1
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
3
|
Koumasopoulos E, Stanitsa E, Angelopoulou E, Koros C, Barbarousi V, Velonakis G, Michaletou C, Alevetsovitis SK, Constantinides VC, Kyrozis A, Stefanis L, Kroupis C, Papageorgiou SG. Heterozygous p62/SQSTM1 mutation and right temporal variant of frontotemporal dementia: Α case report. Neurocase 2025; 31:70-73. [PMID: 39719859 DOI: 10.1080/13554794.2024.2446315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Mutations in sequestosome 1 (SQSTM1) gene have been associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia - ALS (FTD-ALS), and very recently, progressive supranuclear palsy (PSP), paget disease of bone (PDB), distal myopathy with rimmed vacuoles (DMRV), and neurodegenerative disorders in childhood. We present a case of right temporal variant of FTD (rtvFTD) with heterozygous mutation (c.823_824del(p.Ser275Phefs *17)) in SQSTM1 gene.
Collapse
Affiliation(s)
- Evangelos Koumasopoulos
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Evangelia Stanitsa
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Efthalia Angelopoulou
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Christos Koros
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Vasiliki Barbarousi
- Research Unit of Radiology-2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology-2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Michaletou
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Savvas Konstantinos Alevetsovitis
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Vasilios C Constantinides
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Andreas Kyrozis
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Leonidas Stefanis
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Christos Kroupis
- Biochemistry department, National and Kapodistrian University of Athens NKUA, Attikon, University Hospital, Athens, Greece
| | - Sokratis G Papageorgiou
- First Department of Neurology, Eginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| |
Collapse
|
4
|
Wang Y, Mi Y, Wang H, Jiang J, Mao L, Heng Y, Li X, Deng M. Combined impact of CHCHD10 p.Gly66Val and three other variants suggests oligogenic contributions to ALS. Front Neurol 2025; 16:1438207. [PMID: 40170896 PMCID: PMC11959081 DOI: 10.3389/fneur.2025.1438207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by a progressive loss of motor neurons and muscle atrophy. Genetic factors are known to play important roles in ALS and concomitant presence of rare variants in ALS patients have been increasingly reported. Methods In order to explore the genetic variants in ALS patients within the context of oligogenic inheritance and to elucidate the clinical heterogeneity observed in these patients, we conducted whole-genome sequencing on 34 familial ALS (FALS) probands. Results In one proband, we identified a CHCHD10 p.Gly66Val variant, along with three additional variants: UNC13A p.Leu1034Val, SUSD1 p.Trp704Ser, and SQSTM1 p.His359del. This patient exhibited a slow disease progression and a prolonged survival duration, consistent with the clinical features of ALS patients with CHCHD10 variants. This suggests that the CHCHD10 p.Gly66Val variant may play a predominant role in shaping the patient's phenotype, while the other variants may primarily contribute to ALS occurrence. Discussion Variants in CHCHD10 have been found in ALS and other neurodegenerative diseases, exhibiting significant clinical variability. However, the combinatorial effect of CHCHD10 and other ALS-related gene variants has not been fully studied. Our findings suggest that the combined impact of these four variants contributes to this patient's ALS phenotype, distinguishing it from other, less severe neuromuscular disorders associated with CHCHD10 mutations. Overall, this study further supports the oligogenic pathogenic basis of ALS and offers new insights into understanding the intricate clinical presentations associated with CHCHD10 variants.
Collapse
Affiliation(s)
- YiYing Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - YuXin Mi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Hui Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - JingSi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Le Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - YanXi Heng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - XiaoGang Li
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Keethedeth N, Anantha Shenoi R. Mitochondria-targeted nanotherapeutics: A new frontier in neurodegenerative disease treatment. Mitochondrion 2025; 81:102000. [PMID: 39662651 DOI: 10.1016/j.mito.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Hence mitochondria have been used as possible therapeutic targets in the regulation of neurodegenerative diseases. However, the double membranous structure of mitochondria poses an additional barrier to most drugs even if they are able to cross the plasma membrane. Most of the drugs acting on mitochondria also required very high doses to exhibit the desired mitochondrial accumulation and therapeutic effect which in-turn result in toxic effects. Mitochondrial targeting has been improved by direct conjugation of drugs to mitochondriotropic molecules like dequalinium (DQA) and triphenyl phosphonium (TPP) cations. But being cationic in nature, these molecules also exhibit toxicity at higher doses. In order to further improve the mitochondrial localization with minimal toxicity, TPP was conjugated with various nanomaterials like liposomes. inorganic nanoparticles, polymeric nanoparticles, micelles and dendrimers. This review provides an overview of the role of mitochondrial dysfunction in neurodegenerative diseases and various nanotherapeutic strategies for efficient targeting of mitochondria-acting drugs in these diseases.
