1
|
Takanashi JI. Magnetic resonance imaging and spectroscopy in hypomyelinating leukodystrophy. Brain Dev 2025; 47:104345. [PMID: 40174481 DOI: 10.1016/j.braindev.2025.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
Recent advancements in molecular biology and radiology have led to the identification of several new leukodystrophies. A key diagnostic feature of leukodystrophies is the increased white matter signal intensity observed on T2-weighted magnetic resonance (MR) images. Leukodystrophies are typically classified into two main categories: hypomyelinating leukodystrophies (HLD) and other forms, including demyelinating leukodystrophies. HLD is characterized by a primary defect in myelin due to genetic variants that affect structural myelin proteins, oligodendrocyte transcription factors, RNA translation, and lysosomal proteins. Radiologically, HLD tends to show less pronounced white matter hyperintensity on T2-weighted images than demyelinating leukodystrophies. A definitive diagnosis can often be made by identifying abnormalities in regions beyond the white matter, such as the basal ganglia or cerebellum, or through the presence of characteristic clinical symptoms. N-acetylaspartate, a neuroaxonal marker observed on MR spectroscopy, is typically reduced in many neurological conditions, but N-acetylaspartate levels often remain normal in HLD, which is considered a distinctive feature of this disorder. This article provides an overview of the latest imaging findings and clinical features associated with HLD.
Collapse
Affiliation(s)
- Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-Shi, Chiba 276-8524, Japan.
| |
Collapse
|
2
|
Shinawi M, Wegner DJ, Paul AJ, Buchser W, Schmidt R, Sharma J, Sardiello M, Sisco K, Manwaring L, Reynolds M, Fulton R, Fronick C, Shaver A, Huang TY, Carroll A, Roessler K, Halpern AL, Dickson PI, Wambach JA. Atypical free sialic acid storage disorder associated with tissue specific mosaicism of SLC17A5. Mol Genet Metab 2025; 144:109004. [PMID: 39742826 DOI: 10.1016/j.ymgme.2024.109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Free sialic acid storage disorder (FSASD) is a rare autosomal recessive lysosomal storage disease caused by pathogenic SLC17A5 variants with variable disease severity. We performed a multidisciplinary evaluation of an adolescent female with suspected lysosomal storage disease and conducted comprehensive studies to uncover the molecular etiology. The proband exhibited intellectual disability, a storage disease gestalt, and mildly elevated urine free sialic acid levels. Skin electron micrographs showed prominent cytoplasmic vacuolation. Clinical exome and genome sequencing identified a maternally-inherited SLC17A5 variant: c.533delC;p.Thr178Asnfs*34. RNASeq of proband skin fibroblasts revealed exon 3 skipping, which was not detected in RNA from proband blood or parental fibroblasts. Targeted deep sequencing of proband fibroblast DNA revealed a 184 bp deletion in ∼15 % of reads, encompassing the 3' end of exon 3. Illumina Complete Long Read sequencing confirmed the deletion was in the paternally-inherited allele and found in a mosaic state in proband fibroblasts and muscle but not in blood or buccal cells. Functional studies, including SLC17A5 knockout cells and transient transfections of mutated SLC17A5 demonstrated pathogenicity of the identified variants. We report an adolescent female with atypical FSASD with tissue-specific mosaicism for an intragenic deletion in SLC17A5, explaining the atypical clinical course, mild biochemical abnormalities, and long diagnostic process.
