1
|
Burt ND, Arabian K, Parrott JS, Gallagher R. Practical clinical measures highlight cognition-balance associations in Parkinson's disease. Gait Posture 2025; 120:53-59. [PMID: 40188699 DOI: 10.1016/j.gaitpost.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/12/2025]
Abstract
INTRODUCTION Cognitive impairment in people with Parkinson's disease (PD) is associated with balance deficits and fall risk. Despite this, cognition is not routinely assessed by rehabilitation professionals. Establishing associations between specific domains of balance and cognition in PD using practical clinical measures could help inform evaluation and intervention by clinicians. RESEARCH QUESTION Is there a relationship between subsections of the Montreal Cognitive Assessment (MoCA) and Mini Balance Evaluation Systems Test (MiniBESTest) in people with PD that could inform clinical practice? METHODS One hundred and eight participants were included in this cross-sectional study (83.3 % male, mean age 70 ± 8.3). Motor function, balance, and cognition were assessed using the Unified Parkinson's Disease Rating Scale Part III: Motor Examination, MiniBESTest, and MoCA, respectively. Pearson correlations, Spearman's rho correlations, and multiple regression analysis were used to assess relationships. RESULTS Statistically significant positive correlations were found between MoCA and MiniBESTest total and subsection scores. The strongest correlation between domains of balance and cognition was between MoCA Delayed Recall and MiniBESTest Dynamic Gait (rho=0.441, p < 0.001), which were also the strongest predictors of performance on the other measure (the MiniBESTest and MoCA, respectively). SIGNIFICANCE Associations between domains of balance and cognition in PD can be demonstrated without a full battery of cognitive tests. The MoCA (an easy-to-use measure of global cognition) and MiniBESTest (a commonly used balance measure for PD) are sensitive to these associations and easily incorporated into clinical practice. Alternatively, delayed recall and dynamic gait can be quickly assessed and have potential as fall risk screens themselves. These associations could be used to inform both dual task and cognitive training in PD.
Collapse
Affiliation(s)
- Nicholas D Burt
- New York Institute of Technology College of Osteopathic Medicine (NYITCOM), Old Westbury, NY, United States.
| | - Karl Arabian
- Department of Physical Therapy, New York Institute of Technology School of Health Professions, Old Westbury, NY, United States.
| | - J Scott Parrott
- Rutgers, The State University of New Jersey, School of Health Professions, Newark, NJ, United States.
| | - Rosemary Gallagher
- Department of Physical Therapy, New York Institute of Technology School of Health Professions, Old Westbury, NY, United States.
| |
Collapse
|
2
|
Bouchouras G, Sofianidis G, Kotis K. Predicting Freezing of Gait in Parkinson's Disease: A Machine-Learning-Based Approach in ON and OFF Medication States. J Clin Med 2025; 14:2120. [PMID: 40142927 PMCID: PMC11942655 DOI: 10.3390/jcm14062120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Freezing of gait (FoG) is a debilitating motor symptom of Parkinson's disease (PD), characterized by sudden episodes where patients struggle to initiate or sustain movement, often describing a sensation of their feet being "glued to the ground." This study investigates the potential of machine-learning (ML) models to predict FoG severity in PD patients, focusing on the influence of dopaminergic medication by comparing gait parameters in ON and OFF medication states. Methods: Specifically, this study employed spatiotemporal gait features to develop a predictive model for FoG severity, leveraging a random forest regressor to identify the most influential gait parameters associated with this in each medication state. The results indicate that the model achieved higher predictive performance in the OFF-medication condition (R² = 0.82, MAE = 2.25, MSE = 15.23) compared to the ON-medication condition (R² = 0.52, MAE = 4.16, MSE = 42.00). Results: These findings suggest that dopaminergic treatment alters gait dynamics, potentially reducing the reliability of FoG predictions when patients are medicated. Feature importance analysis revealed distinct gait characteristics associated with FoG severity across medication states. In the OFF condition, step length parameters, particularly left step length mean, were the most dominant predictors, alongside swing time and stride width, indicating the role of spatial and temporal gait control in FoG severity without medication. In contrast, under the ON medication condition, stride width and gait speed emerged as the most influential predictors, followed by stepping frequency, reflecting how medication influences stability and movement rhythm. Conclusions: These findings highlight the need for predictive models that account for medication-induced gait variability, ensuring more reliable FoG detection. By integrating spatiotemporal gait analysis and ML-based prediction, this study contributes to the development of personalized intervention strategies for PD patients experiencing FoG episodes.
Collapse
Affiliation(s)
- Georgios Bouchouras
- Rehabilitation, School of Health Sciences, Metropolitan College, 54624 Thessaloniki, Greece;
| | - Georgios Sofianidis
- Rehabilitation, School of Health Sciences, Metropolitan College, 54624 Thessaloniki, Greece;
| | - Konstantinos Kotis
- Intelligent Systems Lab, Department of Cultural Technology and Communication, University of the Aegean, 81100 Mytilene, Greece;
| |
Collapse
|
3
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2025; 169:e16264. [PMID: 39556446 PMCID: PMC11808463 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V. Witzig
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - R. Pjontek
- Department of NeurosurgeryRWTH Aachen UniversityAachenGermany
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital CologneCologneGermany
| | - S. K. H. Tan
- Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
- Translational Neurosciences, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - J. B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - F. Holtbernd
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM‐4, INM‐11)JülichGermany
| |
Collapse
|
4
|
Zampogna A, Patera M, Falletti M, Pinola G, Asci F, Suppa A. Technological Advances for Gait and Balance in Normal Pressure Hydrocephalus: A Systematic Review. Bioengineering (Basel) 2025; 12:135. [PMID: 40001656 PMCID: PMC11852021 DOI: 10.3390/bioengineering12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Normal pressure hydrocephalus (NPH) is a recognized cause of reversible cognitive and motor decline, with gait and balance impairments often emerging early. Technologies providing gait and balance measures can aid in early detection, diagnosis, and prognosis of the disease. This systematic review comprehensively discusses previous studies on the instrumental assessment of gait and balance in NPH. A PubMed search following PRISMA guidelines identified studies published between 2000 and 2024 that used laboratory instruments to assess gait and balance in NPH. Studies underwent quality assessment for internal, statistical, and external validity. Methodological details such as motor tasks, instruments, analytical approaches, and main findings were summarized. Overall, this review includes 41 studies on gait and 17 on balance, most of which used observational, cross-sectional designs. These studies employed various tools, such as pressure-sensitive platforms, optoelectronic motion-capture systems, and wearable inertial sensors. Significant differences in kinematic measures of gait and balance have been found in NPH patients compared to healthy controls and individuals with other neurological conditions. Finally, this review explores potential pathophysiological mechanisms underlying the kinematic changes in gait and balance in NPH and emphasizes the absence of longitudinal data, which hinders drawing definitive conclusions for prognostic purposes.
Collapse
Affiliation(s)
- Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.); (M.F.); (G.P.); (F.A.)
- IRCCS Neuromed Institute, 86077 Pozzilli, Italy
| | - Martina Patera
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.); (M.F.); (G.P.); (F.A.)
| | - Marco Falletti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.); (M.F.); (G.P.); (F.A.)
| | - Giulia Pinola
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.); (M.F.); (G.P.); (F.A.)
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.); (M.F.); (G.P.); (F.A.)
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.); (M.F.); (G.P.); (F.A.)
