri R, Dalla Bernardina B, Darra F. EEG findings during "paroxysmal hemiplegia" in a patient with GLUT1-deficiency. Eur J Paediatr Neurol 2017; 21:580-582. [PMID: 28129950 DOI: 10.1016/j.ejpn.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND A growing number of studies have disclosed the myriad of features that can suggest the diagnosis of a Glucose-transporter-1 deficiency (GLUT1D). The occurrence of paroxysmal movement disorders such as exercise-induced dystonia and non-kinesigenic dyskinesia, received considerable emphasis, while limited attention has been paid to other paroxysmal phenomena, as transitory neurological disorders. These paroxysmal events are roughly and variably described as limb weakness, hemiparesis or ataxia. Their EEG correlate has been never documented. CASE DESCRIPTION AND CONCLUSION We report the EEG pattern characterizing two acute episodes of paroxysmal paresis with confusion and aphasia, in a girl with GLUT1D. The EEG picture is characterized by a clear-cut contralateral EEG slowing, similar to what is observed in Alternating Hemiplegia of Childhood and Hemiplegic Migraine attacks. In our patient the paroxysmal events were responsive to a ketogenic diet.
Collapse
Affiliation(s)
- S Pellegrin
- Child Neuropsychiatry, University of Verona, Verona, Italy.
| | - G Cantalupo
- Child Neuropsychiatry, University of Verona, Verona, Italy
| | - R Opri
- Child Neuropsychiatry, University of Verona, Verona, Italy
| | | | - F Darra
- Child Neuropsychiatry, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Diagnosing Glucose Transporter 1 Deficiency at Initial Presentation Facilitates Early Treatment. J Pediatr 2016; 171:220-6. [PMID: 26811264 DOI: 10.1016/j.jpeds.2015.12.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To profile the initial clinical events of glucose transporter 1 deficiency syndrome (Glut1 DS) in order to facilitate the earliest possible diagnosis. STUDY DESIGN We retrospectively reviewed 133 patients with Glut1 DS from a single institution. Family interviews and medical record reviews identified the first clinical event(s) reported by the caregivers. RESULTS Average age of the first event was 8.15 ± 11.9 months (range: 0.01-81). Ninety-one patients experienced the first symptom before age 6 months (68%). Thirty-three additional patients (25%) presented before age 2 years. Only 9 patients (7%), reported the first event after age 2 years. Seizures were the most common first event (n = 81, 61%), followed by eye movement abnormalities (n = 51, 38%) and changes in muscle strength and tone (n = 30, 22%). Eye movement abnormalities, lower cerebrospinal fluid glucose values, and lower Columbia Neurological Scores correlated with earlier onset of the first event (r: -0.17, 0.22, and 0.25 respectively, P < .05). There was no correlation with age of first event and red blood cell glucose uptake or mutation type. CONCLUSIONS Glut1 DS is a treatable cause of infantile onset encephalopathy. Health care providers should recognize the wide spectrum of paroxysmal events that herald the clinical onset of Glut1 DS in early infancy to facilitate prompt diagnosis, immediate treatment, and improved long-term outcome.
Collapse
|
15
|
Panagiotakaki E, De Grandis E, Stagnaro M, Heinzen EL, Fons C, Sisodiya S, de Vries B, Goubau C, Weckhuysen S, Kemlink D, Scheffer I, Lesca G, Rabilloud M, Klich A, Ramirez-Camacho A, Ulate-Campos A, Campistol J, Giannotta M, Moutard ML, Doummar D, Hubsch-Bonneaud C, Jaffer F, Cross H, Gurrieri F, Tiziano D, Nevsimalova S, Nicole S, Neville B, van den Maagdenberg AMJM, Mikati M, Goldstein DB, Vavassori R, Arzimanoglou A. Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood-a study of 155 patients. Orphanet J Rare Dis 2015; 10:123. [PMID: 26410222 PMCID: PMC4583741 DOI: 10.1186/s13023-015-0335-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype. METHODS Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational ATP1A3 gene data for each patient. RESULTS In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included: p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis, compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient of severity between the three major mutations with differences in intellectual (p = 0.029) and motor (p = 0.039) disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p < 0.001). With regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No statistically significant clinical correlations were found between patients with and without ATP1A3 mutations. CONCLUSIONS Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with the most frequent mutations and the clinical picture of those with less common mutations confirms the results from previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC. They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials.