Collapse
Affiliation(s)
- Marwan Shinawi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alexander J Paul
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - William Buchser
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert Schmidt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jaiprakash Sharma
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marco Sardiello
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kathleen Sisco
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Linda Manwaring
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Margaret Reynolds
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Andrew Shaver
- Illumina Inc, San Diego, CA, United States of America
| | - Tina Y Huang
- Illumina Inc, San Diego, CA, United States of America
| | | | | | | | - Patricia I Dickson
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
3
|
Becker I, Wang-Eckhardt L, Eckhardt M. NAAG synthetase deficiency has only low influence on pathogenesis in a Canavan disease mouse model. J Inherit Metab Dis 2024; 47:230-243. [PMID: 38011891 DOI: 10.1002/jimd.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Canavan disease (CD) is a leukodystrophy caused by mutations in the N-acetylaspartate (NAA) hydrolase aspartoacylase (ASPA). Inability to degrade NAA and its accumulation in the brain results in spongiform myelin degeneration. NAA is mainly synthesized by neurons, where it is also a precursor of the neuropeptide N-acetylaspartylglutamate (NAAG). Hydrolysis of this peptide by glutamate carboxypeptidases is an additional source of extracellular NAA besides the instant neuronal release of NAA. This study examines to what extent NAA released from NAAG contributes to NAA accumulation and pathogenesis in the brain of Aspanur7/nur7 mutant mice, an established model of CD. Towards this aim, Aspanur7/nur7 mice with additional deficiencies in NAAG synthetase genes Rimklb and/or Rimkla were generated. Loss of myelin in Aspanur7/nur7 mice was not significantly affected by Rimkla and Rimklb deficiency and there was also no obvious change in the extent of brain vacuolation. Astrogliosis was slightly reduced in the forebrain of Rimkla and Rimklb double deficient Aspanur7/nur7 mice. However, only minor improvements at the behavioral level were found. The brain NAA accumulation in CD mice was, however, not significantly reduced in the absence of NAAG synthesis. In summary, there was only a weak tendency towards reduced pathogenic symptoms in Aspanur7/nur7 mice deficient in NAAG synthesis. Therefore, we conclude that NAAG metabolism has little influence on NAA accumulation in Aspanur7/nur7 mice and development of pathological symptoms in CD.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
5
|
Untargeted Metabolite Profiling of Cerebrospinal Fluid Uncovers Biomarkers for Severity of Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2, Batten Disease). Sci Rep 2018; 8:15229. [PMID: 30323181 PMCID: PMC6189193 DOI: 10.1038/s41598-018-33449-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a rare lysosomal storage disorder caused by a monogenetic deficiency of tripeptidyl peptidase-1 (TPP1). Despite knowledge that lipofuscin is the hallmark disease product, the relevant TPP1 substrate and its role in neuronal physiology/pathology is unknown. We hypothesized that untargeted metabolite profiling of cerebrospinal fluid (CSF) could be used as an effective tool to identify disease-associated metabolic disruptions in CLN2 disease, offering the potential to identify biomarkers that inform on disease severity and progression. Accordingly, a mass spectrometry-based untargeted metabolite profiling approach was employed to differentiate CSF from normal vs. CLN2 deficient individuals. Of 1,433 metabolite features surveyed, 29 linearly correlated with currently employed disease severity scores. With tandem mass spectrometry 8 distinct metabolite identities were structurally confirmed based on retention time and fragmentation pattern matches, vs. standards. These putative CLN2 biomarkers include 7 acetylated species - all attenuated in CLN2 compared to controls. Because acetate is the major bioenergetic fuel for support of mitochondrial respiration, deficient acetylated species in CSF suggests a brain energy defect that may drive neurodegeneration. Targeted analysis of these metabolites in CSF of CLN2 patients offers a powerful new approach for monitoring CLN2 disease progression and response to therapy.
Collapse
|
6
|
Barmherzig R, Bullivant G, Cordeiro D, Sinasac DS, Blaser S, Mercimek-Mahmutoglu S. A New Patient With Intermediate Severe Salla Disease With Hypomyelination: A Literature Review for Salla Disease. Pediatr Neurol 2017; 74:87-91.e2. [PMID: 28662915 DOI: 10.1016/j.pediatrneurol.2017.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Likely pathogenic variants in SLC17A5 results in allelic disorders of free sialic acid metabolism including (1) infantile free sialic acid storage disease with severe global developmental delay, coarse facial features, hepatosplenomegaly, and cardiomegaly; (2) intermediate severe Salla disease with moderate to severe global developmental delay, hypotonia, and hypomyelination with or without coarse facial features, and (3) Salla disease with normal appearance, mild cognitive dysfunction, and spasticity. PATIENT DESCRIPTION This five-year-old girl presented with infantile-onset severe global developmental delay, truncal hypotonia, and generalized dystonia following normal development during her first six months of life. Brain magnetic resonance imaging showed marked hypomyelination and a thin corpus callosum at age 19 months, both unchanged on follow-up at age 28 months. Urine free sialic acid was moderately elevated. Cerebrospinal fluid free sialic acid was marginally elevated. Sequencing of SLC17A5 revealed compound heterozygous likely pathogenic variants, namely, a known missense (c.291G>A) variant and a novel truncating (c.819+1G>A) variant, confirming the diagnosis of Salla disease at age 3.5 years. CONCLUSION We report a new patient with intermediate severe Salla disease. Normal or marginally elevated urine or cerebrospinal fluid free sialic acid levels cannot exclude Salla disease. In patients with progressive global developmental delay and hypomyelination on brain magnetic resonance imaging, Salla disease should be included into the differential diagnosis.