- IRCCS Neuromed Institute, 86077 Pozzilli, Italy
| |
Collapse
|
5
|
Pasquini J, Brooks DJ, Pavese N. The involvement of the cholinergic system in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:215-229. [PMID: 40340062 DOI: 10.1016/b978-0-443-19088-9.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
In Parkinson disease (PD), cholinergic dysfunction develops in the early stages of the neurodegenerative process and progresses over time. Basal forebrain cholinergic system dysfunction is historically linked to cognitive decline in the dementia spectrum, and its pathophysiologic role in PD-related cognitive impairment has now been well established. However, cholinergic system dysfunction is also linked to several other manifestations of PD, such as gait difficulties, REM sleep behavior disorder (RBD), neuropsychiatric manifestations such as depression and visual hallucinations, and olfactory dysfunction. Furthermore, disruption of the striatal intrinsic cholinergic system, which modulates dopamine release, has been linked to cardinal motor manifestations and dyskinesia. Manifestations of cognitive decline, gait problems, falls, and RBD tend to cluster in a subset of people with PD, so that a "cholinergic phenotype" has been proposed. In this chapter, the involvement of the cholinergic system and its clinical correlates in PD will be discussed.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David J Brooks
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Ajalin R, Al‐Abdulrasul H, Tuisku JM, Hirvonen J, Lahdenpohja S, Rinne JO, Brück A. Impaired Gait, Postural Instability, and Rigidity in Relation to CB1 Receptor Availability in Parkinson's Disease. Mov Disord 2025; 40:163-167. [PMID: 39435606 PMCID: PMC11752992 DOI: 10.1002/mds.30042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND In Parkinson's disease (PD), postural instability and gait disorder (PIGD) symptoms are associated with a worse prognosis for an unknown reason. OBJECTIVE The objective was to explore the relationship between cannabinoid receptor type 1 (CB1R) availability and motor symptoms in PD with [18F]FMPEP-d2 positron emission tomography (PET). METHODS Fifteen individuals with PD underwent [18F]FMPEP-d2 PET to measure cerebral CB1R availability. The Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) was used to evaluate the motor symptoms. RESULTS A negative correlation was observed between [18F]FMPEP-d2 VT and PIGD score (P = 0.002) as well as rigidity subscore (P < 0.001). Both clusters covered widespread areas of both hemispheres. In contrast, tremor or bradykinesia did not correlate to [18F]FMPEP-d2 VT. CONCLUSIONS Gait, postural instability, and rigidity in PD are associated with decreased CB1R availability, unlike tremor or bradykinesia, suggesting that the endocannabinoid system has a role in the pathophysiology of different motor symptoms in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Riikka Ajalin
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
- Neurocenter, Turku University Hospital and Clinical NeurosciencesUniversity of TurkuTurkuFinland
| | - Haidar Al‐Abdulrasul
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
- Department of Neurology, Clinical Neurosciences (Neurology), Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Jouni M. Tuisku
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
| | - Jussi Hirvonen
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
- Department of RadiologyUniversity of Turku and Turku University HospitalTurkuFinland
| | - Salla Lahdenpohja
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
| | - Juha O. Rinne
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
- Neurocenter, Turku University Hospital and Clinical NeurosciencesUniversity of TurkuTurkuFinland
| | - Anna Brück
- Turku PET CentreTurku University and Turku University HospitalTurkuFinland
- Neurocenter, Turku University Hospital and Clinical NeurosciencesUniversity of TurkuTurkuFinland
| |
Collapse
|
7
|
Carli G, Kanel P, Roytman S, Pongmala C, Albin RL, Raffel DM, Scott PJH, Bohnen NI. Noradrenergic cardiac denervation is associated with gait velocity in Parkinson disease: a dual ligand PET study. Eur J Nucl Med Mol Imaging 2024; 51:3978-3989. [PMID: 38958681 PMCID: PMC11897926 DOI: 10.1007/s00259-024-06822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Preliminary data suggest that gait abnormalities in Parkinson disease (PD) may be associated with sympathetic cardiac denervation. No kinematic gait studies were performed to confirm this observation. We aimed to correlate spatiotemporal kinematic gait parameters with cardiac sympathetic denervation as determined by cardiac [11C]HED PET in PD. METHODS Retrospective database analysis of 27 PD patients with cardiac sympathetic denervation. All patients underwent spatiotemporal kinematic gait assessment (medication 'off' state), cardiac [11C]HED and dopaminergic brain [11C]DTBZ PET scans. We employed a hierarchical regression approach to examine associations between the extent of cardiac denervation, dopaminergic nigrostriatal neurodegeneration, and three gait parameters - velocity, step length and cadence. RESULTS More extensive cardiac denervation was associated with slower velocity (estimate: -1.034, 95% CI [-1.65, -0.42], p = 0.002), shorter step length (estimate: -0.818, 95% CI [-1.43, -0.21], p = 0.011) and lower cadence (estimate: -0.752, 95% CI [-1.28, -0.23], p = 0.007) explaining alone 30% (Adjusted-R²: 0.297), 20% (Adjusted-R²: 0.202) and 23% (Adjusted-R²: 0.227) of the variability, respecivetly. These associations remained independent of striatal dopaminergic impairment and confounding factors such as age, Hoehn and Yahr (HY) stages, peripheral neuropathy, cognition, and autonomic symptoms. In contrast, striatal dopaminergic denervation was significantly associated with step length (estimate: 0.883, 95% CI [0.29, 1.48], p = 0.005), explaining about 24% of the variability but was dependent of HY stage. CONCLUSIONS More severe cardiac noradrenergic denervation was associated with lower gait velocity, independent of striatal dopaminergic denervation and HY stage, impacting both step length and cadence. These results suggest independent contributions of the peripheral autonomic system degeneration on gait dynsfunction in PD.
Collapse
Affiliation(s)
- G Carli
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA.
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - P Kanel
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - S Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - C Pongmala
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - R L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - D M Raffel
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - P J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - N I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Nishida A, Shima A, Kambe D, Furukawa K, Sakamaki-Tsukita H, Yoshimura K, Wada I, Sakato Y, Terada Y, Sawamura M, Nakanishi E, Taruno Y, Yamakado H, Fushimi Y, Okada T, Nakamoto Y, Takahashi R, Sawamoto N. Frontoparietal-Striatal Network and Nucleus Basalis Modulation in Patients With Parkinson Disease and Gait Disturbance. Neurology 2024; 103:e209606. [PMID: 38976821 DOI: 10.1212/wnl.0000000000209606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neural computations underlying gait disorders in Parkinson disease (PD) are multifactorial and involve impaired expression of stereotactic locomotor patterns and compensatory recruitment of cognitive functions. This study aimed to clarify the network mechanisms of cognitive contribution to gait control and its breakdown in patients with PD. METHODS Patients with PD were instructed to walk at a comfortable pace on a mat with pressure sensors. The characterization of cognitive-motor interplay was enhanced by using a gait with a secondary cognitive task (dual-task condition) and a gait without additional tasks (single-task condition). Participants were scanned using 3-T MRI and 123I-ioflupane SPECT. RESULTS According to gait characteristics, cluster analysis assisted by a nonlinear dimensionality reduction technique, t-distributed stochastic neighbor embedding, categorized 56 patients with PD into 3 subpopulations. The preserved gait (PG) subgroup (n = 23) showed preserved speed and variability during gait, both with and without additional cognitive load. Compared with the PG subgroup, the mildly impaired gait (MIG) subgroup (n = 16) demonstrated deteriorated gait variability with additional cognitive load and impaired speed and gait variability without additional cognitive load. The severely impaired gait (SIG) subgroup (n = 17) revealed the slowest speed and highest gait variability. In addition, group differences were found in attention/working memory and executive function domains, with the lowest performance in the SIG subgroup than in the PG and MIG subgroups. Using resting-state functional MRI, the SIG subgroup demonstrated lower functional connectivity of the left and right frontoparietal network (FPN) with the caudate than the PG subgroup did (left FPN, d = 1.21, p < 0.001; right FPN, d = 1.05, p = 0.004). Cortical thickness in the FPN and 123I-ioflupane uptake in the striatum did not differ among the 3 subgroups. By contrast, the severity of Ch4 density loss was significantly correlated with the level of functional connectivity degradation of the FPN and caudate (left FPN-caudate, r = 0.27, p = 0.04). DISCUSSION These findings suggest that the functional connectivity of the FPN with the caudate, as mediated by the cholinergic Ch4 projection system, underlies the compensatory recruitment of attention and executive function for damaged automaticity in gait in patients with PD.
Collapse
Affiliation(s)
- Akira Nishida
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Atsushi Shima
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Daisuke Kambe
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Koji Furukawa
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Haruhi Sakamaki-Tsukita
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Kenji Yoshimura
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Ikko Wada
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yusuke Sakato
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yuta Terada
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Masanori Sawamura
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Etsuro Nakanishi
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yosuke Taruno
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Hodaka Yamakado
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yasutaka Fushimi
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Tomohisa Okada
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Yuji Nakamoto
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| | - Nobukatsu Sawamoto
- From the Department of Neurology (A.N., A.S., D.K., K.F., H.S.-T., K.Y., I.W., Y.S., Y. Terada, M.S., E.N., Y. Taruno, H.Y., R.T.), Human Brain Research Center (A.S., T.O.), Department of Diagnostic Imaging and Nuclear Medicine (Y.F., Y.N.), and Department of Human Health Sciences (N.S.), Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
9
|
van Midden V, Simončič U, Pirtošek Z, Kojović M. The Effect of taVNS at 25 Hz and 100 Hz on Parkinson's Disease Gait-A Randomized Motion Sensor Study. Mov Disord 2024; 39:1375-1385. [PMID: 38757756 DOI: 10.1002/mds.29826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Transcutaneous electrostimulation of the auricular branch of the vagal nerve (taVNS) has the propensity to reach diffuse neuromodulatory networks, which are dysfunctional in Parkinson's disease (PD). Previous studies support the use of taVNS as an add-on treatment for gait in PD. OBJECTIVES We assessed the effect of taVNS at 25 Hz (taVNS25), taVNS at 100 Hz (taVNS100), and sham earlobe stimulation (sVNS) on levodopa responsive (arm swing velocity, arm range of motion, stride length, gait speed) and non-responsive gait characteristics (arm range of motion asymmetry, anticipatory postural adjustment [APA] duration, APA first step duration, APA first step range of motion), and turns (first turn duration, double 360° turn duration, steps per turn) in advanced PD. METHODS In our double blind sham controlled within-subject randomized trial, we included 30 PD patients (modified Hoehn and Yahr stage, 2.5-4) to assess the effect of taVNS25, taVNS100, and sVNS on gait characteristics measured with inertial motion sensors during the instrumented stand and walk test and a double 360° turn. Separate generalized mixed models were built for each gait characteristic. RESULTS During taVNS100 compared to sVNS arm swing velocity (P = 0.030) and stride length increased (P = 0.027), and APA duration decreased (P = 0.050). During taVNS25 compared to sVNS stride length (P = 0.024) and gait speed (P = 0.021) increased and double 360° turn duration decreased (P = 0.039). CONCLUSIONS We have found that taVNS has a frequency specific propensity to improve stride length, arm swing velocity, and gait speed and double 360° turn duration in PD patients. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vesna van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Simončič
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Zhang X, Wang M, Lee SY, Yue Y, Chen Z, Zhang Y, Wang L, Guan Q, Fan W, Shen T. Cholinergic nucleus degeneration and its association with gait impairment in Parkinson's disease. J Neuroeng Rehabil 2024; 21:120. [PMID: 39026279 PMCID: PMC11256459 DOI: 10.1186/s12984-024-01417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The contribution of cholinergic degeneration to gait disturbance in Parkinson's disease (PD) is increasingly recognized, yet its relationship with dopaminergic-resistant gait parameters has been poorly investigated. We investigated the association between comprehensive gait parameters and cholinergic nucleus degeneration in PD. METHODS This cross-sectional study enrolled 84 PD patients and 69 controls. All subjects underwent brain structural magnetic resonance imaging to assess the gray matter density (GMD) and volume (GMV) of the cholinergic nuclei (Ch123/Ch4). Gait parameters under single-task (ST) and dual-task (DT) walking tests were acquired using sensor wearables in PD group. We compared cholinergic nucleus morphology and gait performance between groups and examined their association. RESULTS PD patients exhibited significantly decreased GMD and GMV of the left Ch4 compared to controls after reaching HY stage > 2. Significant correlations were observed between multiple gait parameters and bilateral Ch123/Ch4. After multiple testing correction, the Ch123/Ch4 degeneration was significantly associated with shorter stride length, lower gait velocity, longer stance phase, smaller ankle toe-off and heel-strike angles under both ST and DT condition. For PD patients with HY stage 1-2, there were no significant degeneration of Ch123/4, and only right side Ch123/Ch4 were corrected with the gait parameters. However, as the disease progressed to HY stage > 2, bilateral Ch123/Ch4 nuclei showed correlations with gait performance, with more extensive significant correlations were observed in the right side. CONCLUSIONS Our study demonstrated the progressive association between cholinergic nuclei degeneration and gait impairment across different stages of PD, and highlighting the potential lateralization of the cholinergic nuclei's impact on gait impairment. These findings offer insights for the design and implementation of future clinical trials investigating cholinergic treatments as a promising approach to address gait impairments in PD.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mateng Wang
- Department of General Surgery, Yinzhou NO.2 Hospital, Ningbo, Zhejiang Province, China
| | - Shi Yeow Lee
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhaoying Chen
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Yilin Zhang
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lulu Wang
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Qiongfeng Guan
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Weinv Fan
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China.