Collapse
Affiliation(s)
- Nishad Keethedeth
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| | - Rajesh Anantha Shenoi
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| |
Collapse
|
6
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. Mol Neurodegener 2024; 19:68. [PMID: 39385222 PMCID: PMC11465638 DOI: 10.1186/s13024-024-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aβ)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aβ pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Ann D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
8
|
Kliche J, Simonetti L, Krystkowiak I, Kuss H, Diallo M, Rask E, Nilsson J, Davey NE, Ivarsson Y. Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. Mol Syst Biol 2024; 20:1025-1048. [PMID: 39009827 PMCID: PMC11369174 DOI: 10.1038/s44320-024-00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Whole genome and exome sequencing are reporting on hundreds of thousands of missense mutations. Taking a pan-disease approach, we explored how mutations in intrinsically disordered regions (IDRs) break or generate protein interactions mediated by short linear motifs. We created a peptide-phage display library tiling ~57,000 peptides from the IDRs of the human proteome overlapping 12,301 single nucleotide variants associated with diverse phenotypes including cancer, metabolic diseases and neurological diseases. By screening 80 human proteins, we identified 366 mutation-modulated interactions, with half of the mutations diminishing binding, and half enhancing binding or creating novel interaction interfaces. The effects of the mutations were confirmed by affinity measurements. In cellular assays, the effects of motif-disruptive mutations were validated, including loss of a nuclear localisation signal in the cell division control protein CDC45 by a mutation associated with Meier-Gorlin syndrome. The study provides insights into how disease-associated mutations may perturb and rewire the motif-based interactome.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, Chelsea, London, UK
| | - Hanna Kuss
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, DE-48149, Münster, Germany
| | - Marcel Diallo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Emma Rask
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Norman E Davey
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, Chelsea, London, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
9
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308975. [PMID: 38947065 PMCID: PMC11213097 DOI: 10.1101/2024.06.15.24308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET+ participants, including TIMP3, which regulates brain Aβ production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Tara K. Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pamela C. L. Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Ann D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
12
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
13
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
14
|
Ortiz GG, Ramírez-Jirano J, Arizaga RL, Delgado-Lara DLC, Torres-Sánchez ED. Frontotemporal-TDP and LATE Neurocognitive Disorders: A Pathophysiological and Genetic Approach. Brain Sci 2023; 13:1474. [PMID: 37891841 PMCID: PMC10605418 DOI: 10.3390/brainsci13101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Frontotemporal lobar degeneration (FTLD) belongs to a heterogeneous group of highly complex neurodegenerative diseases and represents the second cause of presenile dementia in individuals under 65. Frontotemporal-TDP is a subgroup of frontotemporal dementia characterized by the aggregation of abnormal protein deposits, predominantly transactive response DNA-binding protein 43 (TDP-43), in the frontal and temporal brain regions. These deposits lead to progressive degeneration of neurons resulting in cognitive and behavioral impairments. Limbic age-related encephalopathy (LATE) pertains to age-related cognitive decline primarily affecting the limbic system, which is crucial for memory, emotions, and learning. However, distinct, emerging research suggests a potential overlap in pathogenic processes, with some cases of limbic encephalopathy displaying TDP-43 pathology. Genetic factors play a pivotal role in both disorders. Mutations in various genes, such as progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72), have been identified as causative in frontotemporal-TDP. Similarly, specific genetic variants have been associated with an increased risk of developing LATE. Understanding these genetic links provides crucial insights into disease mechanisms and the potential for targeted therapies.
Collapse
Affiliation(s)
- Genaro Gabriel Ortiz
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Postgraduate Gerontology Program, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Javier Ramírez-Jirano
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, IMSS, Guadalajara 44340, Jalisco, Mexico;
| | - Raul L. Arizaga
- Public Health Department, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina;
| | - Daniela L. C. Delgado-Lara
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Departamento Académico de Formación Universitaria, Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - Erandis D. Torres-Sánchez
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| |
Collapse
|
15
|
Antoniani F, Cimino M, Mediani L, Vinet J, Verde EM, Secco V, Yamoah A, Tripathi P, Aronica E, Cicardi ME, Trotti D, Sterneckert J, Goswami A, Carra S. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia. Cell Death Discov 2023; 9:248. [PMID: 37454169 DOI: 10.1038/s41420-023-01547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.
Collapse
Affiliation(s)
- Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Cimino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Enza M Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maria E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 10032, New York, NY, USA.
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, 10032, New York, NY, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
16
|
Farrawell NE, Bax M, McAlary L, McKenna J, Maksour S, Do-Ha D, Rayner SL, Blair IP, Chung RS, Yerbury JJ, Ooi L, Saunders DN. ALS-linked CCNF variant disrupts motor neuron ubiquitin homeostasis. Hum Mol Genet 2023; 32:2386-2398. [PMID: 37220877 PMCID: PMC10652331 DOI: 10.1093/hmg/ddad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that share pathological features, including the aberrant accumulation of ubiquitinated protein inclusions within motor neurons. Previously, we have shown that the sequestration of ubiquitin (Ub) into inclusions disrupts Ub homeostasis in cells expressing ALS-associated variants superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43). Here, we investigated whether an ALS/FTD-linked pathogenic variant in the CCNF gene, encoding the E3 Ub ligase Cyclin F (CCNF), also perturbs Ub homeostasis. The presence of a pathogenic CCNF variant was shown to cause ubiquitin-proteasome system (UPS) dysfunction in induced pluripotent stem cell-derived motor neurons harboring the CCNF S621G mutation. The expression of the CCNFS621G variant was associated with an increased abundance of ubiquitinated proteins and significant changes in the ubiquitination of key UPS components. To further investigate the mechanisms responsible for this UPS dysfunction, we overexpressed CCNF in NSC-34 cells and found that the overexpression of both wild-type (WT) and the pathogenic variant of CCNF (CCNFS621G) altered free Ub levels. Furthermore, double mutants designed to decrease the ability of CCNF to form an active E3 Ub ligase complex significantly improved UPS function in cells expressing both CCNFWT and the CCNFS621G variant and were associated with increased levels of free monomeric Ub. Collectively, these results suggest that alterations to the ligase activity of the CCNF complex and the subsequent disruption to Ub homeostasis play an important role in the pathogenesis of CCNF-associated ALS/FTD.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Monique Bax
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Jessie McKenna
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Simon Maksour
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Dzung Do-Ha
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, New South Wales, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, New South Wales, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, New South Wales, Australia
| | - Justin J Yerbury
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Darren N Saunders
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
17
|
De Marchi F, Franjkic T, Schito P, Russo T, Nimac J, Chami AA, Mele A, Vidatic L, Kriz J, Julien JP, Apic G, Russell RB, Rogelj B, Cannon JR, Baralle M, Agosta F, Hecimovic S, Mazzini L, Buratti E, Munitic I. Emerging Trends in the Field of Inflammation and Proteinopathy in ALS/FTD Spectrum Disorder. Biomedicines 2023; 11:1599. [PMID: 37371694 PMCID: PMC10295684 DOI: 10.3390/biomedicines11061599] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Toni Franjkic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
- Metisox, Cambridge CB24 9NL, UK;
| | - Paride Schito
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Tommaso Russo
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Anna A. Chami
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Angelica Mele
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Jean-Pierre Julien
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | | | | | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| |
Collapse
|
18
|
Mansour B, Vanecek T, Kastnerova L, Nosek D, Kazakov DV, Donati M. Spitz Tumor With SQSTM1::NTRK2 Fusion: A Clinicopathological Study of 5 Cases. Am J Dermatopathol 2023; 45:306-310. [PMID: 36939120 DOI: 10.1097/dad.0000000000002410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACT Spitz tumors are melanocytic neoplasms characterized by specific, mutually exclusive driver molecular events, namely genomic rearrangements involving the threonine kinase BRAF and the tyrosine kinase receptors ALK , NTRK1 , NTRK2 , NTRK3 , MET , RET , ROS1 , and MAP3K8 or less commonly, mutations in HRAS or MAP2K1 . We hereby report 5 Spitz tumors with a SQSTM1::NTRK2 fusion. All patients were woman with the ages at diagnosis ranging from 30 to 50 years. Locations included the lower extremity (n = 3), forearm, and back (one each). All the neoplasms were superficial melanocytic proliferation with a flat to dome-shaped silhouette, in which junctional spindled and polygonal dendritic melanocytes were mainly arranged as horizontal nests associated with conspicuous lentiginous involvement of the follicular epithelium. Only one case showed heavily pigmented, vertically oriented melanocytic nests resembling Reed nevus. A superficial intradermal component observed in 2 cases appeared as small nests with a back-to-back configuration. In all lesions, next-generation sequencing analysis identified a SQSTM1::NTRK2 fusion. A single case studied with fluorescence in situ hybridization for copy number changes in melanoma-related genes proved negative. No further molecular alterations were detected, including TERT-p hotspot mutations.
