1
|
Shimada A, Suda K, Nakano E, Tagawa M, Miyata M, Kashii S, Hinoda T, Fushimi Y, Kimura K, Nishigori R, Ahn S, Grinstead J, Tsujikawa A. Accuracy of Diagnosing Optic Neuritis Using DANTE T1-SPACE Imaging. Eye Brain 2024; 16:65-73. [PMID: 39493624 PMCID: PMC11531292 DOI: 10.2147/eb.s474100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose To evaluate the use of delay alternating with nutation for tailored excitation-prepared T1-weighted turbo spin echo (DANTE T1-SPACE) imaging for diagnosing optic neuritis and to analyze its correlation with clinical findings before and after treatment. Patients and Methods Patients diagnosed with optic neuritis or non-arteritic anterior ischemic optic neuropathy (NA-AION) were evaluated at the Ophthalmology Department of Kyoto University Hospital. All patients underwent magnetic resonance (MR) studies before treatment initiation and ophthalmic examinations before and after treatment. Three ophthalmologists independently reviewed the MR scans for abnormalities. The magnetic resonance imaging (MRI) assessments included post-contrast DANTE T1-SPACE, post-contrast volumetric interpolated breath-hold examination (VIBE), and short T1 inversion recovery (STIR) scans. The presence of abnormalities in each sequence was determined. Results Of 36 eyes from 30 patients, 21 eyes from 17 patients were diagnosed with optic neuritis, and 15 eyes from 13 patients were diagnosed with NA-AION. DANTE T1-SPACE sequences showed better sensitivity for detecting optic neuritis than STIR sequences (100% vs 67%, p = 0.009). VIBE images did not confirm enhancement of lesions in some cases with optic neuritis. No differences were observed among the sequences for NA-AION. Lesion length evaluated by DANTE T1-SPACE sequences was associated with circumpapillary retinal nerve fiber layer thickness at the initial visit, eye pain, and the time interval from symptom onset to MRI scan. Conclusion Contrast-enhanced DANTE T1-SPACE was better than other sequences of MRI for diagnosing optic neuritis.
Collapse
Affiliation(s)
- Ayaka Shimada
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kenji Suda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eri Nakano
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miho Tagawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Kashii
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kimitoshi Kimura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusei Nishigori
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sinyeob Ahn
- MR Research and Development, Siemens Healthineers, San Francisco, CA, USA
| | - John Grinstead
- MR Research and Development, Siemens Healthineers, Portland, OR, USA
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Sastre-Garriga J, Vidal-Jordana A, Toosy AT, Enzinger C, Granziera C, Frederiksen J, Ciccarelli O, Filippi M, Montalban X, Tintore M, Pareto D, Rovira À. Value of Optic Nerve MRI in Multiple Sclerosis Clinical Management: A MAGNIMS Position Paper and Future Perspectives. Neurology 2024; 103:e209677. [PMID: 39018513 PMCID: PMC11271394 DOI: 10.1212/wnl.0000000000209677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/17/2024] [Indexed: 07/19/2024] Open
Abstract
The optic nerve is frequently involved in multiple sclerosis (MS). However, MRI of the optic nerve is considered optional in the differential diagnosis of optic neuropathy symptoms either at presentation or in established MS. In addition, unlike spinal cord imaging in comparable scenarios, no role is currently recommended for optic nerve MRI in patients presenting with optic neuritis for its confirmation, to plan therapeutic strategy, within the MS diagnostic framework, nor for the detection of subclinical activity in established MS. In this article, evidence related to these 3 aspects will be summarized and gaps in knowledge will be highlighted, including (1) the acquisition challenges and novel sequences that assess pathologic changes within the anterior visual pathways; (2) the clinical implications of quantitative magnetic resonance studies of the optic nerve, focusing on atrophy measures, magnetization transfer, and diffusion tensor imaging; and (3) the relevant clinical studies performed to date. Finally, an algorithm for the application of optic nerve MRI will be proposed to guide future studies aimed at addressing our knowledge gaps.