Collapse
Affiliation(s)
- Eleni Panagiotakaki
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.
| | - Elisa De Grandis
- Department of Child Neuropsychiatry, G. Gaslini Hospital, University of Genoa, Genoa, Italy
| | - Michela Stagnaro
- Department of Child Neuropsychiatry, G. Gaslini Hospital, University of Genoa, Genoa, Italy
| | - Erin L Heinzen
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christophe Goubau
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Weckhuysen
- Department of Molecular Genetics, Neurogenetics Group, VIB, Antwerp, Belgium
| | - David Kemlink
- Department of Neurology, Charles University, First Faculty of Medicine and Teaching Hospital, Prague, Czech Republic
| | - Ingrid Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Gaëtan Lesca
- Department of Genetics, University Hospitals of Lyon (HCL) and Claude Bernard Lyon I University, Lyon, France.,Lyon Neuroscience Research Center (CRNL), CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Muriel Rabilloud
- Biostatistics Department, University Hospitals of Lyon and UMR 5558, Lyon, France
| | - Amna Klich
- Biostatistics Department, University Hospitals of Lyon and UMR 5558, Lyon, France
| | - Alia Ramirez-Camacho
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.,Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Jaume Campistol
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Marie-Laure Moutard
- Department of Child Neurology, Armand Trousseau Hospital, APHP, Paris, France
| | - Diane Doummar
- Department of Child Neurology, Armand Trousseau Hospital, APHP, Paris, France
| | | | - Fatima Jaffer
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Helen Cross
- Institute of Child Health, University College London, London, UK
| | - Fiorella Gurrieri
- Institute of Medical Genetics, University Cattolica del Sacro Cuore, Policlinics A. Gemelli, Rome, Italy
| | - Danilo Tiziano
- Institute of Medical Genetics, University Cattolica del Sacro Cuore, Policlinics A. Gemelli, Rome, Italy
| | - Sona Nevsimalova
- Department of Neurology, Charles University, First Faculty of Medicine and Teaching Hospital, Prague, Czech Republic
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Paris, France
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mohamad Mikati
- Division of Pediatric Neurology and Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - David B Goldstein
- Center for Human Genome Variation, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Rosaria Vavassori
- Associazione Italiana per la Sindrome di Emiplegia Alternante (A.I.S.EA Onlus), Lecco, Italy
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department (ESEFNP), University Hospitals of Lyon (HCL), Lyon, France.,DYCOG team, Lyon Neuroscience Research Centre (CRNL), INSERM U1028; CNRS UMR 5292, Lyon, France
| | | | | | | |
Collapse
|
16
|
From splitting GLUT1 deficiency syndromes to overlapping phenotypes. Eur J Med Genet 2015; 58:443-54. [PMID: 26193382 DOI: 10.1016/j.ejmg.2015.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Glucose transporter type 1 deficiency syndrome (GLUT1DS) is a rare genetic disorder due to mutations or deletions in SLC2A1, resulting in impaired glucose uptake through the blood brain barrier. The classic phenotype includes pharmacoresistant epilepsy, intellectual deficiency, microcephaly and complex movement disorders, with hypoglycorrhachia, but milder phenotypes have been described (carbohydrate-responsive phenotype, dystonia and ataxia without epilepsy, paroxysmal exertion-induced dystonia). The aim of our study was to provide a comprehensive overview of GLUT1DS in a French cohort. METHODS 265 patients were referred to the French national laboratory for molecular screening between July 2006 and January 2012. Mutations in SLC2A1 were detected in 58 patients, with detailed clinical data available in 24, including clinical features with a focus on their epileptic pattern and electroencephalographic findings, biochemical findings and neuroimaging findings. RESULTS 53 point mutations and 5 deletions in SLC2A1 were identified. Most patients (87.5%) exhibited classic phenotype with intellectual deficiency (41.7%), epilepsy (75%) or movement disorder (29%) as initial symptoms at a medium age of 7.5 months, but diagnostic was delayed in most cases (median age at diagnostic 8 years 5 months). Sensitivity to fasting or exertion in combination with those 3 main symptoms were the main differences between mutated and negative patients (p < 0.001). Patients with myoclonic seizures (52%) evolved with more severe intellectual deficiency and movement disorders compared with those with Early Onset Absence Epilepsy (38%). Three patients evolved from a classic phenotype during early childhood to a movement disorder predominant phenotype at a late childhood/adulthood. CONCLUSIONS Our data confirm that the classic phenotype is the most frequent in GLUT1DS. Myoclonic seizures are a distinctive feature of severe forms. However a great variability among patients and overlapping through life from milder classic phenotype to paroxysmal-prominent- movement-disorder phenotype are possible, thus making it difficult to identify definite genotype-phenotype correlations.