Collapse
Affiliation(s)
- Boulos Mansour
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Tomas Vanecek
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Liubov Kastnerova
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden; and
| | - Dmitry V Kazakov
- IDP Institut für Dermatohistopathologie, Pathologie Institut Enge, Zürich, Switzerland
| | - Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
19
|
Chompoopong P, Oskarsson B, Madigan NN, Mirman I, Martinez-Thompson JM, Liewluck T, Milone M. Multisystem proteinopathies (MSPs) and MSP-like disorders: Clinical-pathological-molecular spectrum. Ann Clin Transl Neurol 2023; 10:632-643. [PMID: 36861178 PMCID: PMC10109322 DOI: 10.1002/acn3.51751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES Mutations in VCP, HNRNPA2B1, HNRNPA1, and SQSTM1, encoding RNA-binding proteins or proteins in quality-control pathways, cause multisystem proteinopathies (MSP). They share pathological findings of protein aggregation and clinical combinations of inclusion body myopathy (IBM), neurodegeneration [motor neuron disorder (MND)/frontotemporal dementia (FTD)], and Paget disease of bone (PDB). Subsequently, additional genes were linked to similar but not full clinical-pathological spectrum (MSP-like disorders). We aimed to define the phenotypic-genotypic spectrum of MSP and MSP-like disorders at our institution, including long-term follow-up features. METHODS We searched the Mayo Clinic database (January 2010-June 2022) to identify patients with mutations in MSP and MSP-like disorders causative genes. Medical records were reviewed. RESULTS Thirty-one individuals (27 families) had pathogenic mutations in: VCP (n = 17), SQSTM1 + TIA1 (n = 5), TIA1 (n = 5), MATR3, HNRNPA1, HSPB8, and TFG (n = 1, each). Myopathy occurred in all but 2 VCP-MSP patients with disease onset at age 52 (median). Weakness pattern was limb-girdle in 12/15 VCP-MSP and HSPB8 patient, and distal-predominant in other MSP and MSP-like disorders. Twenty/24 muscle biopsies showed rimmed vacuolar myopathy. MND and FTD occurred in 5 (4 VCP, 1 TFG) and 4 (3 VCP, 1 SQSTM1 + TIA1) patients, respectively. PDB manifested in 4 VCP-MSP. Diastolic dysfunction occurred in 2 VCP-MSP. After 11.5 years (median) from symptom onset, 15 patients ambulated without gait-aids; loss of ambulation (n = 5) and death (n = 3) were recorded only in VCP-MSP. INTERPRETATION VCP-MSP was the most common disorder; rimmed vacuolar myopathy was the most frequent manifestation; distal-predominant weakness occurred frequently in non-VCP-MSP; and cardiac involvement was observed only in VCP-MSP.