Collapse
Affiliation(s)
- Jaume Sastre-Garriga
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Angela Vidal-Jordana
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ahmed T Toosy
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Christian Enzinger
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Cristina Granziera
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Jette Frederiksen
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Olga Ciccarelli
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Massimo Filippi
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Xavier Montalban
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Mar Tintore
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Deborah Pareto
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Àlex Rovira
- From the Department of Neurology (J.S.-G., A.V.-J., X.M., M.T.), Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; NMR Research Unit (A.T.T.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology and Division of Neuroradiology (C.E.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria; Translational Imaging in Neurology (ThINk) Basel (C.G.), Department of Biomedical Engineering, Faculty of Medicine, University of Basel; Neurology Department and MS Center, University Hospital Basel, Switzerland; Department of Neurology (J.F.), Rigshospitalet-Glostrup, and University of Copenhagen, Glostrup, Denmark; NMR Research Unit (O.C.), Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research, United Kingdom; Neuroimaging Research Unit (M.F.), Division of Neuroscience and Neurology Unit, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy; and Section of Neuroradiology and Magnetic Resonance Unit (D.P., A.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
3
|
Murphy OC, Sotirchos ES, Kalaitzidis G, Vasileiou E, Ehrhardt H, Lambe J, Kwakyi O, Nguyen J, Lee AZ, Button J, Dewey BE, Newsome SD, Mowry EM, Fitzgerald KC, Prince JL, Calabresi PA, Saidha S. Trans-Synaptic Degeneration Following Acute Optic Neuritis in Multiple Sclerosis. Ann Neurol 2023; 93:76-87. [PMID: 36218157 PMCID: PMC9933774 DOI: 10.1002/ana.26529] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore longitudinal changes in brain volumetric measures and retinal layer thicknesses following acute optic neuritis (AON) in people with multiple sclerosis (PwMS), to investigate the process of trans-synaptic degeneration, and determine its clinical relevance. METHODS PwMS were recruited within 40 days of AON onset (n = 49), and underwent baseline retinal optical coherence tomography and brain magnetic resonance imaging followed by longitudinal tracking for up to 5 years. A comparator cohort of PwMS without a recent episode of AON were similarly tracked (n = 73). Mixed-effects linear regression models were used. RESULTS Accelerated atrophy of the occipital gray matter (GM), calcarine GM, and thalamus was seen in the AON cohort, as compared with the non-AON cohort (-0.76% vs -0.22% per year [p = 0.01] for occipital GM, -1.83% vs -0.32% per year [p = 0.008] for calcarine GM, -1.17% vs -0.67% per year [p = 0.02] for thalamus), whereas rates of whole-brain, cortical GM, non-occipital cortical GM atrophy, and T2 lesion accumulation did not differ significantly between the cohorts. In the AON cohort, greater AON-induced reduction in ganglion cell+inner plexiform layer thickness over the first year was associated with faster rates of whole-brain (r = 0.32, p = 0.04), white matter (r = 0.32, p = 0.04), and thalamic (r = 0.36, p = 0.02) atrophy over the study period. Significant relationships were identified between faster atrophy of the subcortical GM and thalamus, with worse visual function outcomes after AON. INTERPRETATION These results provide in-vivo evidence for anterograde trans-synaptic degeneration following AON in PwMS, and suggest that trans-synaptic degeneration may be related to clinically-relevant visual outcomes. ANN NEUROL 2023;93:76-87.
Collapse
Affiliation(s)
- Olwen C. Murphy
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Elias S. Sotirchos
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Grigorios Kalaitzidis
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Elena Vasileiou
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Henrik Ehrhardt
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Jeffrey Lambe
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Ohemaa Kwakyi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - James Nguyen
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Alexandra Zambriczki Lee
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Julia Button
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Blake E. Dewey
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Scott D. Newsome
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Ellen M. Mowry
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Kathryn C. Fitzgerald
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Peter A. Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
4
|
Khader SA, Nawar AE, Ghali AA, Ghoneim AM. Evaluation of optical coherence tomography angiography findings in patients with multiple sclerosis. Indian J Ophthalmol 2021; 69:1457-1463. [PMID: 34011720 PMCID: PMC8302290 DOI: 10.4103/ijo.ijo_2964_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate optical coherence tomography angiography findings in patients with multiple sclerosis (MS). Methods: This prospective noninterventional study was conducted on 30 eyes of relapsing-remitting MS patients. Group (1) included 10 eyes with a history of optic neuritis (ON), group (2) included 10 eyes without any history of optic neuritis (MS-ON), and group (3) included 10 eyes of normal age/sex/refraction matched participants. Optical coherence tomography (OCT) and OCT-A (ZEISS Cirrus™ HD-OCT Model 4000 (Carl Zeiss-Meditec, Dublin, CA) of the optic disc were done for all patients. Results: The best-corrected visual acuity was diminished in MS cases, especially in patients with ON with P value <0.001. The retinal nerve fiber layer (RNFL) thickness showed a significant decrease in the average thickness and in all quadrants, notably the temporal quadrant in group 1 (P < 0.001). Ganglion cell layer thickness was diminished in average thickness and in all quadrants in both groups of MS, but only the first group showed statistical significance with P value <0.001). In respect to optic disc perfusion, Average, superficial, and deep vascular density index (AVDI, VDI 1, VDI 2) were statistically significantly lower in groups 1, 2 with (P-value < 0.001). Conclusion: Decreased vascular perfusion of the optic nerve in MS patients, especially in those with ON is strongly correlated with the damage of RNFL and ganglion cell layer detected by OCT.