Collapse
|
17
|
The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia-Parkinsonism, CAPOS and beyond. Pediatr Neurol 2015; 52:56-64. [PMID: 25447930 PMCID: PMC4352574 DOI: 10.1016/j.pediatrneurol.2014.09.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/09/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND ATP1A3 mutations have now been recognized in infants and children presenting with a diverse group of neurological phenotypes, including Rapid-onset Dystonia-Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and most recently, Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss (CAPOS) syndrome. METHODS Existing literature on ATP1A3-related disorders in the pediatric population were reviewed, with attention to clinical features and associated genotypes among those with RDP, AHC, or CAPOS syndrome phenotypes. RESULTS While classically defined phenotypes associated with AHC, RDP, and CAPOS syndromes are distinct, common elements among ATP1A3-related neurological disorders include characteristic episodic neurological symptoms and signs that vary in severity, duration, and frequency of occurrence. Affected children typically present in the context of an acute onset of paroxysmal, episodic neurological symptoms ranging from oculomotor abnormalities, hypotonia, paralysis, dystonia, ataxia, seizure-like episodes, or encephalopathy. Neurodevelopmental delays or persistence of dystonia, chorea, or ataxia after resolution of an initial episode are common, providing important clues for diagnosis. CONCLUSIONS The phenotypic spectrum of ATP1A3-related neurological disorders continues to expand beyond the distinct yet overlapping phenotypes in patients with AHC, RDP, and CAPOS syndromes. ATP1A3 mutation analysis is appropriate to consider in the diagnostic algorithm for any child presenting with episodic or fluctuating ataxia, weakness or dystonia whether they manifest persistence of neurological symptoms between episodes. Additional work is needed to better identify and classify affected patients and develop targeted treatment approaches.
Collapse
|
18
|
Vila-Pueyo M, Pons R, Raspall-Chaure M, Marcé-Grau A, Carreño O, Sintas C, Cormand B, Pineda-Marfà M, Macaya A. Clinical and genetic analysis in alternating hemiplegia of childhood: Ten new patients from Southern Europe. J Neurol Sci 2014; 344:37-42. [DOI: 10.1016/j.jns.2014.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
19
|
Weller CM, Leen WG, Neville BGR, Duncan JS, de Vries B, Geilenkirchen MA, Haan J, Kamsteeg EJ, Ferrari MD, van den Maagdenberg AMJM, Willemsen MAAP, Scheffer H, Terwindt GM. A novel SLC2A1 mutation linking hemiplegic migraine with alternating hemiplegia of childhood. Cephalalgia 2014; 35:10-5. [PMID: 24824604 DOI: 10.1177/0333102414532379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hemiplegic migraine (HM) and alternating hemiplegia of childhood (AHC) are rare episodic neurological brain disorders with partial clinical and genetic overlap. Recently, ATP1A3 mutations were shown to account for the majority of AHC patients. In addition, a mutation in the SLC2A1 gene was reported in a patient with atypical AHC. We therefore investigated whether mutations in these genes may also be involved in HM. Furthermore, we studied the role of SLC2A1 mutations in a small set of AHC patients without ATP1A3 mutations. METHODS We screened 42 HM patients (21 familial and 21 sporadic patients) for ATP1A3 and SLC2A1 mutations. In addition, four typical AHC patients and one atypical patient with overlapping symptoms of both disorders were screened for SLC2A1 mutations. RESULTS A pathogenic de novo SLC2A1 mutation (p.Gly18Arg) was found in the atypical patient with overlapping symptoms of AHC and hemiplegic migraine. No mutations were found in the HM and the other AHC patients. CONCLUSION Screening for a mutation in the SLC2A1 gene should be considered in patients with a complex phenotype with overlapping symptoms of hemiplegic migraine and AHC.
Collapse
Affiliation(s)
- Claudia M Weller
- Department of Human Genetics, Leiden University Medical Centre, the Netherlands
| | - Wilhelmina G Leen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, the Netherlands
| | - Brian G R Neville
- Neurosciences Unit, Institute of Child Health, UCL Medical School and Great Ormond Street Hospital for Children NHS Trust, UK
| | | | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, the Netherlands
| | | | - Joost Haan
- Neurosciences Unit, Institute of Child Health, UCL Medical School and Great Ormond Street Hospital for Children NHS Trust, UK Department of Neurology, Rijnland Hospital, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, the Netherlands Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Michèl A A P Willemsen
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, the Netherlands
| | - Hans Scheffer
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
20
|
Mangano S, Fontana A, Spitaleri C, Mangano GR. Benign nocturnal alternating hemiplegia of childhood: a new case with unusual findings. Brain Dev 2014; 36:408-10. [PMID: 23820111 DOI: 10.1016/j.braindev.2013.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
It has been described a neuro developmental disorder labelled "Benign nocturnal alternating hemiplegia of childhood" (BNAHC) characterized by recurrent attacks of nocturnal hemiplegia without progression to neurological or intellectual impairment. We report a female patient who at 11months revealed a motionless left arm, unusual crying without impairment of consciousness and obvious precipitating factors. The attacks occur during sleep in the early morning with lack of ictal and interictal electroencephalographic abnormalities, progressive neurological deficit, and cognitive impairment. Unlike previous reports of BNAHC our patient come from a family with a history of both migraine, hemiplegic migraine, and sleep disorders. Our study remarks on the typical features described in previous studies and stresses the uncommon aspects that could help to identify the disorder which is likely to have been underestimated. Despite some clinical similarities between BNAHC and familiar hemiplegic migraine and alternating hemiplegia of childhood, the genetic analyses of our patient did not reveal genetic mutations found in both disorders.