| | - Ting Shen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
12
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
13
|
Heß T, Themann P, Oehlwein C, Milani TL. Does Impaired Plantar Cutaneous Vibration Perception Contribute to Axial Motor Symptoms in Parkinson's Disease? Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation. Brain Sci 2023; 13:1681. [PMID: 38137129 PMCID: PMC10742284 DOI: 10.3390/brainsci13121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE To investigate whether impaired plantar cutaneous vibration perception contributes to axial motor symptoms in Parkinson's disease (PD) and whether anti-parkinsonian medication and subthalamic nucleus deep brain stimulation (STN-DBS) show different effects. METHODS Three groups were evaluated: PD patients in the medication "on" state (PD-MED), PD patients in the medication "on" state and additionally "on" STN-DBS (PD-MED-DBS), as well as healthy subjects (HS) as reference. Motor performance was analyzed using a pressure distribution platform. Plantar cutaneous vibration perception thresholds (VPT) were investigated using a customized vibration exciter at 30 Hz. RESULTS Motor performance of PD-MED and PD-MED-DBS was characterized by greater postural sway, smaller limits of stability ranges, and slower gait due to shorter strides, fewer steps per minute, and broader stride widths compared to HS. Comparing patient groups, PD-MED-DBS showed better overall motor performance than PD-MED, particularly for the functional limits of stability and gait. VPTs were significantly higher for PD-MED compared to those of HS, which suggests impaired plantar cutaneous vibration perception in PD. However, PD-MED-DBS showed less impaired cutaneous vibration perception than PD-MED. CONCLUSIONS PD patients suffer from poor motor performance compared to healthy subjects. Anti-parkinsonian medication in tandem with STN-DBS seems to be superior for normalizing axial motor symptoms compared to medication alone. Plantar cutaneous vibration perception is impaired in PD patients, whereas anti-parkinsonian medication together with STN-DBS is superior for normalizing tactile cutaneous perception compared to medication alone. Consequently, based on our results and the findings of the literature, impaired plantar cutaneous vibration perception might contribute to axial motor symptoms in PD.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Peter Themann
- Department of Neurology and Parkinson, Clinic at Tharandter Forest, 09633 Halsbruecke, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L. Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
14
|
Aloisio S, Satolli S, Bellini G, Lopriore P. Parkinsonism in complex neurogenetic disorders: lessons from hereditary dementias, adult-onset ataxias and spastic paraplegias. Neurol Sci 2023; 44:3379-3388. [PMID: 37648940 PMCID: PMC10495519 DOI: 10.1007/s10072-023-07044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia in combination with either rest tremor, rigidity, or both. These features are the cardinal manifestations of Parkinson's disease, the most common cause of parkinsonism, and atypical parkinsonian disorders. However, parkinsonism can be a manifestation of complex neurological and neurodegenerative genetically determined disorders, which have a vast and heterogeneous motor and non-motor phenotypic features. Hereditary dementias, adult-onset ataxias and spastic paraplegias represent only few of this vast group of neurogenetic diseases. This review will provide an overview of parkinsonism's clinical features within adult-onset neurogenetic diseases which a neurologist could face with. Understanding parkinsonism and its characteristics in the context of the aforementioned neurological conditions may provide insights into pathophysiological mechanisms and have important clinical implications, including diagnostic and therapeutic aspects.
Collapse
Affiliation(s)
- Simone Aloisio
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gabriele Bellini
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Venuto CS, Smith G, Herbst K, Zielinski R, Yung NC, Grosset DG, Dorsey ER, Kieburtz K. Predicting Ambulatory Capacity in Parkinson's Disease to Analyze Progression, Biomarkers, and Trial Design. Mov Disord 2023; 38:1774-1785. [PMID: 37363815 PMCID: PMC10615710 DOI: 10.1002/mds.29519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND In Parkinson's disease (PD), gait and balance is impaired, relatively resistant to available treatment and associated with falls and disability. Predictive models of ambulatory progression could enhance understanding of gait/balance disturbances and aid in trial design. OBJECTIVES To predict trajectories of ambulatory abilities from baseline clinical data in early PD, relate trajectories to clinical milestones, compare biomarkers, and evaluate trajectories for enrichment of clinical trials. METHODS Data from two multicenter, longitudinal, observational studies were used for model training (Tracking Parkinson's, n = 1598) and external testing (Parkinson's Progression Markers Initiative, n = 407). Models were trained and validated to predict individuals as having a "Progressive" or "Stable" trajectory based on changes of ambulatory capacity scores from the Movement Disorders Society Unified Parkinson's Disease Rating Scale parts II and III. Survival analyses compared time-to-clinical milestones and trial outcomes between predicted trajectories. RESULTS On external evaluation, a support vector machine model predicted Progressive trajectories using baseline clinical data with an accuracy, weighted-F1 (proportionally weighted harmonic mean of precision and sensitivity), and sensitivity/specificity of 0.735, 0.799, and 0.688/0.739, respectively. Over 4 years, the predicted Progressive trajectory was more likely to experience impaired balance, loss of independence, impaired function and cognition. Baseline dopamine transporter imaging and select biomarkers of neurodegeneration were significantly different between predicted trajectory groups. For an 18-month, randomized (1:1) clinical trial, sample size savings up to 30% were possible when enrollment was enriched for the Progressive trajectory versus no enrichment. CONCLUSIONS It is possible to predict ambulatory abilities from clinical data that are associated with meaningful outcomes in people with early PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Charles S. Venuto
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Greta Smith
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Konnor Herbst
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Robert Zielinski
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Norman C.W. Yung
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Donald G. Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - E. Ray Dorsey
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Karl Kieburtz
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Leodori G, Santilli M, Modugno N, D’Avino M, De Bartolo MI, Fabbrini A, Rocchi L, Conte A, Fabbrini G, Belvisi D. Postural Instability and Risk of Falls in Patients with Parkinson's Disease Treated with Deep Brain Stimulation: A Stabilometric Platform Study. Brain Sci 2023; 13:1243. [PMID: 37759844 PMCID: PMC10526843 DOI: 10.3390/brainsci13091243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Postural instability (PI) in Parkinson's disease (PD) exposes patients to an increased risk of falls (RF). While dopaminergic therapy and deep brain stimulation (DBS) improve motor performance in advanced PD patients, their effects on PI and RF remain elusive. PI and RF were assessed using a stabilometric platform in six advanced PD patients. Patients were evaluated in OFF and ON dopaminergic medication and under four DBS settings: with DBS off, DBS bilateral, and unilateral DBS of the more- or less-affected side. Our findings indicate that dopaminergic medication by itself exacerbated PI and RF, and DBS alone led to a decline in RF. No combination of medication and DBS yielded a superior improvement in postural control compared to the baseline combination of OFF medication and the DBS-off condition. Yet, for ON medication, DBS significantly improved both PI and RF. Among DBS conditions, DBS bilateral provided the most favorable outcomes, improving PI and RF in the ON medication state and presenting the smallest setbacks in the OFF state. Conversely, the more-affected side DBS was less beneficial. These preliminary results could inform therapeutic strategies for advanced PD patients experiencing postural disorders.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Marco Santilli
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Nicola Modugno
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Michele D’Avino
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Maria Ilenia De Bartolo
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Andrea Fabbrini
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Antonella Conte
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Giovanni Fabbrini
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Daniele Belvisi
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| |
Collapse
|
17
|
Joshi D, Prasad S, Saini J, Ingalhalikar M. Role of Arterial Spin Labeling (ASL) Images in Parkinson's Disease (PD): A Systematic Review. Acad Radiol 2023; 30:1695-1708. [PMID: 36435728 DOI: 10.1016/j.acra.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Parkinson's disease is a chronic progressive neurodegenerative disorder with standard structural MRIs often showing no gross abnormalities. Quantitative perfusion MRI modality Arterial Spin Labeling (ASL) is helpful in identifying PD specific perfusion patterns. Absolute Cerebral blood flow (CBF) measurement using ASL provides insights into regional perfusion abnormalities. We reviewed the role of ASL to identify specific brain regions responsible for motor, non-motor symptoms and neurovascular changes observed in PD. Challenges in assessing the blood perfusion level are discussed with future development for improving the evaluation of ASL perfusion maps. MATERIALS AND METHODS We included CBF quantification studies using ASL for PD diagnosis. A systematic search was performed in Pubmed, Scopus and Web of Science. The perfusion parameters CBF and arterial arrival time (AAT) measured using ASL were considered for brain region assessment. Clinical aspects of PD have been analyzed using ASL perfusion maps. RESULTS The systematic search identified 153 unique records. Thirty articles were selected after verification of inclusion and exclusion criteria. Voxel and region-based analyses in white and gray matter tissues have been performed to identify PD-specific perfusion patterns by reported articles. Predominant brain regions such as basal ganglia sub-regions, frontoparietal network, precuneus, occipital lobe, sensory motor area regions, visual network, which are associated with motor and non-motor symptoms in PD, were identified with CBF hypoperfusion, indicating neuronal loss and cerebrovascular dysfunction. CONCLUSION CBF and AAT values derived from ASL can potentially be used as biomarkers to discriminate PD from similar brain-related disorders.