Collapse
Affiliation(s)
- Sarah A Khader
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amin E Nawar
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Azza A Ghali
- Department of Neurology and Psychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Ghoneim
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Lee G, Park K, Oh SY, Min J, Kim BJ. Peripapillary and parafoveal microvascular changes in eyes with optic neuritis and their fellow eyes measured by optical coherence tomography angiography: an Exploratory Study. Acta Ophthalmol 2021; 99:288-298. [PMID: 32833336 DOI: 10.1111/aos.14577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to evaluate parafoveal and peripapillary microvascular alterations in eyes with optic neuritis (ON) along with their fellow eyes compared to healthy control eyes using optical coherence tomography angiography (OCT-A). METHODS We included 31 ON-affected eyes and 31 fellow eyes of 31 patients who had experienced unilateral ON and 33 eyes of 33 healthy controls in this exploratory retrospective cross-sectional study. Optical coherence tomography angiography (OCT-A) was used to generate microvascular structural images and quantify the vessel density of the superficial retinal capillary plexus (SRCP), the deep retinal capillary plexus (DRCP) and radial peripapillary capillary (RPC) segments. We used the Kruskal-Wallis test for the comparison of OCT-A results between the three groups and generalized estimating equation models for the pairwise comparisons. RESULTS There were significant differences of SRCP (p = 0.0003) and RPC segment (p < 0.0001) vessel densities between the three groups. Specifically, there was a reduction in parafoveal and peripapillary vessel density in the ON-affected eyes compared to fellow eyes (SRCP, estimates, -1.97, 95% confidence interval [CI], -3.07, -0.87; RPC, -6.95, 95% CI, -8.70, -5.19) and controls (SRCP, -3.15, 95% CI, -4.61, -1.69; RPC, -8.66, 95% CI, -10.55, -6.76). The superior sector of the RPC segments vessel density in the fellow eyes was decreased compared to the controls (-4.93, 95% CI, -8.07, -1.80). CONCLUSIONS The results of this study suggest that microvascular changes occur in both the affected eye and unaffected fellow eye after a unilateral ON episode. Future studies are needed to clarify the clinical implications of these findings.
Collapse
Affiliation(s)
- Ga‐In Lee
- Department of Ophthalmology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Kyung‐Ah Park
- Department of Ophthalmology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Sei Yeul Oh
- Department of Ophthalmology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Ju‐Hong Min
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Byoung Joon Kim
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| |
Collapse
|
6
|
Chisari CG, Toro MD, Cimino V, Rejdak R, Luca M, Rapisarda L, Avitabile T, Posarelli C, Rejdak K, Reibaldi M, Zappia M, Patti F. Retinal Nerve Fiber Layer Thickness and Higher Relapse Frequency May Predict Poor Recovery after Optic Neuritis in MS Patients. J Clin Med 2019; 8:2022. [PMID: 31752357 PMCID: PMC6912390 DOI: 10.3390/jcm8112022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Optic neuritis (ON) is a common manifestation of multiple sclerosis (MS). Aiming to evaluate the retinal nerve fiber layer (RNFL) with optical coherence tomography (OCT), patients with relapsing-remitting (RR) MS experiencing ON were consecutively enrolled. RNFL, ganglion cell layer (GCL), foveal thickness, and macular volume were evaluated in both the ON and unaffected (nON) eye within six days from the relapse onset (T0) and after six months (T1). Ninety patients were enrolled. At T0, ON eyes showed a significantly increased RNFL when compared to the nON eyes (129.1 ± 19.5 vs. 100.5 ± 10.1, p < 0.001). At T1 versus T0, the ON eyes showed a thinner RNFL (129.1 ± 19.5 vs. 91.6 ± 20.2, p < 0.001) and a significantly decreased GCL (80.4 ± 8.8 vs. 73.8 ± 11.6; p < 0.005). No differences were found in the nON group in retinal parameters between T0 and T1. A multivariate logistic regression analysis showed that a higher number of relapses (not ON) and a greater swelling of RNFL at T0 were associated with poor recovery. The assessment of RNFL through OCT during and after ON could be used to predict persistent visual disability.