Collapse
Affiliation(s)
- Salvatore Mangano
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", Child Neuropsychiatry Unit, Università di Palermo, Palermo, Italy.
| | - Antonina Fontana
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", Child Neuropsychiatry Unit, Università di Palermo, Palermo, Italy
| | - Chiara Spitaleri
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", Child Neuropsychiatry Unit, Università di Palermo, Palermo, Italy
| | | |
Collapse
|
21
|
Gergont A, Kaciński M. Alternating hemiplegia of childhood: new diagnostic options. Neurol Neurochir Pol 2014; 48:130-135. [PMID: 24821639 DOI: 10.1016/j.pjnns.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 05/13/2013] [Indexed: 10/25/2022]
Abstract
A syndrome of alternating hemiplegia of childhood (AHC) is a rare disorder first presented in 1971. AHC is characterized by transient episodes of hemiplegia affecting either one or both sides of the body. Age of onset is before 18 months and the common earliest manifestations are dystonic or tonic attacks and nystagmus. Hemiplegic episodes last minutes to days and the frequency and duration tend to decrease with time. Motor and intellectual development is affected, deficits may also develop later. Epileptic seizures occur in some patients. Neuroimaging of the brain usually reveals no abnormalities. The variability of individual clinical presentations and evolution of symptoms have made diagnosis difficult. Therefore the problems of misdiagnosis could account for the low prevalence of this syndrome. This paper hopes to present actual data on AHC, especially of the results of genetic research and new diagnostic tools.
Collapse
Affiliation(s)
- Aleksandra Gergont
- Department of Neurology of Children and Youth, Jagiellonian University, Collegium Medicum, Krakow, Poland.
| | - Marek Kaciński
- Department of Neurology of Children and Youth, Jagiellonian University, Collegium Medicum, Krakow, Poland
| |
Collapse
|
22
|
GLUT1 deficiency syndrome 2013: Current state of the art. Seizure 2013; 22:803-11. [DOI: 10.1016/j.seizure.2013.07.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/01/2023] Open
|
23
|
GLUT1 deficiency syndrome: an update. Rev Neurol (Paris) 2013; 170:91-9. [PMID: 24269118 DOI: 10.1016/j.neurol.2013.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/01/2013] [Accepted: 09/02/2013] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Glucose transporter type 1 deficiency syndrome is caused by heterozygous, mostly de novo, mutations in the SLC2A1 gene encoding the glucose transporter GLUT1. Mutations in this gene limit brain glucose availability and lead to cerebral energy deficiency. STATE OF THE ART The phenotype is characterized by the variable association of mental retardation, acquired microcephaly, complex motor disorders, and paroxysmal manifestations including seizures and non-epileptic paroxysmal episodes. Clinical severity varies from mild motor dysfunction to severe neurological disability. In patients with mild phenotypes, paroxysmal manifestations may be the sole manifestations of the disease. In particular, the diagnosis should be considered in patients with paroxysmal exercise-induced dyskinesia or with early-onset generalized epilepsy. Low CSF level of glucose, relative to blood level, is the best biochemical clue to the diagnosis although not constantly found. Molecular analysis of the SLC2A1 gene confirms the diagnosis. Ketogenic diet is the cornerstone of the treatment and implicates a close monitoring by a multidisciplinary team including trained dieticians. Non-specific drugs may be used as add-on symptomatic treatments but their effects are often disappointing. CONCLUSION Glucose transporter type 1 deficiency syndrome is likely under diagnosed due to its complex and pleiotropic phenotype. Proper identification of the affected patients is important for clinical practice since the disease is treatable.