Collapse
Affiliation(s)
- Dhanashri Joshi
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India; Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru,, KA, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Madhura Ingalhalikar
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India.
| |
Collapse
|
18
|
Zalyalova ZA, Ekusheva EV. Vitamin B<sub>12</sub> deficiency and Parkinson’s disease. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2023; 15:121-127. [DOI: 10.14412/2074-2711-2023-3-121-127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease with various clinical manifestations, its origin not always can be explained only by dopamine deficiency. Long-term treatment with levodopa (especially its intraduodenal administration), as well as clinical manifestations of polyneuropathy, cognitive deficits, postural disorders with freezing of gate, REM sleep behavioral disorders, are more often associated with vitamin B12 deficiency. Several reasons for this association and mechanisms of their development are discussed. Early detection of cobalamin deficiency in PD, especially in patients from high-risk groups, makes it possible to stop this pathological condition timely and prevent irreversible changes. Modern data on the use of high-dose (1000 μ g) oral vitamin B12 are presented, it has comparable clinical efficacy and significant advantages, compared with the parenteral form, in terms of the ease of use and the ability to avoid undesirable postinjection reactions.
Collapse
Affiliation(s)
- Z. A. Zalyalova
- Kazan State Medical University, Ministry of Health of Russia; Consultative and Diagnostic Center for Extrapyramidal Pathology and Botulinum Toxin Therapy of the Republic of Tatarstan
| | - E. V. Ekusheva
- Academy of Postgraduate Education, Federal Scientific and Clinical Center for Specialized Types of Medical Aid and Medical Technologies, FMBA of Russia; Belgorod State National Research University
| |
Collapse
|
19
|
Witzig VS, Alosaimi F, Temel Y, Schulz JB, Jahanshahi A, Tan SKH. Gait improvement by high-frequency stimulation of the subthalamic nucleus in Parkinsonian mice is not associated with changes of the cholinergic system in the pedunculopontine nucleus. Neurosci Lett 2023; 802:137134. [PMID: 36801348 DOI: 10.1016/j.neulet.2023.137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is standard care for severe motor symptoms of Parkinson's disease (PD). However, a challenge of DBS remains improving gait. Gait has been associated with the cholinergic system in the pedunculopontine nucleus (PPN). In this study, we investigated the effects of long-term intermittent bilateral STN-DBS on PPN cholinergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonian mouse model. Motor behavior, previously assessed by the automated Catwalk gait analysis, demonstrated a parkinsonian-like motor phenotype with static and dynamic gait impairments, which were reversed by STN-DBS. In this study, a subset of brains was further immunohistochemically processed for choline acetyltransferase (ChAT) and the neuronal activation marker c-Fos. MPTP treatment resulted in a significant reduction of PPN ChAT expressing neurons compared to saline treatment. STN-DBS did not alter the number of ChAT expressing neurons, nor the number of double-labelled PPN neurons for ChAT and c-Fos. Although STN-DBS improved gait in our model this was not associated with an altered expression or activation of PPN acetylcholine neurons. Motor and gait effects of STN-DBS are therefore less likely to be mediated by the STN-PPN connection and PPN cholinergic system.
Collapse
Affiliation(s)
- V S Witzig
- Department of Neurology, RWTH Aachen University, Aachen, Germany.
| | - F Alosaimi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Y Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - J B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
| | - A Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - S K H Tan
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands; Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Heß T, Oehlwein C, Milani TL. Anticipatory Postural Adjustments and Compensatory Postural Responses to Multidirectional Perturbations-Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Brain Sci 2023; 13:brainsci13030454. [PMID: 36979264 PMCID: PMC10046463 DOI: 10.3390/brainsci13030454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
21
|
Ishola IO, Oloyo AK, Olubodun-Obadun TG, Godswill OD, Omilabu SA, Adeyemi OO. Neuroprotective potential of plant derived parenchymal stem cells extract on environmental and genetic models of Parkinson disease through attenuation of oxidative stress and neuroinflammation. Metab Brain Dis 2023; 38:557-571. [PMID: 36401682 DOI: 10.1007/s11011-022-01120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and non-motor features. The current treatment regimen for PD are dopamine enhancers which have been reported to worsen the disease prognosis after long term treatment, thus, the need for better treatment options. This study sought to investigate the protective action of Double Stem Cell® (DSC), a blend of stem cells extracts from Swiss apples (Malus Domestica) and Burgundy grapes (Vitis vinifera) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism in mice and genetic model of PD in Drosophila melanogaster. Male albino mice were pretreated with MPTP (4 × 20 mg/kg, i.p., two hourly in 8 h), twelve hours before administration of DSC (8, 40, or 200 mg/kg, p.o.). Thereafter, behavioural, biochemical and immunohistochemical assays were carried out. The impact of vehicle or DSC supplementation on α-synuclein aggregation was evaluated in Drosophila melanogaster using the UAS-Gal4 system, female DDC-Gal4 flies were crossed with male UAS-α-synuclein, the progenies were examined for fecundity, locomotion, memory, and lifespan. MPTP-induced motor deficits in open field test (OFT), working memory impairment (Y-maze test (YMT)) and muscle incoordination (rotarod test) were ameliorated by DSC (8, 40 or 200 mg/kg) through dose-dependent and significant improvements in motor, cognitive and motor coordination. Moreso, MPTP exposure caused significant increase in lipid peroxidation and decrease in antioxidant enzymes activities (glutathione, catalase and superoxide dismutase) in the midbrain which were attenuated by DSC. MPTP-induced expression of microglia (iba-1), astrocytes (glia fibrillary acidic protein; GFAP) as well as degeneration of dopamine neurons (tyrosine hydroxylase positive neurons) in the substantia nigra (SN) were reversed by DSC. Supplementation of flies feed with graded concentration of DSC (0.8, 4 or 20 mg/ml) did not affect fecundity but improved climbing activity and lifespan. Findings from this study showed that Double Stem Cell improved motor and cognitive functions in both mice and Drosophila through attenuation of neurotoxin-induced oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- I O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria.
| | - A K Oloyo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - T G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - O D Godswill
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - S A Omilabu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - O O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
22
|
Wang Y, Yu N, Lu J, Zhang X, Wang J, Shu Z, Cheng Y, Zhu Z, Yu Y, Liu P, Han J, Wu J. Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:165-178. [PMID: 36872789 PMCID: PMC10041419 DOI: 10.3233/jpd-223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND In Parkinson's disease (PD), walking may depend on the activation of the cerebral cortex. Understanding the patterns of interaction between cortical regions during walking tasks is of great importance. OBJECTIVE This study investigated differences in the effective connectivity (EC) of the cerebral cortex during walking tasks in individuals with PD and healthy controls. METHODS We evaluated 30 individuals with PD (62.4±7.2 years) and 22 age-matched healthy controls (61.0±6.4 years). A mobile functional near-infrared spectroscopy (fNIRS) was used to record cerebral oxygenation signals in the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left parietal lobe (LPL), and right parietal lobe (RPL) and analyze the EC of the cerebral cortex. A wireless movement monitor was used to measure the gait parameters. RESULTS Individuals with PD demonstrated a primary coupling direction from LPL to LPFC during walking tasks, whereas healthy controls did not demonstrate any main coupling direction. Compared with healthy controls, individuals with PD showed statistically significantly increased EC coupling strength from LPL to LPFC, from LPL to RPFC, and from LPL to RPL. Individuals with PD showed decreased gait speed and stride length and increased variability in speed and stride length. The EC coupling strength from LPL to RPFC negatively correlated with speed and positively correlated with speed variability in individuals with PD. CONCLUSION In individuals with PD, the left prefrontal cortex may be regulated by the left parietal lobe during walking. This may be the result of functional compensation in the left parietal lobe.