Collapse
Affiliation(s)
- Clara Grazia Chisari
- Department “GF. Ingrassia”; section of Neurosciences. University of Catania, 95123 Catania, Italy; (C.G.C.); (M.L.); (L.R.); (M.Z.); (F.P.)
| | - Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, 20079 Lublin, Poland;
- Eye Clinic, University of Catania, 95123 Catania, Italy; (T.A.); (M.R.)
| | - Vincenzo Cimino
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy;
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, 20079 Lublin, Poland;
| | - Maria Luca
- Department “GF. Ingrassia”; section of Neurosciences. University of Catania, 95123 Catania, Italy; (C.G.C.); (M.L.); (L.R.); (M.Z.); (F.P.)
| | - Laura Rapisarda
- Department “GF. Ingrassia”; section of Neurosciences. University of Catania, 95123 Catania, Italy; (C.G.C.); (M.L.); (L.R.); (M.Z.); (F.P.)
| | - Teresio Avitabile
- Eye Clinic, University of Catania, 95123 Catania, Italy; (T.A.); (M.R.)
| | - Chiara Posarelli
- Department of Surgical, Medical, Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 20079 Lublin, Poland;
| | - Michele Reibaldi
- Eye Clinic, University of Catania, 95123 Catania, Italy; (T.A.); (M.R.)
| | - Mario Zappia
- Department “GF. Ingrassia”; section of Neurosciences. University of Catania, 95123 Catania, Italy; (C.G.C.); (M.L.); (L.R.); (M.Z.); (F.P.)
| | - Francesco Patti
- Department “GF. Ingrassia”; section of Neurosciences. University of Catania, 95123 Catania, Italy; (C.G.C.); (M.L.); (L.R.); (M.Z.); (F.P.)
| |
Collapse
|
7
|
Petrova N, Carassiti D, Altmann DR, Baker D, Schmierer K. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol 2018; 28:334-348. [PMID: 28401686 PMCID: PMC8028682 DOI: 10.1111/bpa.12516] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023] Open
Abstract
Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area, reduced by about 20%, appears to be a poor predictor of axonal density.
Collapse
Affiliation(s)
- Natalia Petrova
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
| | - Daniele Carassiti
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
| | | | - David Baker
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
| | - Klaus Schmierer
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
- Neurosciences Clinical Academic Groupthe Royal London Hospital, Barts Health NHS TrustLondonUK
| |
Collapse
|
8
|
Hu SJ, Lu PR. Retinal ganglion cell-inner plexiform and nerve fiber layers in neuromyelitis optica. Int J Ophthalmol 2018; 11:89-93. [PMID: 29375997 DOI: 10.18240/ijo.2018.01.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/11/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the thickness of the retinal ganglion cell-inner plexiform layer (GCIPL) and the retinal nerve fiber layer (RNFL) in patients with neuromyelitis optica (NMO). METHODS We conducted a cross-sectional study that included 30 NMO patients with a total of 60 eyes. Based on the presence or absence of optic neuritis (ON), subjects were divided into either the NMO-ON group (30 eyes) or the NMO-ON contra group (10 eyes). A detailed ophthalmologic examination was performed for each group; subsequently, the GCIPL and the RNFL were measured using high-definition optical coherence tomography (OCT). RESULTS In the NMO-ON group, the mean GCIPL thickness was 69.28±21.12 µm, the minimum GCIPL thickness was 66.02±10.02 µm, and the RNFL thickness were 109.33±11.23, 110.47±3.10, 64.92±12.71 and 71.21±50.22 µm in the superior, inferior, temporal and nasal quadrants, respectively. In the NMO-ON contra group, the mean GCIPL thickness was 85.12±17.09 µm, the minimum GCIPL thickness was 25.39±25.1 µm, and the RNFL thicknesses were 148.33±23.22, 126.36±23.45, 82.21±22.30 and 83.36±31.28 µm in the superior, inferior, temporal and nasal quadrants, respectively. In the control group, the mean GCIPL thickness was 86.98±22.37 µm, the minimum GCIPL thickness was 85.28±10.75 µm, and the RNFL thicknesses were 150.22±22.73, 154.79±60.23, 82.33±7.01 and 85.62±13.81 µm in the superior, inferior, temporal and nasal quadrants, respectively. The GCIPL and RNFL were thinner in the NMO-ON contra group than in the control group (P<0.05); additionally, the RNFL was thinner in the inferior quadrant in the NMO-ON group than in the control group (P<0.05). Significant correlations were observed between the GCIPL and RNFL thickness measurements as well as between thickness measurements and the two visual field parameters of mean deviation (MD) and corrected pattern standard deviation (PSD) in the NMO-ON group (P<0.05). CONCLUSION The thickness of the GCIPL and RNFL, as measured using OCT, may indicate optic nerve damage in patients with NMO.