Collapse
|
24
|
Bizec CL, Nicole S, Panagiotakaki E, Seta N, Vuillaumier-Barrot S. No Mutation in the SLC2A3 Gene in Cohorts of GLUT1 Deficiency Syndrome-Like Patients Negative for SLC2A1 and in Patients with AHC Negative for ATP1A3. JIMD Rep 2013; 12:115-20. [PMID: 24002817 PMCID: PMC3897803 DOI: 10.1007/8904_2013_253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 03/28/2023] Open
Abstract
The facilitative glucose transporter-1 (GLUT1) deficiency or de Vivo syndrome is a rare neuropediatric disorder characterized by drug-resistant epilepsy, acquired microcephaly, delayed psychomotor development, intermittent ataxia, and other paroxysmal neurological disorders due to the presence of dominant mutations in the SLC2A1 gene. Alternating hemiplegia of childhood (AHC) is another rare neuropediatric disorder characterized by episodes of hemiplegia developing during the first 1.5 years of life. Before the recent finding of the gene ATP1A3 as the major cause of AHC, a heterozygous missense mutation in the SLC2A1 gene encoding GLUT1 was described in one child with atypical AHC, suggesting some clinical overlap between AHC and GLUT1 deficiency syndrome (GLUT1DS1). Half of patients with symptoms evocative of GLUT1DS1 with hypoglycorrhachia and up to 25 % of patients with AHC remain molecularly undiagnosed. We investigated whether mutations in SLC2A3 encoding GLUT3, another glucose transporter predominant in the neuronal cell, may account the case of a cohort of 75 SLC2A1 negative GLUTDS1-like patients and seven patients with AHC who were negative for ATP1A3 and SLC2A1 mutations. Automated Sanger sequencing and qPCR analyses failed to detect any mutation of SLC2A3 in the patients analyzed, excluding this gene as frequently mutated in patients with GLUT1DS1 like or AHC.
Collapse
Affiliation(s)
- C. Le Bizec
- />Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - S. Nicole
- />Centre de Recherche de l Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie-Paris 6, UMR-S975, Paris, France
- />INSERM, U975, Paris, France
- />CNRS, UMR 7225, Paris, France
| | - E. Panagiotakaki
- />Service Epilepsie, Sommeil, Explorations Fonctionnelles Neurologiques Pédiatriques, Hôpital Femme Mère Enfant, University Hospitals of Lyon (HCL), Lyon, France
| | - N. Seta
- />Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
- />Université Paris Descartes, Paris, France
| | - S. Vuillaumier-Barrot
- />Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
- />INSERM, U773, CRB3, Paris, France
| |
Collapse
|
25
|
Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 2013; 13:342. [PMID: 23443458 DOI: 10.1007/s11910-013-0342-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glut1 deficiency syndrome (Glut1 DS) was originally described in 1991 as a developmental encephalopathy characterized by infantile onset refractory epilepsy, cognitive impairment, and mixed motor abnormalities including spasticity, ataxia, and dystonia. The clinical condition is caused by impaired glucose transport across the blood brain barrier. The past 5 years have seen a dramatic expansion in the range of clinical syndromes that are recognized to occur with Glut1 DS. In particular, there has been greater recognition of milder phenotypes. Absence epilepsy and other idiopathic generalized epilepsy syndromes may occur with seizure onset in childhood or adulthood. A number of patients present predominantly with movement disorders, sometimes without any accompanying seizures. In particular, paroxysmal exertional dyskinesia is now a well-documented clinical feature that occurs in individuals with Glut1 DS. A clue to the diagnosis in patients with paroxysmal symptoms may be the triggering of episodes during fasting or exercise. Intellectual impairment may range from severe to very mild. Awareness of the broad range of potential clinical phenotypes associated with Glut1 DS will facilitate earlier diagnosis of this treatable neurologic condition. The ketogenic diet is the mainstay of treatment and nourishes the starving symptomatic brain during development.
Collapse
|
26
|
De Grandis E, Stagnaro M, Biancheri R, Giannotta M, Gobbi G, Traverso M, Veneselli E, Zara F. Lack of SLC2A1 (glucose transporter 1) mutations in 30 Italian patients with alternating hemiplegia of childhood. J Child Neurol 2013; 28:863-6. [PMID: 22899793 DOI: 10.1177/0883073812452789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternating hemiplegia of childhood is a rare, predominantly sporadic disorder. Diagnosis is clinical, and little is known about genetics. Glucose transporter 1 deficiency syndrome shares with alternating hemiplegia of childhood paroxysmal and nonparoxysmal symptoms. The aim of the study was to investigate glucose transporter 1 mutations in 30 Italian patients. Genetic material was analyzed by DNA amplification and glucose transporter 1 region sequencing. Mutational analysis findings of the SLC2A1 gene were negative in all patients. The pattern of movement disorders was reviewed. Interictal dystonia and multiple paroxysmal events were typical of alternating hemiplegia of childhood. In conclusion, alternating hemiplegia of childhood is a heterogeneous clinical condition, and although glucose transporter 1 deficiency can represent an undiagnosed cause of this disorder, mutational analysis is not routinely recommended. Alternatively, a careful clinical analysis and the 3-O-methyl-D-glucose uptake test can allow prompt identification of a subgroup of patients with alternating hemiplegia of childhood treatable with a ketogenic diet.