Collapse
Affiliation(s)
- Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
23
|
Wang L, Ji M, Sun H, Gan C, Zhang H, Cao X, Yuan Y, Zhang K. Reduced Short-Latency Afferent Inhibition in Parkinson's Disease Patients with L-dopa-Unresponsive Freezing of Gait. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2507-2518. [PMID: 36502341 DOI: 10.3233/jpd-223498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Freezing of gait (FOG) in Parkinson's disease (PD), especially the "L-dopa-unresponsive" subtype, is associated with the dysfunction of non-dopaminergic circuits. OBJECTIVE We sought to determine whether cortical sensorimotor inhibition evaluated by short-latency afferent inhibition (SAI) related to cholinergic and gamma-aminobutyric acid (GABA)-ergic activities is impaired in PD patients with L-dopa-unresponsive FOG (ONOFF-FOG). METHODS SAI protocol was performed in 28 PD patients with ONOFF-FOG, 15 PD patients with "off" FOG (OFF-FOG), and 25 PD patients without FOG during medication "on" state. Additionally, 10 ONOFF-FOG patients underwent SAI testing during both "off" and "on" states. Twenty healthy controls participated in this study. Gait was measured objectively using a portable Inertial Measurement Unit system, and participants performed 5-meter Timed Up and Go single- and dual-task conditions. Spatiotemporal gait characteristics and their variability were determined. FOG manifestations and cognition were assessed with clinical scales. RESULTS Compared to controls, PD patients without FOG and with OFF-FOG, ONOFF-FOG PD patients showed significantly reduced SAI. Further, dopaminergic therapy had no remarkable effect on this SAI alterations in ONOFF-FOG. Meanwhile, OFF-FOG patients presented decreased SAI only relative to controls. PD patients with ONOFF-FOG exhibited decreased gait speed, stride length, and increased gait variability relative to PD patients without FOG and controls under both walking conditions. For ONOFF-FOG patients, significant associations were found between SAI and FOG severity, gait characteristics and variability. CONCLUSION Reduced SAI was associated with severe FOG manifestations, impaired gait characteristics and variability in PD patients with ONOFF-FOG, suggesting the impaired thalamocortical cholinergic-GABAergic SAI pathways underlying ONOFF-FOG.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Ji
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Onset of Postural Instability in Parkinson's Disease Depends on Age rather than Disease Duration. PARKINSON'S DISEASE 2022; 2022:6233835. [PMID: 36506486 PMCID: PMC9734006 DOI: 10.1155/2022/6233835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Background Postural instability and falls are considered a major factor of impaired quality of life in patients with advanced Parkinson's disease (PD). The knowledge of the time at which postural instability occurs will help to provide the evidence required to introduce fall-prevention strategies at the right time in PD. Objective To investigate whether postural instability of patients with different age at disease onset is associated with age or with disease duration of PD. Methods Patients diagnosed with sporadic PD between 1991 and 2017 and postural instability (according to the International Parkinson and Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III, item 3.12 postural instability) were included, with strict inclusion criteria including regular follow-ups, agreement on data use, and exclusion of comorbidities affecting the free stand. Results Applying these strict inclusion criteria, we included 106 patients. Those younger than 50 years at PD onset took significantly longer to develop postural instability (n = 23 patients, median: 18.4 years) compared with patients with later onset of PD (50-70 years, n = 66, median: 14.2 years, p < 0.001; and >70 years, n = 17, median: 5.7 years, p < 0.001, Kruskal-Wallis test followed by Dunn's multiple comparisons test). There was no association between total MDS-UPDRS III (as a measure of motor symptom severity) at onset of postural instability. Conclusions In PD, postural instability is primarily associated with the age of the patient and not with disease duration.
Collapse
|
25
|
Chen MJ, Lu JY, Li XY, Jiao FY, Zuo CT, Wang J, Liu FT, Yang YJ. Striatal dopaminergic lesions contributed to the disease severity in progressive supranuclear palsy. Front Aging Neurosci 2022; 14:998255. [PMID: 36092815 PMCID: PMC9454812 DOI: 10.3389/fnagi.2022.998255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundReduced dopamine transporter (DAT) binding in the striatum has been reported in patients with progressive supranuclear palsy (PSP). However, the relationship between striatal dopaminergic lesions and the disease severity of PSP remains to be explored.ObjectiveTo investigate the contributions of striatal dopaminergic lesions to the disease severity of PSP.MethodsOne hundred patients with clinically diagnosed PSP were consecutively enrolled in this study. The disease severity was systemically assessed using the PSP rating scale (PSPrs), and the dopaminergic lesions were assessed using the 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane positron emission tomography (11C-CFT PET) imaging. To explore the correlations between striatal DAT bindings and the disease severity, both the region-wise and voxel-wise analysis were adopted. Partial correlations and multiple linear regressions were performed to investigate the contribution of striatal dopaminergic lesions to the disease severity in PSP.ResultsSixty-three patients of PSP with Richardson’s syndrome (PSP-RS) and 37 patients with PSP-non-RS were finally included. The disease severity in PSP-RS was much heavier than that in the PSP-non-RS. The DAT bindings in the caudate and anterior putamen correlated significantly with the PSPrs total scores, mainly in the domains of history, mentation, bulbar, and ocular motor symptoms. The striatal DAT bindings (caudate) contributed significantly to the disease severity of PSP, independent of the motor, cognition, emotion and behavioral dysfunctions.ConclusionOur study highlighted the independent contribution of striatal dopaminergic lesions to the disease severity in PSP.
Collapse
Affiliation(s)
- Ming-Jia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang-Yang Jiao
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Tao Zuo
- PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Feng-Tao Liu,
| | - Yu-Jie Yang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tonji University, Shanghai, China
- Yu-Jie Yang,
| |
Collapse
|
26
|
Joza S, Camicioli R, Martin WRW, Wieler M, Gee M, Ba F. Pedunculopontine Nucleus Dysconnectivity Correlates With Gait Impairment in Parkinson’s Disease: An Exploratory Study. Front Aging Neurosci 2022; 14:874692. [PMID: 35875799 PMCID: PMC9304714 DOI: 10.3389/fnagi.2022.874692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gait impairment is a debilitating and progressive feature of Parkinson’s disease (PD). Increasing evidence suggests that gait control is partly mediated by cholinergic signaling from the pedunculopontine nucleus (PPN). Objective We investigated whether PPN structural connectivity correlated with quantitative gait measures in PD. Methods Twenty PD patients and 15 controls underwent diffusion tensor imaging to quantify structural connectivity of the PPN. Whole brain analysis using tract-based spatial statistics and probabilistic tractography were performed using the PPN as a seed region of interest for cortical and subcortical target structures. Gait metrics were recorded in subjects’ medication ON and OFF states, and were used to determine if specific features of gait dysfunction in PD were related to PPN structural connectivity. Results Tract-based spatial statistics revealed reduced structural connectivity involving the corpus callosum and right superior corona radiata, but did not correlate with gait measures. Abnormalities in PPN structural connectivity in PD were lateralized to the right hemisphere, with pathways involving the right caudate nucleus, amygdala, pre-supplementary motor area, and primary somatosensory cortex. Altered connectivity of the right PPN-caudate nucleus was associated with worsened cadence, stride time, and velocity while in the ON state; altered connectivity of the right PPN-amygdala was associated with reduced stride length in the OFF state. Conclusion Our exploratory analysis detects a potential correlation between gait dysfunction in PD and a characteristic pattern of connectivity deficits in the PPN network involving the right caudate nucleus and amygdala, which may be investigated in future larger studies.
Collapse
Affiliation(s)
- Stephen Joza
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Marguerite Wieler
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Fang Ba,
| |
Collapse
|
27
|
Lewis S, Factor S, Giladi N, Nieuwboer A, Nutt J, Hallett M. Stepping up to meet the challenge of freezing of gait in Parkinson's disease. Transl Neurodegener 2022; 11:23. [PMID: 35490252 PMCID: PMC9057060 DOI: 10.1186/s40035-022-00298-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
There has been a growing appreciation for freezing of gait as a disabling symptom that causes a significant burden in Parkinson’s disease. Previous research has highlighted some of the key components that underlie the phenomenon, but these reductionist approaches have yet to lead to a paradigm shift resulting in the development of novel treatment strategies. Addressing this issue will require greater integration of multi-modal data with complex computational modeling, but there are a number of critical aspects that need to be considered before embarking on such an approach. This paper highlights where the field needs to address current gaps and shortcomings including the standardization of definitions and measurement, phenomenology and pathophysiology, as well as considering what available data exist and how future studies should be constructed to achieve the greatest potential to better understand and treat this devastating symptom.
Collapse
Affiliation(s)
- Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Stewart Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - John Nutt
- Movement Disorder Section, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Parkinson's Disease Symptoms Associated with Developing On-State Axial Symptoms Early after Subthalamic Deep Brain Stimulation. Diagnostics (Basel) 2022; 12:diagnostics12041001. [PMID: 35454049 PMCID: PMC9027591 DOI: 10.3390/diagnostics12041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The relationship between axial symptoms in Parkinson’s disease (PD) and subthalamic deep brain stimulation (STN-DBS) is still unclear. Purpose: We searched for particular clinical characteristics before STN-DBS linked to on-state axial problems after surgery. Methods: We retrospectively analyzed baseline motor, emotional and cognitive features from PD patients with early axial symptoms (within 4 years after STN-DBS) and late axial symptoms (after 4 years). We also considered a group of PD patients without axial symptoms for at least 4 years after surgery. Results: At baseline, early-axial PD patients (n = 28) had a higher on-state Unified Parkinson’s Disease Rating Scale III (15.0 ± 5.6 to 11.6 ± 6.2, p = 0.020), higher axial score (2.4 ± 1.8 to 0.7 ± 1.0, p < 0.001) and worse dopaminergic response (0.62 ± 0.12 to 0.70 ± 0.11, p = 0.005), than non-axial PD patients (n = 51). Early-axial PD patients had short-term recall impairment, not seen in non-axial PD (36.3 ± 7.6 to 40.3 ± 9.3, p = 0.041). These variables were similar between late-axial PD (n = 18) and non-axial PD, but late-axial PD showed worse frontal dysfunction. Conclusions: PD patients with early axial symptoms after DBS may have a significantly worse presurgical motor phenotype, poorer dopaminergic response and memory impairment. This may correspond to a more severe form of PD.