Collapse
Affiliation(s)
- Sai-Jing Hu
- Department of Ophthalmology, the First Affiliated Hospital of Suzhou University, Suzhou 215000, Jiangsu Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Pei-Rong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Suzhou University, Suzhou 215000, Jiangsu Province, China
| |
Collapse
|
9
|
Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol 2017; 264:1837-1853. [PMID: 28567539 DOI: 10.1007/s00415-017-8531-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/29/2022]
Abstract
The aim of this study was to summarise existing findings regarding optical coherence tomography (OCT) measurements of ganglion cell layer (GCL) alterations in optic neuritis (ON) and multiple sclerosis (MS). Peer-reviewed studies published prior to April 2016 were searched using PubMed, EMBASE, Web of Science and Scopus. Studies were included if they measured GCL thickness using OCT in patients with either ON, MS or clinically isolated syndrome. For the meta-analysis, we compared GCL thickness in MS patients with and without prior ON, to healthy controls. 42/252 studies were reviewed. In acute ON, studies showed significant thinning of the GCL within the first 5 weeks (n = 5), earlier than retinal nerve fibre layer (RNFL) thinning. GCL thinning at 1-2 months after acute ON predicted visual function at 6 months (n = 3). The meta-analysis showed that the thickness of the GCL was significantly reduced in MS patients both with and without previous ON compared to healthy controls. GCL thinning was associated with visual function in most studies (n = 10) and expanded disability status scale (EDSS) scores (n = 6). In acute ON, thinning of the GCL is measurable prior to RNFL thinning, and GCL thickness after 1-2 months may predict visual function after 6 months. Furthermore, GCL thinning occurs in MS both with and without prior ON, and may be associated with visual function and EDSS score. This suggests that the GCL is a promising biomarker, which may be used to examine in vivo neurodegeneration in ON and MS.
Collapse
Affiliation(s)
- Josefine Britze
- Department of Neurology, Clinic of Optic Neuritis and Clinic of Multiple Sclerosis, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, 2600, Glostrup, Denmark
| | - Gorm Pihl-Jensen
- Department of Neurology, Clinic of Optic Neuritis and Clinic of Multiple Sclerosis, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, 2600, Glostrup, Denmark
| | - Jette Lautrup Frederiksen
- Department of Neurology, Clinic of Optic Neuritis and Clinic of Multiple Sclerosis, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, 2600, Glostrup, Denmark.
| |
Collapse
|
10
|
Visual impairment. HANDBOOK OF CLINICAL NEUROLOGY 2016. [PMID: 27430448 DOI: 10.1016/b978-0-444-53486-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
This chapter can guide the use of imaging in the evaluation of common visual syndromes: transient visual disturbance, including migraine and amaurosis fugax; acute optic neuropathy complicating multiple sclerosis, neuromyelitis optica spectrum disorder, Leber hereditary optic neuropathy, and Susac syndrome; papilledema and pseudotumor cerebri syndrome; cerebral disturbances of vision, including posterior cerebral arterial occlusion, posterior reversible encephalopathy, hemianopia after anterior temporal lobe resection, posterior cortical atrophy, and conversion blindness. Finally, practical efforts in visual rehabilitation by sensory substitution for blind patients can improve their lives and disclose new information about the brain.
Collapse
|
11
|
Somfai GM, Tátrai E, Simó M. Optical Coherence Tomography of the Optic Disc and the Macula in Neurodegenerative Diseases. Neuroophthalmology 2016. [DOI: 10.1007/978-3-319-28956-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Hu SJ, You YA, Zhang Y. A study of retinal parameters measured by optical coherence tomography in patients with multiple sclerosis. Int J Ophthalmol 2015; 8:1211-4. [PMID: 26682175 DOI: 10.3980/j.issn.2222-3959.2015.06.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 03/26/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the difference of retinal nerve fiber layer (RNFL) thickness and macular fovea thickness/volume between multiple sclerosis (MS) patients and healthy normal individuals using optical coherence tomography (OCT) and assess its association with visual field parameters. METHODS Thirty consecutive MS patients and 28 healthy controls were recruited in this prospective study. Comprehensive standardized ophthalmic examinations included visual acuity, cycloplegic refraction, intraocular pressure, gonioscopy, visual field, and RNFL thickness and macular fovea thickness/volume detection using Humphrey OCT. Mean values for the thickness of the peripapillary RNFL and macular volume were calculated. Associations between visual field parameters and RNFL thickness/macular volume were analyzed by Pearson correlation analysis. RESULTS The RNFL thicknesses in each quadrant, the average macular thickness, and the average macular volume in MS patients were all less than those in healthy controls, with statistically significant differences. The RNFL thickness and macular fovea thickness/volume were greater in eyes without optic neuritis than in eyes with optic neuritis. The average visual field parameters had positive correlations with the RNFL thickness and negative correlations with macular parameters in MS patients. CONCLUSION OCT measurements can effectively identify the nerve changes of MS patients, which provide more data for the diagnosis of MS.