Collapse
Affiliation(s)
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Igal Mirman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
20
|
Tan YJ, Yong ACW, Foo JN, Lian MM, Lim WK, Dominguez J, Fong ZH, Narasimhalu K, Chiew HJ, Ng KP, Ting SKS, Kandiah N, Ng ASL. C9orf72 expansions are the most common cause of genetic frontotemporal dementia in a Southeast Asian cohort. Ann Clin Transl Neurol 2023; 10:568-578. [PMID: 36799407 PMCID: PMC10109321 DOI: 10.1002/acn3.51744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Frontotemporal dementia (FTD) encompasses a spectrum of neurodegenerative disorders, including behavioural variant FTD (bvFTD), semantic variant primary progressive aphasia (svPPA) and non-fluent variant PPA (nfvPPA). While a strong genetic component is implicated in FTD, genetic FTD in Asia is less frequently reported. We aimed to investigate the frequency of Southeast Asian FTD patients harbouring known genetic FTD variants. METHODS A total of 60 FTD-spectrum patients (25 familial and 35 sporadic) from Singapore and the Philippines were included. All underwent next-generation sequencing and repeat-primed PCR for C9orf72 expansion testing. Neurofilament light chain (NfL) levels were measured in a subset of patients. RESULTS Overall, 26.6% (16/60 cases) carried pathogenic or likely pathogenic variants in a FTD-related gene, including: MAPT Gln351Arg (n = 1); GRN Cys92Ter (n = 1), Ser301Ter (n = 2), c.462 + 1G > C (n = 1); C9orf72 expansion (35-70 repeats; n = 8); TREM2 Arg47Cys (n = 1); and OPTN frameshift insertion (n = 2). Genetic mutations accounted for 48% (12/25) of patients with familial FTD, and 11.4% (4/35) of patients with sporadic FTD. C9orf72 repeat expansions were the most common genetic mutation (13.3%, 8/60), followed by GRN (6.7%, 4/60) variants. Within mutation carriers, plasma NfL was highest in a C9orf72 expansion carrier, and CSF NfL was highest in a GRN splice variant carrier. INTERPRETATION In our cohort, genetic mutations are present in one-quarter of FTD-spectrum cases, and up to half of those with family history. Our findings highlight the importance of wider implementation of genetic testing in FTD patients from Southeast Asia.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Alisa C W Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | | | - Zhi Hui Fong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kaavya Narasimhalu
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Hui Jin Chiew
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Simon K S Ting
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
21
|
Rubino E, Boschi S, Roveta F, Marcinnò A, Cermelli A, Borghese C, Vigliani MC, Rainero I. Investigating p62 Concentrations in Cerebrospinal Fluid of Patients with Dementia: A Potential Autophagy Biomarker In Vivo? Brain Sci 2022; 12:1414. [PMID: 36291347 PMCID: PMC9599226 DOI: 10.3390/brainsci12101414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 05/04/2025] Open
Abstract
Several studies have revealed defects in autophagy in neurodegenerative disorders including Alzheimer's disease (AD) and frontotemporal dementia (FTD). SQSTM1/p62 plays a key role in the autophagic machinery and may serve as a marker for autophagic flux in vivo. We investigated the role of p62 in neurodegeneration, analyzing its concentrations in the CSF of AD and FTD patients. We recruited 76 participants: 22 patients with AD, 28 patients with FTD, and 26 controls. CSF p62 concentrations were significantly increased in AD and FTD patients when compared to controls, which persisted after adjusting for age (p = 0.01 and p = 0.008, respectively). In female FTD patients, p62 positively correlated with the neurodegenerative biomarkers t-Tau and p-Tau. A significant correlation between CSF p62 concentrations and several clinical features of AD was found. Our data show that p62 is increased in CSF of AD and FTD patients, suggesting a key role of autophagy in these two disorders. The levels of p62 in CSF may reflect an altered autophagic flux, and p62 could represent a potential biomarker of neurodegeneration.
Collapse
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126 Torino, Italy
| | - Silvia Boschi
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126 Torino, Italy
| | - Fausto Roveta
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126 Torino, Italy
| | - Andrea Marcinnò
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126 Torino, Italy
| | - Aurora Cermelli
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126 Torino, Italy
| | - Cristina Borghese
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Maria Claudia Vigliani
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Innocenzo Rainero
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, 10126 Torino, Italy
| |
Collapse
|
22
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
24
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
25
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
26
|
Mol MO, van der Lee SJ, Hulsman M, Pijnenburg YAL, Scheltens P, Seelaar H, van Swieten JC, Kaat LD, Holstege H, van Rooij JGJ. Mapping the genetic landscape of early-onset Alzheimer's disease in a cohort of 36 families. Alzheimers Res Ther 2022; 14:77. [PMID: 35650585 PMCID: PMC9158156 DOI: 10.1186/s13195-022-01018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Many families with clinical early-onset Alzheimer's disease (EOAD) remain genetically unexplained. A combination of genetic factors is not standardly investigated. In addition to monogenic causes, we evaluated the possible polygenic architecture in a large series of families, to assess if genetic testing of familial EOAD could be expanded. METHODS Thirty-six pedigrees (77 patients) were ascertained from a larger cohort of patients, with relationships determined by genetic data (exome sequencing data and/or SNP arrays). All families included at least one AD patient with symptom onset <70 years. We evaluated segregating rare variants in known dementia-related genes, and other genes or variants if shared by multiple families. APOE was genotyped and duplications in APP were assessed by targeted test or using SNP array data. We computed polygenic risk scores (PRS) compared with a reference population-based dataset, by imputing SNP arrays or exome sequencing data. RESULTS In eight families, we identified a pathogenic variant, including the genes APP, PSEN1, SORL1, and an unexpected GRN frameshift variant. APOE-ε4 homozygosity was present in eighteen families, showing full segregation with disease in seven families. Eight families harbored a variant of uncertain significance (VUS), of which six included APOE-ε4 homozygous carriers. PRS was not higher in the families combined compared with the population mean (beta 0.05, P = 0.21), with a maximum increase of 0.61 (OR = 1.84) in the GRN family. Subgroup analyses indicated lower PRS in six APP/PSEN1 families compared with the rest (beta -0.22 vs. 0.10; P = 0.009) and lower APOE burden in all eight families with monogenic cause (beta 0.29 vs. 1.15, P = 0.010). Nine families remained without a genetic cause or risk factor identified. CONCLUSION Besides monogenic causes, we suspect a polygenic disease architecture in multiple families based on APOE and rare VUS. The risk conveyed by PRS is modest across the studied families. Families without any identified risk factor render suitable candidates for further in-depth genetic evaluation.