Collapse
|
29
|
Ebina J, Ebihara S, Kano O. Similarities, differences and overlaps between frailty and Parkinson's disease. Geriatr Gerontol Int 2022; 22:259-270. [PMID: 35243739 PMCID: PMC11503539 DOI: 10.1111/ggi.14362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder clinically characterized by bradykinesia, rest tremor, rigidity, and postural and gait disturbances, which are frequently observed in older people. It also shows non-motor symptoms, such as depression, anxiety, cognitive impairment and dementia. The number of patients is gradually increasing worldwide. Aging is a risk factor for the onset of Parkinson's disease, and various physiological effects of aging influence its progression. Frailty is a geriatric syndrome in which the reversible and vulnerable status between robustness and disability is affected by various physiological stressors with aging. Frailty consists of physical, psychological and social aspects. Furthermore, sarcopenia, a syndrome characterized by the loss of muscle mass, strength and function, is also significantly associated with frailty. To maintain the quality of life of older people, frailty, including sarcopenia, should be quickly and appropriately managed. Polypharmacy is an important factor causing the progression of frailty in geriatric syndrome. Although Parkinson's disease and frailty have similar symptoms, and are considered to affect each other, the clinical features and mechanisms of both largely remain unclear. Nevertheless, little literature on the relationship between frailty and Parkinson's disease is currently available. This narrative review aims to clarify the relationships between Parkinson's disease and frailty, not only on the physical, but also on the mental, cognitive, and social aspects and issues regarding polypharmacy in Parkinson's disease explored by previous studies. Geriatr Gerontol Int 2022; 22: 259-270.
Collapse
Affiliation(s)
- Junya Ebina
- Department of NeurologyToho University Faculty of MedicineTokyoJapan
| | - Satoru Ebihara
- Department of Rehabilitation MedicineToho University Graduate School of MedicineTokyoJapan
| | - Osamu Kano
- Department of NeurologyToho University Faculty of MedicineTokyoJapan
| |
Collapse
|
30
|
Kose Y, Hatamoto Y, Tomiga-Takae R, Kimuro Y, Aoyagi R, Kawasaki H, Komiyama T, Ichikawa M, Fujiyama K, Murata Y, Ikenaga M, Higaki Y. Olfaction, ability to identify particular olfactory clusters and odors, and physical performance in community-dwelling older adults: The Yanai Study. Exp Gerontol 2022; 163:111793. [PMID: 35367594 DOI: 10.1016/j.exger.2022.111793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Olfactory dysfunction is associated with poor physical performance in older adults. However, it remains unknown whether the ability to identify particular olfactory clusters and/or odors is associated with physical performance in physically independent community-dwelling older adults. METHODS This cross-sectional study included 130 community-dwelling older adults (70.1 ± 5.5 years). The Odor Stick Identification Test for Japanese people, consisting of 12 odors in four clusters (wood, grass, herb; sweet; spices; foul-smelling), was used to examine olfaction. Participants also completed physical performance tests (one leg standing with open eyes; aerobic capacity; lower muscle function: five-times chair stand [CS] and vertical jump; mobility: star walking and timed up and go [TUG]) and cognitive function tests. RESULTS Worse overall olfaction was not significantly associated with any physical performance measure. Worse performance for identifying sweet odors and an inability to identify some specific odors (menthol and rose) were associated with worse mobility and/or lower muscle function-adjusted covariates. Moreover, an inability to identify menthol and rose was associated with worse TUG (odds ratio [OR]: 0.424; 95% confidence interval [CI]: 0.215-0.836), star walking (OR: 0.714; 95% CI: 0.506-0.976), CS (OR: 0.638; 95% CI: 0.470-0.864), and vertical jump (OR: 1.12; 95% CI: 1.001-1.24) performance, even when the analysis was adjusted to exclude menthol and rose score from the overall olfaction score (p < .05 for all). CONCLUSIONS The current study may help to increase awareness of olfactory and physical dysfunction at an earlier stage among physically independent community-dwelling older adults.
Collapse
Affiliation(s)
- Yujiro Kose
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yoichi Hatamoto
- Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Rie Tomiga-Takae
- Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Faculty of Nursing and Nutrition, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | - Yukari Kimuro
- Department of Nursing, Fukuoka International University of Health and Welfare, 3-6-40 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
| | - Ryo Aoyagi
- Graduate School of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hikaru Kawasaki
- Graduate School of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Mamiko Ichikawa
- Department of Sport and Medical Science, Teikyo University, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | | | - Yoshiro Murata
- Emu Kankyo Design System Co., Ltd., 5-28-23 Chayama, Jonan-ku, Fukuoka 814-0111, Japan
| | - Masahiro Ikenaga
- Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Fukuoka University Institute for Physical Activity, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
31
|
Sigurdsson HP, Yarnall AJ, Galna B, Lord S, Alcock L, Lawson RA, Colloby SJ, Firbank MJ, Taylor J, Pavese N, Brooks DJ, O'Brien JT, Burn DJ, Rochester L. Gait‐Related Metabolic Covariance Networks at Rest in Parkinson's Disease. Mov Disord 2022; 37:1222-1234. [PMID: 35285068 PMCID: PMC9314598 DOI: 10.1002/mds.28977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
Background Gait impairments are characteristic motor manifestations and significant predictors of poor quality of life in Parkinson's disease (PD). Neuroimaging biomarkers for gait impairments in PD could facilitate effective interventions to improve these symptoms and are highly warranted. Objective The aim of this study was to identify neural networks of discrete gait impairments in PD. Methods Fifty‐five participants with early‐stage PD and 20 age‐matched healthy volunteers underwent quantitative gait assessment deriving 12 discrete spatiotemporal gait characteristics and [18F]‐2‐fluoro‐2‐deoxyglucose‐positron emission tomography measuring resting cerebral glucose metabolism. A multivariate spatial covariance approach was used to identify metabolic brain networks that were related to discrete gait characteristics in PD. Results In PD, we identified two metabolic gait‐related covariance networks. The first correlated with mean step velocity and mean step length (pace gait network), which involved relatively increased and decreased metabolism in frontal cortices, including the dorsolateral prefrontal and orbital frontal, insula, supplementary motor area, ventrolateral thalamus, cerebellum, and cuneus. The second correlated with swing time variability and step time variability (temporal variability gait network), which included relatively increased and decreased metabolism in sensorimotor, superior parietal cortex, basal ganglia, insula, hippocampus, red nucleus, and mediodorsal thalamus. Expression of both networks was significantly elevated in participants with PD relative to healthy volunteers and were not related to levodopa dosage or motor severity. Conclusions We have identified two novel gait‐related brain networks of altered glucose metabolism at rest. These gait networks could serve as a potential neuroimaging biomarker of gait impairments in PD and facilitate development of therapeutic strategies for these disabling symptoms. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Hilmar P. Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Brook Galna
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Health Futures Institute Murdoch University Perth Australia
| | - Sue Lord
- Auckland University of Technology Auckland New Zealand
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Rachael A. Lawson
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Sean J. Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Michael J. Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - John‐Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Nicola Pavese
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus Denmark
| | - David J. Brooks
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus Denmark
| | - John T. O'Brien
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - David J. Burn
- Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| |
Collapse
|
32
|
Khalil H, Rehan R, Al-Sharman A, Aburub AS, Darabseh MZ, Alomari MA, Aburub A, El-Salem K. Exercise capacity in people with Parkinson's disease: which clinical characteristics are important? Physiother Theory Pract 2022:1-9. [PMID: 35192419 DOI: 10.1080/09593985.2022.2042634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND People with Parkinson's (PwP) are suffering from reduced exercise capacity. However, little information is known about clinical correlates of exercise capacity in this population. OBJECTIVE This study aimed to evaluate correlations between motor and non-motor symptoms with exercise capacity in PwP. METHODS A total of 50 individuals with Parkinson's disease participated in the study. Exercise capacity was measured by 6 minutes' walk test (6MWT). Besides, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III used to evaluate disease motor severity, Berg Balance Scale to assess balance, Montréal Cognitive Assessment to evaluate cognitive status, hospital anxiety and depression scale to assess depression and anxiety, Modified Fatigue Impact scale to evaluate fatigue, and the Pittsburgh Sleep Quality Index to evaluate sleep quality. RESULTS The results showed that exercise capacity, when measured by the 6MWT, can be significantly predicted by balance, disease motor severity, anxiety, and age (R2 = 0.61 P < .0001). CONCLUSION These results suggest that exercise capacity in PwP is multifactorial and can potentially be predicted by balance, motor severity, anxiety, and age.
Collapse
Affiliation(s)
- Hanan Khalil
- College of Health Sciences, Department of Physical Therapy and Rehabilitation Sciences, Qatar University, Doha, Qatar
| | - Reem Rehan
- Faculty of Applied Medical Sciences, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Alham Al-Sharman
- Faculty of Applied Medical Sciences, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Ala' S Aburub
- Department of Physiotherapy, Isra University, Amman, Jordan
| | - Mohammad Z Darabseh
- Department of Allied Medical Sciences, Division of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan.,Centre of Musculoskeletal Sciences and Sport Medicine, Manchester Metropolitan University, Manchester, UK
| | - Mahmoud A Alomari
- Faculty of Applied Medical Sciences, Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Aseel Aburub
- Department of Physiotherapy, Isra University, Amman, Jordan.,School of Health and Rehabilitation Sciences, Keele University, Newcastle Under Lyme, UK
| | - Khalid El-Salem
- Faculty of Medicine, Department of Neurosciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
33
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|
34
|
Cuomo G, Maglianella V, Ghanbari Ghooshchy S, Zoccolotti P, Martelli M, Paolucci S, Morone G, Iosa M. Motor imagery and gait control in Parkinson's disease: techniques and new perspectives in neurorehabilitation. Expert Rev Neurother 2021; 22:43-51. [PMID: 34906019 DOI: 10.1080/14737175.2022.2018301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Motor imagery (MI), defined as the ability to mentally represent an action without actual movement, has been used to improve motor function in athletes and, more recently, in neurological disorders such as Parkinson's disease (PD). Several studies have investigated the neural correlates of motor imagery, which change also depending on the action imagined. AREAS COVERED This review focuses on locomotion, which is a crucial activity in everyday life and is often impaired by neurological conditions. After a general discussion on the neural correlates of motor imagery and locomotion, we review the evidence highlighting the abnormalities in gait control and gait imagery in PD patients. Next, new perspectives and techniques for PD patients' rehabilitation are discussed, namely Brain Computer Interfaces (BCIs), neurofeedback, and virtual reality (VR). EXPERT OPINION Despite the few studies, the literature review supports the potential beneficial effects of motor imagery interventions in PD focused on locomotion. The development of new technologies could empower the administration of training based on motor imagery locomotor tasks, and their application could lead to new rehabilitation protocols aimed at improving walking ability in patients with PD.