Collapse
Affiliation(s)
- Sai-Jing Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yi-An You
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yi Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
13
|
Hadhoum N, Hodel J, Defoort-Dhellemmes S, Duhamel A, Drumez E, Zéphir H, Pruvo JP, Leclerc X, Vermersch P, Outteryck O. Length of optic nerve double inversion recovery hypersignal is associated with retinal axonal loss. Mult Scler 2015; 22:649-58. [PMID: 26227005 DOI: 10.1177/1352458515598021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To assess the association between optic nerve double inversion recovery (DIR) hypersignal length and retinal axonal loss in neuroinflammatory diseases affecting optic nerves. METHODS We recruited patients previously affected (> 6 months) by a clinical episode of optic neuritis (ON). We had 25 multiple sclerosis (MS) patients, eight neuromyelitis optica spectrum disorder (NMOSD) patients and two patients suffering from idiopathic caused ON undergo brain magnetic resonance imaging (MRI); including a 3-dimensional (3D) DIR sequence, optical coherence tomography (OCT) examination and visual disability evaluation. Evaluation criteria were retinal thickness/volume, optic nerve DIR hypersignal length and high/low contrast vision acuity. RESULTS In the whole cohort, we found good associations (< 0.0001) between optic nerve DIR hypersignal length, peripapillary retinal nerve fiber layer thickness, inner macular layers volumes, and visual disability. We found subclinical radiological optic nerve involvement in 38.5% of non-ON MS eyes. CONCLUSIONS Optic nerve DIR hypersignal length may be a biomarker for retinal axonal loss, easily applicable in routine and research on new anti-inflammatory or neuroprotective drug evaluation. Detection of subclinical ON with 3D-DIR in a non-negligible proportion of MS patients argues in favor of optic nerve imaging in future OCT MS studies, in order to achieve a better understanding of retinal axonal loss in non-ON eyes.
Collapse
Affiliation(s)
- N Hadhoum
- Roger Salengro Hospital, University of Lille, Lille, France
| | - J Hodel
- Roger Salengro Hospital, University of Lille, Lille, France
| | | | - A Duhamel
- Department of Biostatistics, Centre d'Etudes et de Recherche en Informatique Médicale, Lille, France
| | - E Drumez
- Department of Biostatistics, Centre d'Etudes et de Recherche en Informatique Médicale, Lille, France
| | - H Zéphir
- Roger Salengro Hospital, University of Lille, Lille, France
| | - J P Pruvo
- Roger Salengro Hospital, University of Lille, Lille, France
| | - X Leclerc
- Roger Salengro Hospital, University of Lille, Lille, France
| | - P Vermersch
- Roger Salengro Hospital, University of Lille, Lille, France
| | - O Outteryck
- Roger Salengro Hospital, University of Lille, Lille, France
| |
Collapse
|
14
|
Al-Louzi OA, Bhargava P, Newsome SD, Balcer LJ, Frohman EM, Crainiceanu C, Calabresi PA, Saidha S. Outer retinal changes following acute optic neuritis. Mult Scler 2015. [PMID: 26209589 DOI: 10.1177/1352458515590646] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Retinal nerve fiber and ganglion cell+inner plexiform (GCIP) layer thinning following multiple sclerosis-related acute optic neuritis (AON) is well described. However, whether AON results in changes in the inner nuclear (INL), outer plexiform (OPL), outer nuclear (ONL) and/or photoreceptor segment (PS) layers remains undetermined. OBJECTIVES The objective of this paper is to determine if INL+OPL and/or ONL+PS changes occur following AON. METHODS Thirty-three AON patients underwent serial optical coherence tomography (OCT) and visual function testing (mean follow-up: 25 months). Longitudinal changes in retinal layer thickness were analyzed using mixed-effects linear regression. RESULTS Four months following AON, the mean decrease in GCIP thickness relative to baseline was 11.4% (p < 0.001). At four months, a concomitant 3.4% increase in average ONL+PS thickness was observed (p < 0.001). The percentage decrease in GCIP thickness and increase in ONL+PS thickness were strongly correlated (r = -0.70; p < 0.001). Between months 4 to 12, ONL+PS thickness declined and, at 12 months, was no longer significantly different from baseline (mean change: 0.5%; p = 0.37). Similar, albeit less robust, changes in the INL+OPL were observed. CONCLUSIONS Following AON, dynamic changes occur in the deep retinal layers, which are proportional to GCIP thinning. These novel findings help further our understanding of the biological and/or anatomical sequelae resulting from AON.