Collapse
Affiliation(s)
- Rebecca Barmherzig
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Garrett Bullivant
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David S Sinasac
- Department of Medical Genetics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Susan Blaser
- Division of Pediatric Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Diagnostic Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, Ontario Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
7
|
Srivastava NK, Mukherjee S, Sinha N. Alteration of phospholipids in the blood of patients with Duchenne muscular dystrophy (DMD): in vitro, high resolution 31P NMR-based study. Acta Neurol Belg 2016; 116:573-581. [PMID: 26861054 DOI: 10.1007/s13760-016-0607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/16/2016] [Indexed: 11/28/2022]
Abstract
In vitro, high-resolution 31P NMR (Nuclear Magnetic Resonance) spectroscopy-based analysis of phospholipids in serum is well recognized in leukemia, lymphoma, non-hematological cancers and renal cell carcinoma. In context of these studies, phospholipids were analyzed in blood of thirty-two (n = 32) patients with Duchenne muscular dystrophy (DMD) (Age, Mean ± SD; 8.0 ± 1.6 years) and sixteen (n = 16) healthy subjects (Age, Mean ± SD; 8.6 ± 2.3 years). Quantity of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and lyso-phosphatidylcholine (Lys-PC) was significantly higher (p < 0.05) in DMD patients as compared to healthy subjects. There were no significant differences (p > 0.05) observed for the quantity of phospholipids in blood of gene deletion positive cases of DMD as compared to negative gene deletion cases of DMD. Quantity of phospholipids in negative gene deletion cases of DMD patients as well as DMD cases with positive gene deletion was significantly higher (p < 0.05) as compared to normal individuals. The present study distinguishes the patients with DMD from the healthy subjects on the basis of the quantity of phospholipids in blood. These observations may be useful in future for the development of new diagnostic method of DMD.
Collapse
Affiliation(s)
- Niraj Kumar Srivastava
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India.
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Somnath Mukherjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neeraj Sinha
- Center of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
8
|
Kohlschütter A, Eichler F. Childhood leukodystrophies: a clinical perspective. Expert Rev Neurother 2014; 11:1485-96. [DOI: 10.1586/ern.11.135] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Abstract
NAAG (N-acetylaspartylglutamate) is an abundant neuropeptide in the vertebrate nervous system. It is released from synaptic terminals in a calcium-dependent manner and has been shown to act as an agonist at the type II metabotropic glutamate receptor mGluR3. It has been proposed that NAAG may also be released from axons. So far, however, it has remained unclear how NAAG is transported into synaptic or other vesicles before it is secreted. In the present study, we demonstrate that uptake of NAAG and the related peptide NAAG2 (N-acetylaspartylglutamylglutamate) into vesicles depends on the sialic acid transporter sialin (SLC17A5). This was demonstrated using cell lines expressing a cell surface variant of sialin and by functional reconstitution of sialin in liposomes. NAAG uptake into sialin-containing proteoliposomes was detectable in the presence of an active H+-ATPase or valinomycin, indicating that transport is driven by membrane potential rather than H+ gradient. We also show that sialin is most probably the major and possibly only vesicular transporter for NAAG and NAAG2, because ATP-dependent transport of both peptides was not detectable in vesicles isolated from sialin-deficient mice.
Collapse
|
10
|
Lines MA, Rupar CA, Rip JW, Baskin B, Ray PN, Hegele RA, Grynspan D, Michaud J, Geraghty MT. Infantile Sialic Acid Storage Disease: Two Unrelated Inuit Cases Homozygous for a Common Novel SLC17A5 Mutation. JIMD Rep 2013; 12:79-84. [PMID: 23900835 DOI: 10.1007/8904_2013_247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Infantile sialic acid storage disease (ISSD) is a lysosomal storage disease characterized by accumulation of covalently unlinked (free) sialic acid in multiple tissues. ISSD and Salla disease (a predominantly neurological disorder) are allelic disorders caused by recessive mutations of a lysosomal anionic monosaccharide transporter, SLC17A5. While Salla disease is common in Finland due to a founder-effect mutation (p.Arg39Cys), ISSD is comparatively rare in all populations studied.Here, we describe the clinical and molecular features of two unrelated Canadian Inuit neonates with a virtually identical presentation of ISSD. Both individuals presented antenatally with fetal hydrops, dying shortly following delivery. Urinary free sialic acid excretion was markedly increased in the one case in which urine could be obtained for testing; postmortem examination showed a picture of widespread lysosomal storage in both. Both children were homozygous for a novel splice site mutation (NM_012434:c.526-2A>G) resulting in skipping of exon 4 and an ensuing frameshift. Analysis of a further 129 pan-Arctic Inuit controls demonstrated a heterozygous carrier rate of 1/129 (~0.4 %) in our sample. Interestingly, lysosomal enzyme studies showed an unexplained ninefold increase in neuraminidase activity, with lesser elevations in the activities of several other lysosomal enzymes. Our results raise the possibility of a common founder mutation presenting as hydrops in this population. Furthermore, if confirmed in subsequent cases, the marked induction of neuraminidase activity seen here may prove useful in the clinical diagnosis of ISSD.