Collapse
Affiliation(s)
- Merel O Mol
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Phillip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Jeroen G J van Rooij
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
28
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
29
|
Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, Duchen MR, Gautel M, Eskelinen EL, Fanto M, Jungbluth H. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy 2022; 18:496-517. [PMID: 34130600 PMCID: PMC9037555 DOI: 10.1080/15548627.2021.1943177] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Primary dysfunction of autophagy due to Mendelian defects affecting core components of the autophagy machinery or closely related proteins have recently emerged as an important cause of genetic disease. This novel group of human disorders may present throughout life and comprises severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. Early-onset (or congenital) disorders of autophagy often share a recognizable "clinical signature," including variable combinations of neurological, neuromuscular and multisystem manifestations. Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are prominent neurological features, indicating a specific vulnerability of certain neuronal populations to autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occurring on the background of a neurodevelopmental disorder further supports a role of autophagy in both neuronal development and maintenance. Additionally, an associated myopathy has been characterized in several conditions. The differential diagnosis comprises a wide range of other multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins and/or emerging molecular connections between the pathways implicated and suggests an exciting area for future research. Therapy development for congenital disorders of autophagy is still in its infancy but may result in the identification of molecules that target autophagy more specifically than currently available compounds. The close connection with adult-onset neurodegenerative disorders highlights the relevance of research into rare early-onset neurodevelopmental conditions for much more common, age-related human diseases.Abbreviations: AC: anterior commissure; AD: Alzheimer disease; ALR: autophagic lysosomal reformation; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ASD: autism spectrum disorder; ATG: autophagy related; BIN1: bridging integrator 1; BPAN: beta-propeller protein associated neurodegeneration; CC: corpus callosum; CHMP2B: charged multivesicular body protein 2B; CHS: Chediak-Higashi syndrome; CMA: chaperone-mediated autophagy; CMT: Charcot-Marie-Tooth disease; CNM: centronuclear myopathy; CNS: central nervous system; DNM2: dynamin 2; DPR: dipeptide repeat protein; DVL3: disheveled segment polarity protein 3; EPG5: ectopic P-granules autophagy protein 5 homolog; ER: endoplasmic reticulum; ESCRT: homotypic fusion and protein sorting complex; FIG4: FIG4 phosphoinositide 5-phosphatase; FTD: frontotemporal dementia; GBA: glucocerebrosidase; GD: Gaucher disease; GRN: progranulin; GSD: glycogen storage disorder; HC: hippocampal commissure; HD: Huntington disease; HOPS: homotypic fusion and protein sorting complex; HSPP: hereditary spastic paraparesis; LAMP2A: lysosomal associated membrane protein 2A; MEAX: X-linked myopathy with excessive autophagy; mHTT: mutant huntingtin; MSS: Marinesco-Sjoegren syndrome; MTM1: myotubularin 1; MTOR: mechanistic target of rapamycin kinase; NBIA: neurodegeneration with brain iron accumulation; NCL: neuronal ceroid lipofuscinosis; NPC1: Niemann-Pick disease type 1; PD: Parkinson disease; PtdIns3P: phosphatidylinositol-3-phosphate; RAB3GAP1: RAB3 GTPase activating protein catalytic subunit 1; RAB3GAP2: RAB3 GTPase activating non-catalytic protein subunit 2; RB1: RB1-inducible coiled-coil protein 1; RHEB: ras homolog, mTORC1 binding; SCAR20: SNX14-related ataxia; SENDA: static encephalopathy of childhood with neurodegeneration in adulthood; SNX14: sorting nexin 14; SPG11: SPG11 vesicle trafficking associated, spatacsin; SQSTM1: sequestosome 1; TBC1D20: TBC1 domain family member 20; TECPR2: tectonin beta-propeller repeat containing 2; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; UBQLN2: ubiquilin 2; VCP: valosin-containing protein; VMA21: vacuolar ATPase assembly factor VMA21; WDFY3/ALFY: WD repeat and FYVE domain containing protein 3; WDR45: WD repeat domain 45; WDR47: WD repeat domain 47; WMS: Warburg Micro syndrome; XLMTM: X-linked myotubular myopathy; ZFYVE26: zinc finger FYVE-type containing 26.
Collapse
Affiliation(s)
- Celine Deneubourg
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Mauricio Ramm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Luke J. Smith
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Olga Baron
- Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Susan C. Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Davidson JM, Chung RS, Lee A. The converging roles of sequestosome-1/p62 in the molecular pathways of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neurobiol Dis 2022; 166:105653. [PMID: 35143965 DOI: 10.1016/j.nbd.2022.105653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Investigations into the pathogenetic mechanisms underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have provided significant insight into the disease. At the cellular level, ALS and FTD are classified as proteinopathies, which is motor neuron degeneration and death characterized by pathological protein aggregates or dysregulated proteostasis. At both the clinical and molecular level there are common signaling pathways dysregulated across the ALS and FTD spectrum (ALS/FTD). Sequestosome-1/p62 is a multifunctional scaffold protein with roles in several signaling pathways including proteostasis, protein degradation via the ubiquitin proteasome system and autophagy, the antioxidant response, inflammatory response, and apoptosis. Notably these pathways are dysregulated in ALS and FTD. Mutations in the functional domains of p62 provide links to the pathogenetic mechanisms of p62 and dyshomeostasis of p62 levels is noted in several types of ALS and FTD. We present here that the dysregulated ALS and FTD signaling pathways are linked, with p62 converging the molecular mechanisms. This review summarizes the current literature on the complex role of p62 in the pathogenesis across the ALS/FTD spectrum. The focus is on the underlying convergent molecular mechanisms of ALS and FTD-associated proteins and pathways that dysregulate p62 levels or are dysregulated by p62, with emphasis on how p62 is implicated across the ALS/FTD spectrum.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, NSW 2109, Australia..
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, NSW 2109, Australia..
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, NSW 2109, Australia..
| |
Collapse
|
31
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
32
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
33
|
Choubey V, Zeb A, Kaasik A. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells 2021; 11:38. [PMID: 35011599 PMCID: PMC8750762 DOI: 10.3390/cells11010038] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria in the cell are the center for energy production, essential biomolecule synthesis, and cell fate determination. Moreover, the mitochondrial functional versatility enables cells to adapt to the changes in cellular environment and various stresses. In the process of discharging its cellular duties, mitochondria face multiple types of challenges, such as oxidative stress, protein-related challenges (import, folding, and degradation) and mitochondrial DNA damage. They mitigate all these challenges with robust quality control mechanisms which include antioxidant defenses, proteostasis systems (chaperones and proteases) and mitochondrial biogenesis. Failure of these quality control mechanisms leaves mitochondria as terminally damaged, which then have to be promptly cleared from the cells before they become a threat to cell survival. Such damaged mitochondria are degraded by a selective form of autophagy called mitophagy. Rigorous research in the field has identified multiple types of mitophagy processes based on targeting signals on damaged or superfluous mitochondria. In this review, we provide an in-depth overview of mammalian mitophagy and its importance in human health and diseases. We also attempted to highlight the future area of investigation in the field of mitophagy.