Collapse
Affiliation(s)
- Omar A Al-Louzi
- Department of Neuroimmunology and Neuroinfectious Disorders, Johns Hopkins School of Medicine, USA
| | - Pavan Bhargava
- Department of Neuroimmunology and Neuroinfectious Disorders, Johns Hopkins School of Medicine, USA
| | - Scott D Newsome
- Department of Neuroimmunology and Neuroinfectious Disorders, Johns Hopkins School of Medicine, USA
| | - Laura J Balcer
- Department of Neurology, New York University-Langone Medical Center, USA
| | - Elliot M Frohman
- Departments of Neurology and Ophthalmology, University of Texas Southwestern, USA
| | - Ciprian Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, USA
| | - Peter A Calabresi
- Department of Neuroimmunology and Neuroinfectious Disorders, Johns Hopkins School of Medicine, USA
| | - Shiv Saidha
- Department of Neuroimmunology and Neuroinfectious Disorders, Johns Hopkins School of Medicine, USA
| |
Collapse
|
15
|
Nerve fiber layer and macular thinning measured with different imaging methods during the course of acute optic neuritis. Eur J Ophthalmol 2012; 21:473-83. [PMID: 21038310 DOI: 10.5301/ejo.2010.5844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2010] [Indexed: 01/21/2023]
Abstract
PURPOSE To compare retinal nerve fiber layer thickness (RNFLT) and inner macula thickness changes measured with Fourier-domain optical coherence tomography (FD-OCT) and scanning laser polarimetry during the course of acute optic neuritis (ON). METHODS Nine eyes of 7 consecutive patients with multiple sclerosis (MS) were prospectively imaged from the onset of ON for 6 to 12 months. Nine healthy eyes were imaged for 12 to 19 months. RESULTS Retinal nerve fiber layer thickness measured with FD-OCT initially increased in all eyes with diffuse optic disc edema. Inner macula thickness and polarimetric RNFLT decreased already in the acute phase, in all eyes. All parameters stabilized at 2 to 5 months. The relative structural loss was different with the different methods. Poor image quality with polarimetry occurred in 2 eyes in the acute phase of ON. In the control eyes all parameters were stable. CONCLUSIONS Change of RNFLT and macular thickness during the course of acute ON in MS strongly depends on the method used for the measurement. Inner macula thickness, measured with FD-OCT, was especially useful for the follow-up, since it was not influenced by initial disc edema and had consistently high image quality.
Collapse
|
16
|
Baseline, one and three month changes in the peripapillary retinal nerve fiber layer in acute optic neuritis: relation to baseline vision and MRI. J Neurol Sci 2011; 308:117-23. [PMID: 21764408 DOI: 10.1016/j.jns.2011.05.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Retinal nerve fiber layer (RNFL) loss occurs with MS or after optic neuritis. Acute RNFL alterations at presentation and changes over time have not been well documented. We analyzed regional RNFL changes using 2 methods, ocular coherence tomography (OCT) and scanning laser polarimetry (SLP), to study initial edema and early RNFL loss. METHODS 40 subjects with unilateral acute optic neuritis, had prospective OCT and SLP RNFL thickness values organized into 4 quadrants. We compared affected with normal fellow and control eyes to determine RNFL thickening (≥ 10% of 95th percentile of controls) and thinning (≥ 10μ less than fellow eye) at presentation, 1 and 3 months. RESULTS RNFL thickening occurred in 27/33 eyes (82%) by OCT and in 21/34 eyes (62%) by SLP at baseline. At 1 month, RNFL thickening was common even as thinning developed in 15/23 (65%) of eyes by OCT and in 15/28 eyes (54%) by SLP. At 3 months, RNL was thinned by OCT in 14/24 (58%) and by SLP in 15/25 (60%) affected eyes (58%). Neither MRI optic nerve lesion nor vision at baseline correlated with optical image findings or vision outcome. CONCLUSIONS RNFL swelling, most likely due to axoplasmic stasis from blockade at the lesion site in optic neuritis, is seen with OCT better than SLP. RNFL swelling in some quadrants and loss in others occur at 1 month and is well seen with interocular comparison by both methods. Optical imaging provides pathophysiologic as well as quantitative information regarding axonal changes.