Collapse
Affiliation(s)
- Giovanna Cuomo
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | | | - Sheida Ghanbari Ghooshchy
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Pierluigi Zoccolotti
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marialuisa Martelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Marco Iosa
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
35
|
Xu K, Zhou XX, He RC, Zhou Z, Liu ZH, Xu Q, Sun QY, Yan XX, Wu XY, Guo JF, Tang BS. Constructing Prediction Models for Freezing of Gait by Nomogram and Machine Learning: A Longitudinal Study. Front Neurol 2021; 12:684044. [PMID: 34938251 PMCID: PMC8686836 DOI: 10.3389/fneur.2021.684044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives: Although risk factors for freezing of gait (FOG) have been reported, there are still few prediction models based on cohorts that predict FOG. This 1-year longitudinal study was aimed to identify the clinical measurements closely linked with FOG in Chinese patients with Parkinson's disease (PD) and construct prediction models based on those clinical measurements using Cox regression and machine learning. Methods: The study enrolled 967 PD patients without FOG in the Hoehn and Yahr (H&Y) stage 1-3 at baseline. The development of FOG during follow-up was the end-point. Neurologists trained in movement disorders collected information from the patients on a PD medication regimen and their clinical characteristics. The cohort was assessed on the same clinical scales, and the baseline characteristics were recorded and compared. After the patients were divided into the training set and test set by the stratified random sampling method, prediction models were constructed using Cox regression and random forests (RF). Results: At the end of the study, 26.4% (255/967) of the patients suffered from FOG. Patients with FOG had significantly longer disease duration, greater age at baseline and H&Y stage, lower proportion in Tremor Dominant (TD) subtype, a higher proportion in wearing-off, levodopa equivalent daily dosage (LEDD), usage of L-Dopa and catechol-O-methyltransferase (COMT) inhibitors, a higher score in scales of Unified Parkinson's Disease Rate Scale (UPDRS), 39-item Parkinson's Disease Questionnaire (PDQ-39), Non-Motor Symptoms Scale (NMSS), Hamilton Depression Rating Scale (HDRS)-17, Parkinson's Fatigue Scale (PFS), rapid eye movement sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK), Epworth Sleepiness Scale (ESS), and a lower score in scales of Parkinson's Disease Sleep Scale (PDSS) (P < 0.05). The risk factors associated with FOG included PD onset not being under the age of 50 years, a lower degree of tremor symptom, impaired activities of daily living (ADL), UPDRS item 30 posture instability, unexplained weight loss, and a higher degree of fatigue. The concordance index (C-index) was 0.68 for the training set (for internal validation) and 0.71 for the test set (for external validation) of the nomogram prediction model, which showed a good predictive ability for patients in different survival times. The RF model also performed well, the C-index was 0.74 for the test set, and the AUC was 0.74. Conclusions: The study found some new risk factors associated with the FOG including a lower degree of tremor symptom, unexplained weight loss, and a higher degree of fatigue through a longitudinal study, and constructed relatively acceptable prediction models.
Collapse
Affiliation(s)
- Kun Xu
- Collaborative Innovation Center for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Run-Cheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Hua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Yin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bei-Sha Tang
- Collaborative Innovation Center for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
36
|
Barrett MJ, Sargent L, Nawaz H, Weintraub D, Price ET, Willis AW. Antimuscarinic Anticholinergic Medications in Parkinson Disease: To Prescribe or Deprescribe? Mov Disord Clin Pract 2021; 8:1181-1188. [PMID: 34765683 DOI: 10.1002/mdc3.13347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
The relative importance of antimuscarinic anticholinergic medications for Parkinson's disease (PD) declined after the introduction of levodopa, such that anticholinergic medications are now much more likely to be prescribed for clinical indications other than parkinsonism. Recent studies have found an association between anticholinergic medication exposure and future risk of dementia in older individuals and those with PD. These findings provide a further reason to avoid the use of anticholinergic medications to treat motor symptoms of PD. More importantly, they raise the question of whether one of the goals of PD treatment should be to deprescribe all medications with anticholinergic properties, regardless of their indication, to reduce dementia risk. In this review, we discuss the use of anticholinergic medications in PD, the evidence supporting the association between anticholinergic medications and future dementia risk, and the potential implications of these findings for clinical care in PD.
Collapse
Affiliation(s)
- Matthew J Barrett
- Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| | - Lana Sargent
- School of Nursing Virginia Commonwealth University Richmond Virginia USA.,Department of Pharmacotherapy and Outcomes Science, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Geriatric Pharmacotherapy Program, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Institute for Inclusion Inquiry and Innovation (iCubed): Health and Wellness in Aging Populations Core Richmond Virginia USA
| | - Huma Nawaz
- Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| | - Daniel Weintraub
- Department of Neurology University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA.,Parkinson's Disease Research, Education and Clinical Center Corporal Michael J. Crescenz VA Medical Center Philadelphia Pennsylvania USA.,Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA
| | - Elvin T Price
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Geriatric Pharmacotherapy Program, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Institute for Inclusion Inquiry and Innovation (iCubed): Health and Wellness in Aging Populations Core Richmond Virginia USA
| | - Allison W Willis
- Department of Neurology University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA.,Center for Pharmacoepidemiology Research and Training, Department of Epidemiology University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA.,Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA
| |
Collapse
|
37
|
Graph Theory on Brain Cortical Sources in Parkinson's Disease: The Analysis of 'Small World' Organization from EEG. SENSORS 2021; 21:s21217266. [PMID: 34770573 PMCID: PMC8587014 DOI: 10.3390/s21217266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly population. Similarly to other neurodegenerative diseases, the early diagnosis of PD is quite difficult. The current pilot study aimed to explore the differences in brain connectivity between PD and NOrmal eLDerly (Nold) subjects to evaluate whether connectivity analysis may speed up and support early diagnosis. A total of 26 resting state EEGs were analyzed from 13 PD patients and 13 age-matched Nold subjects, applying to cortical reconstructions the graph theory analyses, a mathematical representation of brain architecture. Results showed that PD patients presented a more ordered structure at slow-frequency EEG rhythms (lower value of SW) than Nold subjects, particularly in the theta band, whereas in the high-frequency alpha, PD patients presented more random organization (higher SW) than Nold subjects. The current results suggest that PD could globally modulate the cortical connectivity of the brain, modifying the functional network organization and resulting in motor and non-motor signs. Future studies could validate whether such an approach, based on a low-cost and non-invasive technique, could be useful for early diagnosis, for the follow-up of PD progression, as well as for evaluating pharmacological and neurorehabilitation treatments.
Collapse
|
38
|
Dallaire M, Gagnon G, Fortin É, Nepton J, Severn AF, Côté S, Smaili SM, Gonçalves de Oliveira Araújo HA, de Oliveira MR, Ngomo S, Bouchard J, da Silva RA. The Impact of Parkinson's Disease on Postural Control in Older People and How Sex can Mediate These Results: A Systematic Review. Geriatrics (Basel) 2021; 6:105. [PMID: 34842716 PMCID: PMC8628755 DOI: 10.3390/geriatrics6040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Parkinson's disease is most prevalent among elderly people, 65 years and over, and leads to an alteration in motor control associated with postural instability. Current evidence shows that postural control decreases with the aging process. In addition, postural control is more altered in healthy aged men than in women. Until today, few studies have evaluated the combined impact of Parkinson's disease and sex on postural control. This review has allowed to evaluate the impact of Parkinson's disease and sex on postural control measurements in elderly people. METHODOLOGY Studies have been selected from two main databases: PubMed and EBSCO using the keywords "Parkinson", "postural control OR balance" and "sex". Articles related to the evaluation of postural control, including men and women with Parkinson's aged over 65 years old, regardless of stage, were included (n = 179). Articles were excluded if not written in French or English or not presenting original content. RESULTS Ten (10) studies out of 179 that fulfilled inclusion and exclusion criteria were reported in the final analysis, which cumulates a total of 944 individuals with Parkinson's (410 women). In general, results show greater postural instability among people with Parkinson's compared to healthy subjects, and this according to different objective measurements using stabilographic parameters from force platforms. Only two studies out of ten evaluated postural control while briefly considering distinctions between sex, but without showing a significant difference between men and women with Parkinson's. Parkinson's severity, length of time of Parkinson's disease and cognitive state of the person are the three variables with a negative impact on postural control. CONCLUSION Older people with Parkinson's disease have greater postural instability. Sex does not seem to influence the postural control of elderly people with Parkinson's, although more studies are necessary.
Collapse
Affiliation(s)
- Mathieu Dallaire
- Masters of Biomedical Science Program at l’Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (M.D.); (S.N.)