Collapse
Affiliation(s)
- Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (A.Z.); (A.K.)
| | | | | |
Collapse
|
34
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
35
|
Bastien J, Menon S, Messa M, Nyfeler B. Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Mol Aspects Med 2021; 82:101018. [PMID: 34489092 DOI: 10.1016/j.mam.2021.101018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is a catabolic process that promotes cellular fitness by clearing aggregated protein species, pathogens and damaged organelles through lysosomal degradation. The autophagic process is particularly important in the nervous system where post-mitotic neurons rely heavily on protein and organelle quality control in order to maintain cellular health throughout the lifetime of the organism. Alterations of autophagy and lysosomal function are hallmarks of various neurodegenerative disorders. In this review, we conceptualize some of the mechanistic and genetic evidence pointing towards autophagy and lysosomal dysfunction as a causal driver of neurodegeneration. Furthermore, we discuss rate-limiting pathway nodes and potential approaches to restore pathway activity, from autophagy initiation, cargo sequestration to lysosomal capacity.
Collapse
Affiliation(s)
- Julie Bastien
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Suchithra Menon
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mirko Messa
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
36
|
Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis. Cells 2021; 10:cells10092247. [PMID: 34571896 PMCID: PMC8468025 DOI: 10.3390/cells10092247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Stress granules are conserved cytosolic ribonucleoprotein (RNP) compartments that undergo dynamic assembly and disassembly by phase separation in response to stressful conditions. Gene mutations may lead to aberrant phase separation of stress granules eliciting irreversible protein aggregations. A selective autophagy pathway called aggrephagy may partially alleviate the cytotoxicity mediated by these protein aggregates. Cells must perceive when and where the stress granules are transformed into toxic protein aggregates to initiate autophagosomal engulfment for subsequent autolysosomal degradation, therefore, maintaining cellular homeostasis. Indeed, defective aggrephagy has been causally linked to various neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this review, we discuss stress granules at the intersection of autophagy and ALS pathogenesis.
Collapse
|
37
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
38
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Lei L, Wu Z, Winklhofer KF. Protein quality control by the proteasome and autophagy: A regulatory role of ubiquitin and liquid-liquid phase separation. Matrix Biol 2021; 100-101:9-22. [DOI: 10.1016/j.matbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
|
40
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
41
|
Dominguez J, Yu JT, Tan YJ, Ng A, De Guzman MF, Natividad B, Daroy ML, Cano J, Yu J, Lian MM, Zeng L, Lim WK, Foo JN, Ng ASL. Novel Optineurin Frameshift Insertion in a Family With Frontotemporal Dementia and Parkinsonism Without Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:645913. [PMID: 34093394 PMCID: PMC8170397 DOI: 10.3389/fneur.2021.645913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a common cause of Young Onset Dementia and has diverse clinical manifestations involving behavior, executive function, language and motor function, including parkinsonism. Up to 50% of FTD patients report a positive family history, supporting a strong genetic basis, particularly in cases with both FTD and amyotrophic lateral sclerosis (FTD-ALS). Mutations in three genes are associated with the majority of familial FTD (fFTD) cases - microtubule associated protein tau gene (MAPT), granulin precursor (GRN), and hexanucleotide repeat expansions in chromosome 9 open reading frame 72- SMCR8complex subunit (C9orf72) while mutations in other genes such as optineurin (OPTN) have rarely been reported. Mutations in OPTN have been reported mostly in familial and sporadic cases of ALS, or in rare cases of FTD-ALS, but not in association with pure or predominant FTD and/or parkinsonian phenotype. Here, we report for the first time, a family from the Philippines with four members harboring a novel frameshift insertion at OPTN (Chr 10:13166090 G>GA) p.Lys328GluTer11, three of whom presented with FTD-related phenotypes. Additionally, one sibling heterozygous for the frameshift insertion had a predominantly parkinsonian phenotype resembling corticobasal syndrome, but it remains to be determined if this phenotype is related to the frameshift insertion. Notably, none of the affected members showed any evidence of motor neuron disease or ALS at the time of writing, both clinically and on electrophysiological testing, expanding the phenotypic spectrum of OPTN mutations. Close follow-up of mutation carriers for the development of new clinical features and wider investigation of additional family members with further genetic analyses will be conducted to investigate the possibility of other genetic modifiers in this family which could explain phenotypic heterogeneity.
Collapse
Affiliation(s)
- Jacqueline Dominguez
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Jeryl Tan Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Arlene Ng
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Ma Fe De Guzman
- Research and Biotechnology Division, St Luke's Medical Centre, Quezon, Philippines
| | - Boots Natividad
- Research and Biotechnology Division, St Luke's Medical Centre, Quezon, Philippines
| | - Ma Luisa Daroy
- Research and Biotechnology Division, St Luke's Medical Centre, Quezon, Philippines
| | - Jemellee Cano
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Justine Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
42
|
Llamas-Velasco S, Arteche-López A, Méndez-Guerrero A, Puertas Martín V, Quesada Espinosa JF, Lezana Rosales JM, González-Sánchez M, Blanco-Palmero VA, Palma Milla C, Herrero-San Martín A, Borrego-Hernández D, García-Redondo A, Pérez-Martínez DA, Villarejo-Galende A. Expanding the clinical and genetic spectrum of SQSTM1-related disorders in family with personality disorder and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:552-560. [PMID: 34009082 DOI: 10.1080/21678421.2021.1927101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: SQSTM1-variants associated with frontotemporal lobar degeneration have been described recently. In this study, we investigated a heterozygous in-frame duplication c.436_462dup p. (Pro146_Cys154dup) in the SQSTM1 gene in a family with a new phenotype characterized by a personality disorder and behavioral variant frontotemporal dementia (bvFTD). We review the literature on frontotemporal dementia (FTD) associated with SQSTM1. Methods: The index case and relatives were described, and a genetic study through Whole Exome Sequencing was performed. The literature was reviewed using Medline and Web of Science. Case reports, case series, and cohort studies were included if they provided information on SQSTM1 mutations associated with FTD. Results: Our patient is a 70-year-old man with a personality disorder since youth, familial history of dementia, and personality disorders with a 10-year history of cognitive decline and behavioral disturbances. A diagnosis of probable bvFTD was established, and the in-frame duplication c.436_462dup in the SQSTM1 gene was identified. Segregation analysis in the family confirmed that both affected sons with personality disorder were heterozygous carriers, but not his healthy 65-year-old brother. A total of 14 publications about 57 patients with SQSTM1-related FTD were reviewed, in which the bvFTD subtype was the main phenotype described (66.6%), with a predominance in men (63%) and positive family history in 61.4% of the cases. Conclusions: We describe a heterozygous in-frame duplication c.436_462dup p.(Pro146_Cys154dup) in the SQSTM1 gene, which affects the zinc-finger domain of p62, in a family with a personality disorder and bvFTD, expanding the genetics and clinical phenotype related to SQSTM1.