Collapse
|
17
|
Costello FE, Klistorner A, Kardon R. Optical Coherence Tomography in the Diagnosis and Management of Optic Neuritis and Multiple Sclerosis. Ophthalmic Surg Lasers Imaging Retina 2011; 42 Suppl:S28-40. [DOI: 10.3928/15428877-20110627-03] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/18/2011] [Indexed: 01/30/2023]
|
18
|
Kallenbach K, Sander B, Tsakiri A, Wanscher B, Fuglø D, Larsen M, Larsson H, Frederiksen JL. Neither retinal nor brain atrophy can be shown in patients with isolated unilateral optic neuritis at the time of presentation. Mult Scler 2010; 17:89-95. [DOI: 10.1177/1352458510382017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background:Acute monosymptomatic optic neuritis (ON) may be the earliest manifestation of multiple sclerosis (MS). Atrophy has been shown to be a prominent feature of MS with great impact on disability. Objectives:The objectives of this study were to evaluate retinal and brain atrophy and possible associations at the earliest possible stages of MS. Methods:In a prospective observational cohort study we included 60 untreated patients with monosymptomatic ON and 19 healthy volunteers. Unaffected fellow eyes were examined with optical coherence tomography (OCT) and normalized brain volumes were calculated based on MRI. Additionally, visual evoked potentials (VEPs) were recorded. Results:Neither OCT measurements nor brain volume measures revealed signs of localized or generalized atrophy in patients compared with healthy volunteers. Stratification of patients into high risk based on the presence of white matter lesions did not reveal differences. The association between OCT measures and brain volumes previously found could not be confirmed at the time of the first clinical event. VEP latency was significantly prolonged in patients with white matter lesions compared to those without lesions. A trend towards a relationship between VEP amplitude of fellow eyes and brain volumes was noted. Conclusions:In this cohort we were not able to show atrophic features in the retina or the brain, and the association between structural measures of the retina and the brain as indicated in the later stages of MS could not be reproduced. These findings suggest that atrophy does require time to evolve and indicate the complexity of the relationship between local and general structural measures.
Collapse
Affiliation(s)
- Klaus Kallenbach
- Department of Neurology, Glostrup Hospital and University of Copenhagen, Denmark
| | - Birgit Sander
- Department of Ophthalmology, Glostrup Hospital and University of Copenhagen, Glostrup, Denmark
| | - Anna Tsakiri
- Department of Neurology, Glostrup Hospital and University of Copenhagen, Denmark
| | - Benedikte Wanscher
- Department of Clinical Neurophysiology, Glostrup Hospital and University of Copenhagen, Glostrup, Denmark
| | - Dan Fuglø
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital and University of Copenhagen, Glostrup, Denmark
| | - Michael Larsen
- Department of Ophthalmology, Glostrup Hospital and National Eye Clinic, University of Copenhagen, Glostrup, Denmark
| | - Henrik Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital and University of Copenhagen, Glostrup, Denmark
| | - Jette L Frederiksen
- Department of Neurology, Glostrup Hospital and University of Copenhagen, Denmark
| |
Collapse
|
19
|
Henderson APD, Altmann DR, Trip AS, Kallis C, Jones SJ, Schlottmann PG, Garway-Heath DF, Plant GT, Miller DH. A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. ACTA ACUST UNITED AC 2010; 133:2592-602. [PMID: 20566483 DOI: 10.1093/brain/awq146] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Following an episode of optic neuritis, thinning of the retinal nerve fibre layer, which indicates axonal loss, is observed using optical coherence tomography. The longitudinal course of the retinal changes has not been well characterized. We performed a serial optical coherence tomography study in patients presenting with optic neuritis in order to define the temporal evolution of retinal nerve fibre layer changes and to estimate sample sizes for proof-of-concept trials of neuroprotection using retinal nerve fibre layer loss as the outcome measure. Twenty-three patients (7 male, 16 female, mean age 31 years) with acute clinically isolated unilateral optic neuritis were recruited to undergo optical coherence tomography, visual assessments and visual evoked potentials at presentation (median 16 days from onset of visual loss) and after 3, 6, 12 and 18 months. Compared with the clinically unaffected fellow eye, the retinal nerve fibre layer thickness of the affected eye was significantly increased at presentation and significantly reduced at all later time points. The evolution of retinal nerve fibre layer changes in the affected eye fitted well with an exponential model, with thinning appearing a mean of 1.6 months from symptom onset and the rate of ongoing retinal nerve fibre layer loss decreasing thereafter. At presentation, increased retinal nerve fibre layer thickness was associated with impaired visual acuity and prolonged visual evoked potential latency. Visual function after 12 months was not related to the extent of acute retinal nerve fibre layer swelling but was significantly associated with the extent of concurrent retinal nerve fibre layer loss. Sample size calculations for placebo-controlled trials of acute neuroprotection indicated that the numbers needed after 6 months of follow up are smaller than those after 3 months and similar to those after 12 months of follow-up. Study power was greater when investigating differences between clinically unaffected and affected eyes rather than retinal nerve fibre layer thickness of the affected eye alone. Inflammation in the optic nerve and impaired axonal transport (implied by retinal nerve fibre layer swelling) are associated with visual dysfunction and demyelination (long visual evoked potential latency) during acute optic neuritis. Retinal nerve fibre layer thinning is usually evident within 3 months. Optical coherence tomography-measured retinal nerve fibre layer loss after 6 months is a suitable outcome measure for proof-of-concept trials of acute neuroprotection in optic neuritis.
Collapse
Affiliation(s)
- Andrew P D Henderson
- NMR Research Unit, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|