Collapse
Affiliation(s)
- Elisa De Grandis
- Child Neuropsychiatry Unit, Department of Neurosciences, Ophthalmology & Genetics, G. Gaslini Institute, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kansagra S, Mikati MA, Vigevano F. Alternating hemiplegia of childhood. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:821-826. [PMID: 23622289 DOI: 10.1016/b978-0-444-52910-7.00001-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alternating hemiplegia of childhood (AHC) is a very rare disease characterized by recurrent attacks of loss of muscular tone resulting in hypomobility of one side of the body. The etiology of the disease due to ATP1A3 gene mutations in the majority of patients. Few familial cases have been described. AHC has an onset in the first few months of life. Hemiplegic episodes are often accompanied by other paroxysmal manifestations, such as lateral eyes and head deviation toward the hemiplegic side and a very peculiar monocular nystagmus. As the attack progresses, hemiplegia can shift to the other side of the body. Sometimes the attack can provoke bilateral paralysis, and these patients may have severe clinical impairment, with difficulty in swallowing and breathing. Hemiplegic attacks may be triggered by different stimuli, like bath in warm water, motor activity, or emotion. The frequency of attacks is high, usually several in a month or in a week. The duration is variable from a few minutes to several hours or even days. Sleep can stop the attack. Movement disorders such as dystonia and abnormal movements are frequent. Cognitive delay of variable degree is a common feature. Epilepsy has been reported in 50% of the cases, but seizure onset is usually during the third or fourth year of life. Many drugs have been used in AHC with very few results. Flunarizine has the most supportive anecdotal evidence regarding efficacy.
Collapse
Affiliation(s)
- Sujay Kansagra
- Division of Pediatric Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | | | |
Collapse
|
28
|
Arsov T, Mullen SA, Damiano JA, Lawrence KM, Huh LL, Nolan M, Young H, Thouin A, Dahl HHM, Berkovic SF, Crompton DE, Sadleir LG, Scheffer IE. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia 2012; 53:e204-7. [PMID: 23106342 DOI: 10.1111/epi.12007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose transporter 1 (GLUT1) deficiency caused by mutations of SLC2A1 is an increasingly recognized cause of genetic generalized epilepsy. We previously reported that >10% (4 of 34) of a cohort with early onset absence epilepsy (EOAE) had GLUT1 deficiency. This study uses a new cohort of 55 patients with EOAE to confirm that finding. Patients with typical absence seizures beginning before 4 years of age were screened for solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) mutations or deletions. All had generalized spike-waves on electroencephalography (EEG). Those with tonic and/or atonic seizures were excluded. Mutations were found in 7 (13%) of 55 cases, including five missense mutations, an in-frame deletion leading to loss of a single amino acid, and a deletion spanning two exons. Over both studies, 11 (12%) of 89 probands with EOAE have GLUT1 deficiency. Given the major treatment and genetic counseling implications, this study confirms that SLC2A1 mutational analysis should be strongly considered in EOAE.
Collapse
Affiliation(s)
- Todor Arsov
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmüller J, Frommolt P, Zirn B, Ebinger F, Siemes H, Nürnberg P, Brockmann K, Gärtner J. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol 2012; 11:764-773. [PMID: 22850527 DOI: 10.1016/s1474-4422(12)70182-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alternating hemiplegia of childhood (AHC) is a rare neurological disorder characterised by early-onset episodes of hemiplegia, dystonia, various paroxysmal symptoms, and developmental impairment. Almost all cases of AHC are sporadic but AHC concordance in monozygotic twins and dominant transmission in a family with a milder phenotype have been reported. Thus, we aimed to identify de-novo mutations associated with this disease. METHODS We recruited patients with clinically characterised AHC from paediatric neurology departments in Germany and with the aid of a parental support group between Sept, 2004, and May 18, 2012. We used whole-exome sequencing of three proband-parent trios to identify a disease-associated gene and then tested whether mutations in the gene were also present in the remaining patients and their healthy parents. We analysed genotypes and characterised their associations with the phenotypic spectrum of the disease. FINDINGS We studied 15 female and nine male patients with AHC who were aged 8-35 years. ATP1A3 emerged as the disease-associated gene in AHC. Whole-exome sequencing showed three heterozygous de-novo missense mutations. Sequencing of the 21 remaining affected individuals identified disease-associated mutations in ATP1A3 in all patients, including six de-novo missense mutations and one de-novo splice-site mutation. Because ATP1A3 is also the gene associated with rapid-onset dystonia-parkinsonism (DYT12, OMIM 128235) we compared the genotypes and phenotypes of patients with AHC in our cohort with those of patients with rapid-onset dystonia-parkinsonism reported in the scientific literature. We noted overlapping clinical features, such as abrupt onset of dystonic episodes often triggered by emotional stress, a rostrocaudal (face to arm to leg) gradient of involvement, and signs of brainstem dysfunction, as well as clearly differentiating clinical characteristics, such as episodic hemiplegia and quadriplegia. INTERPRETATION Mutation analysis of the ATP1A3 gene in patients who met clinical criteria for AHC allows for definite genetic diagnosis and sound genetic counselling. AHC and rapid-onset dystonia-parkinsonism are allelic diseases related to mutations in ATP1A3 and form a phenotypical continuum of a dystonic movement disorder. FUNDING Eva Luise and Horst Köhler Foundation for Humans with Rare Diseases.