Collapse
Affiliation(s)
- Sara Llamas-Velasco
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | - Ana Arteche-López
- Genetic Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Verónica Puertas Martín
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Internacional de la Rioja, Logroño, Spain
| | | | | | - Marta González-Sánchez
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | - Victor Antonio Blanco-Palmero
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | | | - Alejandro Herrero-San Martín
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | - Daniel Borrego-Hernández
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Biomedical Research Networking Centre on Rare Diseases (CIBERER)
| | - Alberto García-Redondo
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Biomedical Research Networking Centre on Rare Diseases (CIBERER)
| | - David Andrés Pérez-Martínez
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Alberto Villarejo-Galende
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Department of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
43
|
Mishra B, Rajan R, Gupta A, Faruq M, Shamim U, Parveen S, Garg A, Tripathi M, Vishnu VY, Singh MB, Bhatia R, Srivastava P. Cerebellar Ataxia in Adults with SQSTM1-Associated Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum of Disorders. Mov Disord Clin Pract 2021; 8:800-802. [PMID: 34307757 DOI: 10.1002/mdc3.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Roopa Rajan
- All India Institute of Medical Sciences New Delhi India
| | - Anu Gupta
- All India Institute of Medical Sciences New Delhi India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Council of Scientific and Industrial Research Institute of Genomics and Integrative Biology New Delhi India
| | - Uzma Shamim
- Genomics and Molecular Medicine Council of Scientific and Industrial Research Institute of Genomics and Integrative Biology New Delhi India
| | - Shaista Parveen
- Genomics and Molecular Medicine Council of Scientific and Industrial Research Institute of Genomics and Integrative Biology New Delhi India
| | - Ajay Garg
- All India Institute of Medical Sciences New Delhi India
| | | | | | | | - Rohit Bhatia
- All India Institute of Medical Sciences New Delhi India
| | | |
Collapse
|
44
|
Poon A, Saini H, Sethi S, O'Sullivan GA, Plun-Favreau H, Wray S, Dawson LA, McCarthy JM. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports 2021; 16:1276-1289. [PMID: 33891871 PMCID: PMC8185463 DOI: 10.1016/j.stemcr.2021.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
Sequestosome-1 (SQSTM1/p62) is involved in cellular processes such as autophagy and metabolic reprogramming. Mutations resulting in the loss of function of SQSTM1 lead to neurodegenerative diseases including frontotemporal dementia. The pathogenic mechanism that contributes to SQSTM1-related neurodegeneration has been linked to its role as an autophagy adaptor, but this is poorly understood, and its precise role in mitochondrial function and clearance remains to be clarified. Here, we assessed the importance of SQSTM1 in human induced pluripotent stem cell (iPSC)-derived cortical neurons through the knockout of SQSTM1. We show that SQSTM1 depletion causes altered mitochondrial gene expression and functionality, as well as autophagy flux, in iPSC-derived neurons. However, SQSTM1 is not essential for mitophagy despite having a significant impact on early PINK1-dependent mitophagy processes including PINK1 recruitment and phosphorylation of ubiquitin on depolarized mitochondria. These findings suggest that SQSTM1 is important for mitochondrial function rather than clearance. SQSTM1 is dispensable for cortical neuron differentiation, modeled with human iPSCs Expression of bioenergetic genes is altered in human cortical neurons lacking SQSTM1 Loss of SQSTM1 causes aberration in mitochondrial functionality SQSTM1 affects mitophagic processes but is not required for mitochondrial clearance
Collapse
Affiliation(s)
- Anna Poon
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Siddharth Sethi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Gregory A O'Sullivan
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lee A Dawson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - James M McCarthy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK.
| |
Collapse
|
45
|
Yoon MJ, Choi B, Kim EJ, Ohk J, Yang C, Choi YG, Lee J, Kang C, Song HK, Kim YK, Woo JS, Cho Y, Choi EJ, Jung H, Kim C. UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy. Nat Commun 2021; 12:1955. [PMID: 33782410 PMCID: PMC8007730 DOI: 10.1038/s41467-021-22252-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
p62/SQSTM1 is known to act as a key mediator in the selective autophagy of protein aggregates, or aggrephagy, by steering ubiquitinated protein aggregates towards the autophagy pathway. Here, we use a yeast two-hybrid screen to identify the prefoldin-like chaperone UXT as an interacting protein of p62. We show that UXT can bind to protein aggregates as well as the LB domain of p62, and, possibly by forming an oligomer, increase p62 clustering for its efficient targeting to protein aggregates, thereby promoting the formation of the p62 body and clearance of its cargo via autophagy. We also find that ectopic expression of human UXT delays SOD1(A4V)-induced degeneration of motor neurons in a Xenopus model system, and that specific disruption of the interaction between UXT and p62 suppresses UXT-mediated protection. Together, these results indicate that UXT functions as an autophagy adaptor of p62-dependent aggrephagy. Furthermore, our study illustrates a cooperative relationship between molecular chaperones and the aggrephagy machinery that efficiently removes misfolded protein aggregates.
Collapse
Affiliation(s)
- Min Ji Yoon
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Boyoon Choi
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jin Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chansik Yang
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yeon-Gil Choi
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jinyoung Lee
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yoon Ki Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yongcheol Cho
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Eui-Ju Choi
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Cognitive dysfunction in amyotrophic lateral sclerosis: can we predict it? Neurol Sci 2021; 42:2211-2222. [PMID: 33772353 PMCID: PMC8159827 DOI: 10.1007/s10072-021-05188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms. Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder. Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neurophysiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising non-invasive biomarkers to detect pre-clinical cognitive decline. Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral impairments of ALS patients.