Collapse
Affiliation(s)
- Matthew A Lines
- Division of Metabolics and Newborn Screening, University of Ottawa, Children's Hospital of Eastern Ontario, 401 Smyth Road, K1H 8L1, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The role of metabolomics in neurological disease. J Neuroimmunol 2012; 248:48-52. [DOI: 10.1016/j.jneuroim.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
|
12
|
Takanashi JI, Saito S, Aoki I, Barkovich AJ, Ito Y, Inoue K. Increased N-acetylaspartate in model mouse of pelizaeus-merzbacher disease. J Magn Reson Imaging 2011; 35:418-25. [DOI: 10.1002/jmri.22817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Lodder-Gadaczek J, Becker I, Gieselmann V, Wang-Eckhardt L, Eckhardt M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. J Biol Chem 2011; 286:16693-706. [PMID: 21454531 DOI: 10.1074/jbc.m111.230136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. NAAG is an agonist at group II metabotropic glutamate receptors. In addition to its role as a neuropeptide, a number of functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump. We recently identified a NAAG synthetase (now renamed NAAG synthetase I, NAAGS-I), encoded by the ribosomal modification protein rimK-like family member B (Rimklb) gene, as a member of the ATP-grasp protein family. We show here that a structurally related protein, encoded by the ribosomal modification protein rimK-like family member A (Rimkla) gene, is another NAAG synthetase (NAAGS-II), which in addition, synthesizes the N-acetylated tripeptide N-acetylaspartylglutamylglutamate (NAAG(2)). In contrast, NAAG(2) synthetase activity was undetectable in cells expressing NAAGS-I. Furthermore, we demonstrate by mass spectrometry the presence of NAAG(2) in murine brain tissue and sciatic nerves. The highest concentrations of both, NAAG(2) and NAAG, were found in sciatic nerves, spinal cord, and the brain stem, in accordance with the expression level of NAAGS-II. To our knowledge the presence of NAAG(2) in the vertebrate nervous system has not been described before. The physiological role of NAAG(2), e.g. whether it acts as a neurotransmitter, remains to be determined.
Collapse
Affiliation(s)
- Julia Lodder-Gadaczek
- Institute of Biochemistry and Molecular Biology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
14
|
Mochel F, Boildieu N, Barritault J, Sarret C, Eymard-Pierre E, Seguin F, Schiffmann R, Boespflug-Tanguy O. Elevated CSF N-acetylaspartylglutamate suggests specific molecular diagnostic abnormalities in patients with white matter diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1112-7. [PMID: 20637281 DOI: 10.1016/j.bbadis.2010.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND In order to identify biomarkers useful for the diagnosis of genetic white matter disorders we compared the metabolic profile of patients with leukodystrophies with a hypomyelinating or a non-hypomyelinating MRI pattern. METHODS We used a non-a priori method of in vitro ¹H-NMR spectroscopy on CSF samples of 74 patients with leukodystrophies. RESULTS We found an elevation of CSF N-acetylaspartylglutamate (NAAG) in patients with Pelizaeus-Merzbacher disease (PMD)-PLP1 gene, Pelizaeus-Merzbacher-like disease-GJC2 gene and Canavan disease-ASPA gene. In the PMD group, NAAG was significantly elevated in the CSF of all patients with PLP1 duplication (19/19) but was strictly normal in 6 out of 7 patients with PLP1 point mutations. Additionally, we previously reported increased CSF NAAG in patients with SLC17A5 mutations. CONCLUSIONS Elevated CSF NAAG is a biomarker that suggests specific molecular diagnostic abnormalities in patients with white matter diseases. Our findings also point to unique pathological functions of the overexpressed PLP in PMD patients with duplication of this gene.
Collapse
Affiliation(s)
- Fanny Mochel
- APHP, Department of Genetics, Hôpital de La Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|