Collapse
Affiliation(s)
- Hendrik Rosewich
- Department of Paediatrics and Paediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: Epilepsy phenotypes and outcomes. Epilepsia 2012; 53:1503-10. [DOI: 10.1111/j.1528-1167.2012.03592.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Klepper J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res 2012; 100:272-7. [DOI: 10.1016/j.eplepsyres.2011.02.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/06/2011] [Indexed: 01/01/2023]
|
32
|
Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, Aggarwal V, Levy B, Ma L, Chung WK, De Vivo DC. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol 2012; 70:996-1005. [PMID: 22190371 DOI: 10.1002/ana.22640] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The Glut1 deficiency syndrome (Glut1 DS) phenotype has expanded dramatically since first described in 1991. Hypoglycorrhachia and decreased erythrocyte 3-OMG uptake are confirmatory laboratory biomarkers. The objective is to expand previous observations regarding the diagnostic value of the uptake assay. METHODS One hundred and nine suspected cases of Glut-1 DS were studied. All cases had a consistent clinical picture and hypoglycorrhachia. The uptake assay was decreased in 74 cases (group 1) and normal in 35 cases (group 2). We identified disease-causing mutations in 70 group 1 patients (95%) and one group 2 patient (3%). RESULTS The cut-off for an abnormally low uptake value was increased from 60% to 74% with a corresponding sensitivity of 99% and specificity of 100%. The correlation between the uptake values for the time-curve and the kinetic concentration curve were strongly positive (R(2) = 0.85). Significant group differences were found in CSF glucose and lactate values, tone abnormalities, and degree of microcephaly. Group 2 patients were less affected in all domains. We also noted a significant correlation between the mean erythrocyte 3-OMG uptake and clinical severity (R(2) = 0.94). INTERPRETATION These findings validate the erythrocyte glucose uptake assay as a confirmatory functional test for Glut1 DS and as a surrogate marker for GLUT1 haploinsufficiency.
Collapse
Affiliation(s)
- Hong Yang
- Colleen Giblin Laboratories for Pediatric Neurology Research, Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Verrotti A, D'Egidio C, Agostinelli S, Gobbi G. Glut1 deficiency: when to suspect and how to diagnose? Eur J Paediatr Neurol 2012; 16:3-9. [PMID: 21962875 DOI: 10.1016/j.ejpn.2011.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/18/2011] [Indexed: 11/19/2022]
Abstract
Impaired glucose transport across the blood-brain barrier results in GLUT1 deficiency syndrome (GLUT1-DS), characterized by infantile seizures, developmental delay, acquired microcephaly, spasticity, ataxia, and hypoglycorrhachia. A part from this classic phenotype, clinical conditions associated with a deficiency of GLUT1 are highly variable and several atypical variants have been described; in particular, patients with movement disorders, but without seizures, with paroxysmal exertion-induced dyskinesia, have been reported. Most patients carry heterozygous de novo mutations in the GLUT1-gene but autosomal dominant and recessive transmission has been identified. Diagnosis is based on low cerebrospinal fluid glucose, in the absence of hypoglycemia, and it is confirmed by molecular analysis of the GLUT1-gene and by glucose uptake studies and immunoreactivity in human erythrocytes. Treatment with a ketogenic diet results in marked improvement of seizures and movement disorders. This review summarizes recent advances in understanding of GLUT1-DS and highlights the diagnostic and therapeutic approach to GLUT1-DS.
Collapse
Affiliation(s)
- A Verrotti
- Department of Paediatrics, University of Chieti, Ospedale policlinico SS. Annunziata, Via dei Vestini 5, 66100 Chieti, Italy.