Collapse
|
47
|
Kwik M, Hainzl S, Oppelt J, Tichy B, Koller U, Bernardinelli E, Steiner M, Zara G, Nofziger C, Weis S, Paulmichl M, Dossena S, Patsch W, Soyal SM. Selective Activation of CNS and Reference PPARGC1A Promoters Is Associated with Distinct Gene Programs Relevant for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:3296. [PMID: 33804860 PMCID: PMC8036390 DOI: 10.3390/ijms22073296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator peroxisome proliferator activated receptor gamma coactivator 1A (PGC-1α), encoded by PPARGC1A, has been linked to neurodegenerative diseases. Recently discovered CNS-specific PPARGC1A transcripts are initiated far upstream of the reference promoter, spliced to exon 2 of the reference gene, and are more abundant than reference gene transcripts in post-mortem human brain samples. The proteins translated from the CNS and reference transcripts differ only at their N-terminal regions. To dissect functional differences between CNS-specific isoforms and reference proteins, we used clustered regularly interspaced short palindromic repeats transcriptional activation (CRISPRa) for selective endogenous activation of the CNS or the reference promoters in SH-SY5Y cells. Expression and/or exon usage of the targets was ascertained by RNA sequencing. Compared to controls, more differentially expressed genes were observed after activation of the CNS than the reference gene promoter, while the magnitude of alternative exon usage was comparable between activation of the two promoters. Promoter-selective associations were observed with canonical signaling pathways, mitochondrial and nervous system functions and neurological diseases. The distinct N-terminal as well as the shared downstream regions of PGC-1α isoforms affect the exon usage of numerous genes. Furthermore, associations of risk genes of amyotrophic lateral sclerosis and Parkinson's disease were noted with differentially expressed genes resulting from the activation of the CNS and reference gene promoter, respectively. Thus, CNS-specific isoforms markedly amplify the biological functions of PPARGC1A and CNS-specific isoforms and reference proteins have common, complementary and selective functions relevant for neurodegenerative diseases.
Collapse
Affiliation(s)
- Markus Kwik
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 18, 5020 Salzburg, Austria; (M.K.); (E.B.); (G.Z.); (S.D.)
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (U.K.)
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (J.O.); (B.T.)
- Department of Pathology and Laboratory Medicine, Perlman School of Medicine, University of Pennsylvania, 614 Stellar-Chance Labs, 422 Curie Blvd, Philadelphia, PA 19104-6100, USA
| | - Boris Tichy
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (J.O.); (B.T.)
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (U.K.)
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 18, 5020 Salzburg, Austria; (M.K.); (E.B.); (G.Z.); (S.D.)
| | - Markus Steiner
- Third Medical Department, Cancer Research Institute, Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria;
| | - Greta Zara
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 18, 5020 Salzburg, Austria; (M.K.); (E.B.); (G.Z.); (S.D.)
| | | | - Serge Weis
- Division of Neuropathology, Neuromed Campus, Kepler University Hospital, 4020 Linz, Austria;
| | - Markus Paulmichl
- Department of Personalized Medicine, Humanomed, 9020 Klagenfurt, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 18, 5020 Salzburg, Austria; (M.K.); (E.B.); (G.Z.); (S.D.)
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 18, 5020 Salzburg, Austria; (M.K.); (E.B.); (G.Z.); (S.D.)
| | - Selma M. Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 18, 5020 Salzburg, Austria; (M.K.); (E.B.); (G.Z.); (S.D.)
| |
Collapse
|
48
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|
49
|
Nakamura T, Kawarabayashi T, Koh K, Takiyama Y, Ikeda Y, Shoji M. Spastic Paraplegia with Paget's Disease of Bone due to a VCP Gene Mutation. Intern Med 2021; 60:141-144. [PMID: 32893227 PMCID: PMC7835475 DOI: 10.2169/internalmedicine.4617-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder clinically characterized by slowly progressing spastic paraparesis. We herein report a 50-year-old Japanese woman who presented with slowly progressing spastic paraplegia and a history of Paget's disease of bone (PDB). Genetic testing revealed a mutation of the Valosin-containing protein (VCP) gene (p.Arg155Cys; c.436C>T). This mutation has not been reported to cause HSP with PDB.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | | | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Mikio Shoji
- Dementia Center, Geriatrics Research Institute Hospital, Japan
| |
Collapse
|
50
|
Carandini T, Sacchi L, Ghezzi L, Pietroboni AM, Fenoglio C, Arighi A, Fumagalli GG, De Riz MA, Serpente M, Rotondo E, Scarpini E, Galimberti D. Detection of the SQSTM1 Mutation in a Patient with Early-Onset Hippocampal Amnestic Syndrome. J Alzheimers Dis 2020; 79:477-481. [PMID: 33325387 DOI: 10.3233/jad-201231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genetics has a major role in early-onset dementia, but the correspondence between genotype and phenotype is largely tentative. We describe a 54-year-old with familial early-onset slowly-progressive episodic memory impairment with the P392L-variant in SQSTM1. The patient showed cortical atrophy and hypometabolism in the temporal lobes, but no amyloidosis biomarkers. As symptoms/neuroimaging were suggestive for Alzheimer's disease-but biomarkers were not-and considering the family-history, genetic analysis was performed, revealing the P392L-variant in SQSTM1, which encodes for sequestosome-1/p62. Increasing evidence suggests a p62 involvement in neurodegeneration and SQSTM1 mutations have been found to cause amyotrophic lateral sclerosis/frontotemporal dementia. Our report suggests that the clinical spectrum of SQSTM1 variants is wider.
Collapse
Affiliation(s)
- Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sacchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| | - Laura Ghezzi
- University of Milan, Dino Ferrari Center, Milan, Italy.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna M Pietroboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Milena A De Riz
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| | - Emanuela Rotondo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Center, Milan, Italy
| |
Collapse
|