| | | | | | | |
Collapse
|
34
|
Fons C, Campistol J, Panagiotakaki E, Giannotta M, Arzimanoglou A, Gobbi G, Neville B, Ebinger F, Nevšímalová S, Laan L, Casaer P, Spiel G, Ninan M, Sange G, Artuch R, Schyns T, Vavassori R, Poncelin D. Alternating hemiplegia of childhood: metabolic studies in the largest European series of patients. Eur J Paediatr Neurol 2012; 16:10-4. [PMID: 21945173 DOI: 10.1016/j.ejpn.2011.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/05/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022]
Abstract
Alternating hemiplegia of childhood (AHC) is a rare disorder with diagnosis based on clinical criteria, as no laboratory, neuroradiological or genetic markers are currently available. The pathogenic mechanisms are still an enigma. Some hypotheses have been proposed such as hemiplegic migraine variant, epileptic mechanism, channelopathy and mitochondrial disorder, but none of these has been confirmed. Our aim was to analyze the results of metabolic studies performed on a series of 157 European patients who fulfilled diagnostic criteria for AHC. We tried to find a common metabolic abnormality, related with AHC. We did not find significant abnormalities in basic metabolic screening, at different ages. Neurotransmitters in cerebrospinal fluid (n = 26) were normal in all of the patients. Mitochondrial respiratory chain enzyme activities were analyzed in 19 muscle biopsies; in 4 cases, different MRC enzyme deficiencies were demonstrated, ranging from mild-unspecific deficiencies to more profound and probably primary defects. Although we did not find specific metabolic markers in our series, some metabolic disorders such as pyruvate dehydrogenase deficiency, MELAS, cerebral glucose transporter defect and neurotransmitter deficiency can exhibit symptoms similar to those of AHC and need to be ruled out before a diagnosis of AHC can be established. Further studies including high-throughput diagnostic technologies seem necessary to elucidate the etiology of this severe and enigmatic disorder.
Collapse
Affiliation(s)
- Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Hospital, Barcelona University (UB), CIBERER, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Koy A, Assmann B, Klepper J, Mayatepek E. Glucose transporter type 1 deficiency syndrome with carbohydrate-responsive symptoms but without epilepsy. Dev Med Child Neurol 2011; 53:1154-6. [PMID: 21838819 DOI: 10.1111/j.1469-8749.2011.04082.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female child (3 y 4 mo) who presented with delayed psychomotor development and frequent episodes of staggering, impaired vigilance, and vomiting that resolved promptly after food intake. Electroencephalography was normal. The cerebrospinal fluid-blood glucose ratio was 0.42 (normal ≥ 0.45). GLUT1-DS was confirmed by molecular genetic testing, which showed a novel de novo heterozygous mutation in the SLC2A1 gene (c.497_499delTCG, p.VAL166del). Before starting a ketogenic diet, the child's cognitive development was tested using the Snijders-Oomen Non-Verbal Intelligence Test, which revealed a heterogeneous intelligence profile with deficits in her visuomotor skills and spatial awareness. Her motor development was delayed. Three months after introducing a ketogenic diet, she showed marked improvement in speech and motor development, as tested by the Movement Assessment Battery for Children (manual dexterity 16th centile, ball skills 1st centile, static and dynamic balance 5th centile). This case demonstrates that GLUT1-DS should be investigated in individuals with unexplained developmental delay. Epilepsy is not a mandatory symptom. The ketogenic diet is also beneficial for non-epileptic symptoms in GLUT1-DS.
Collapse
Affiliation(s)
- Anne Koy
- Department of General Paediatrics, University Children's Hospital, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
36
|
Sasaki M, Matsufuji H, Inui T, Arima K. Absence of small-vessel abnormalities in alternating hemiplegia of childhood. Brain Dev 2011; 33:390-3. [PMID: 20826074 DOI: 10.1016/j.braindev.2010.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate whether Japanese patients with alternating hemiplegia of childhood (AHC) have the similar small-vessel abnormalities in skin reported in European patients with AHC. METHODS Electron microscopic observation of biopsied skin specimens were carried out in six Japanese patients with AHC. All patients (aged 5-17, all boys) had been diagnosed with AHC through their typical clinical courses and symptoms. RESULTS No abnormal findings in both endothelial cells and smooth muscle cells in skin small-vessels were obtained in the present study, either in the five flunarizine responders or in the one non-responder. CONCLUSIONS From our observations, we hypothesized that there may be some subtypes of AHC. The diverse clinical courses in patients with AHC and the differing efficacy of flunarizine treatment could be explained because of the heterogeneity of AHC subtypes.
Collapse
Affiliation(s)
- Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | | | | | | |
Collapse
|
37
|
Paroxysmal exercise-induced dyskinesia, writer's cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci 2010; 295:110-3. [PMID: 20621801 DOI: 10.1016/j.jns.2010.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/07/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
We report two monochorionic twins that progressively developed, between ages 5 and 10, a combination of episodic neurological disorders including paroxysmal exercise-induced dyskinesia, migraine without or with aura, absence seizures and writer's cramp. CSF/serum glucose ratio was moderately decreased in both patients. Mutational analysis of SLC2A1 gene identified a de novo heterozygous missense mutation in exon 4. This novel mutation has been previously showed to disrupt glucose transport in vitro. Both patients showed immediate and near-complete response to ketogenic diet. This clinical observation suggests that a high index of suspicion for GLUT1 deficiency syndrome is warranted in evaluating patients with multiple neurological paroxysmal events.
Collapse
|