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
| | - Guillaume Gagnon
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
| | - Émilie Fortin
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
| | - Josée Nepton
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
| | - Anne-France Severn
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
| | - Sharlène Côté
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
| | - Suhaila Mahmoud Smaili
- Doctoral Program in Rehabilitation Sciences, UEL/UNOPAR, Londrina 86041-120, Brazil; (S.M.S.S.); (H.A.G.d.O.A.)
| | | | - Márcio Rogério de Oliveira
- Doctoral and Masters Program in Physical Exercise on Health Promotion, Universidade Pitagoras UNOPAR, Londrina 86041-120, Brazil;
| | - Suzy Ngomo
- Masters of Biomedical Science Program at l’Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (M.D.); (S.N.)
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
| | - Julie Bouchard
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
| | - Rubens A. da Silva
- Masters of Biomedical Science Program at l’Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (M.D.); (S.N.)
- Laboratoire de Recherche BioNR, Centre Intersectoriel en Santé Durable, Département des Sciences de la Santé, Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada;
- Physical Therapy McGill Program in Extension at the Université du Québec à Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada; (G.G.); (É.F.)
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics services–La Baie Hospital, Saguenay, QC G7H 7K9, Canada; (J.N.); (A.-F.S.); (S.C.)
- Doctoral Program in Rehabilitation Sciences, UEL/UNOPAR, Londrina 86041-120, Brazil; (S.M.S.S.); (H.A.G.d.O.A.)
| |
Collapse
|
39
|
Bohnen NI, Kanel P, Koeppe RA, Sanchez-Catasus CA, Frey KA, Scott P, Constantine GM, Albin RL, Müller MLTM. Regional cerebral cholinergic nerve terminal integrity and cardinal motor features in Parkinson's disease. Brain Commun 2021; 3:fcab109. [PMID: 34704022 PMCID: PMC8196256 DOI: 10.1093/braincomms/fcab109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Clinical effects of anti-cholinergic drugs implicate cholinergic systems alterations in the pathophysiology of some cardinal motor impairments in Parkinson’s disease. The topography of affected cholinergic systems deficits and motor domain specificity are poorly understood. Parkinson's disease patients (n = 108) underwent clinical and motor assessment and vesicular acetylcholine transporter [18F]-fluoroethoxybenzovesamicol PET imaging. Volumes-of-interest-based analyses included detailed thalamic and cerebellar parcellations. Successful PET sampling for most of the small-sized parcellations was available in 88 patients. A data-driven approach, stepwise regression using the forward selection method, was used to identify cholinergic brain regions associating with cardinal domain-specific motor ratings. Regressions with motor domain scores for model-selected regions followed by confounder analysis for effects of age of onset, duration of motor disease and levodopa equivalent dose were performed. Among 7 model-derived regions associating with postural instability and gait difficulties domain scores three retained significance in confounder variable analysis: medial geniculate nucleus (standardized β = −0.34, t = −3.78, P = 0.0003), lateral geniculate nucleus (β = −0.32, t = −3.4, P = 0.001) and entorhinal cortex (β = −0.23, t = −2.6, P = 0.011). A sub-analysis of non-episodic postural instability and gait difficulties scores demonstrated significant effects of the medial geniculate nucleus, entorhinal cortex and globus pallidus pars interna. Among 6 tremor domain model-selected regions two regions retained significance in confounder variable analysis: cerebellar vermis section of lobule VIIIb (β = −0.22, t = −2.4, P = 0.021) and the putamen (β = −0.23, t = −2.3, P = 0.024). None of the three model-selected variables for the rigidity domain survived confounder analysis. Two out of the four model-selected regions for the distal limb bradykinesia domain survived confounder analysis: globus pallidus pars externa (β = 0.36, t = 3.9, P = 0.0097) and the paracentral lobule (β = 0.26, t = 2.5, P = 0.013). Emphasizing the utility of a systems-network conception of the pathophysiology of Parkinson's disease cardinal motor features, our results are consistent with specific deficits in basal forebrain corticopetal, peduncupontine-laterodorsal tegmental complex, and medial vestibular nucleus cholinergic pathways, against the background of nigrostriatal dopaminergic deficits, contributing significantly to postural instability, gait difficulties, tremor and distal limb bradykinesia cardinal motor features of Parkinson’s disease. Our results suggest significant and distinct consequences of degeneration of cholinergic peduncupontine-laterodorsal tegmental complex afferents to both segments of the globus pallidus. Non-specific regional cholinergic nerve terminal associations with rigidity scores likely reflect more complex multifactorial signalling mechanisms with smaller contributions from cholinergic pathways.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI 48105, USA.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48105, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48105, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48105, USA
| | - Carlos A Sanchez-Catasus
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Peter Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Gregory M Constantine
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA.,The McGowen Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48105, USA.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48105, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48105, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48105, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48105, USA.,Critical Path Institute, Tucson, AZ 85718, USA
| |
Collapse
|
40
|
Godi M, Arcolin I, Giardini M, Corna S, Schieppati M. A pathophysiological model of gait captures the details of the impairment of pace/rhythm, variability and asymmetry in Parkinsonian patients at distinct stages of the disease. Sci Rep 2021; 11:21143. [PMID: 34707168 PMCID: PMC8551236 DOI: 10.1038/s41598-021-00543-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Locomotion in people with Parkinson' disease (pwPD) worsens with the progression of disease, affecting independence and quality of life. At present, clinical practice guidelines recommend a basic evaluation of gait, even though the variables (gait speed, cadence, step length) may not be satisfactory for assessing the evolution of locomotion over the course of the disease. Collecting variables into factors of a conceptual model enhances the clinical assessment of disease severity. Our aim is to evaluate if factors highlight gait differences between pwPD and healthy subjects (HS) and do it at earlier stages of disease compared to single variables. Gait characteristics of 298 pwPD and 84 HS able to walk without assistance were assessed using a baropodometric walkway (GAITRite®). According to the structure of a model previously validated in pwPD, eight spatiotemporal variables were grouped in three factors: pace/rhythm, variability and asymmetry. The model, created from the combination of three factor scores, proved to outperform the single variables or the factors in discriminating pwPD from HS. When considering the pwPD split into the different Hoehn and Yahr (H&Y) stages, the spatiotemporal variables, factor scores and the model showed that multiple impairments of gait appear at H&Y stage 2.5, with the greatest difference from HS at stage 4. A contrasting behavior was found for the asymmetry variables and factor, which showed differences from the HS already in the early stages of PD. Our findings support the use of factor scores and of the model with respect to the single variables in gait staging in PD.
Collapse
Affiliation(s)
- Marco Godi
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy
| | - Ilaria Arcolin
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy.
| | - Marica Giardini
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy
| | - Stefano Corna
- Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Istituti Clinici Scientifici Maugeri IRCCS, 28010, Gattico-Veruno, NO, Italy
| | - Marco Schieppati
- Scientific Institute of Pavia, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| |
Collapse
|
41
|
Pasquini J, Brooks DJ, Pavese N. The Cholinergic Brain in Parkinson's Disease. Mov Disord Clin Pract 2021; 8:1012-1026. [PMID: 34631936 DOI: 10.1002/mdc3.13319] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The central cholinergic system includes the basal forebrain nuclei, mainly projecting to the cortex, the mesopontine tegmental nuclei, mainly projecting to the thalamus and subcortical structures, and other groups of projecting neurons and interneurons. This system regulates many functions of human behavior such as cognition, locomotion, and sleep. In Parkinson's disease (PD), disruption of central cholinergic transmission has been associated with cognitive decline, gait problems, freezing of gait (FOG), falls, REM sleep behavior disorder (RBD), neuropsychiatric manifestations, and olfactory dysfunction. Neuropathological and neuroimaging evidence suggests that basal forebrain pathology occurs simultaneously with nigrostriatal denervation, whereas pathology in the pontine nuclei may occur before the onset of motor symptoms. These studies have also detailed the clinical implications of cholinergic dysfunction in PD. Degeneration of basal forebrain nuclei and consequential cortical cholinergic denervation are associated with and may predict the subsequent development of cognitive decline and neuropsychiatric symptoms. Gait problems, FOG, and falls are associated with a complex dysfunction of both pontine and basal forebrain nuclei. Olfactory impairment is associated with cholinergic denervation of the limbic archicortex, specifically hippocampus and amygdala. Available evidence suggests that cholinergic dysfunction, alongside failure of the dopaminergic and other neurotransmitters systems, contributes to the generation of a specific set of clinical manifestations. Therefore, a "cholinergic phenotype" can be identified in people presenting with cognitive decline, falls, and RBD. In this review, we will summarize the organization of the central cholinergic system and the clinical correlates of cholinergic dysfunction in PD.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Pathophysiology and Transplantation University of Milan Milan Italy.,Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom
| | - David J Brooks
- Positron Emission Tomography Centre Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle University Newcastle upon Tyne United Kingdom.,Department of Nuclear Medicine and PET Centre Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
42
|
Sigurdsson HP, Raw R, Hunter H, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Noninvasive vagus nerve stimulation in Parkinson's disease: current status and future prospects. Expert Rev Med Devices 2021; 18:971-984. [PMID: 34461787 DOI: 10.1080/17434440.2021.1969913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a common progressive neurodegenerative disorder with multifactorial etiology. While dopaminergic medication is the standard therapy in PD, it provides limited symptomatic treatment and non-pharmacological interventions are currently being trialed. AREAS COVERED Recent pathophysiological theories of Parkinson's suggest that aggregated α-synuclein form in the gut and spread to nuclei in the brainstem via autonomic connections. In this paper, we review the novel hypothesis that noninvasive vagus nerve stimulation (nVNS), targeting efferent and afferent vagal projections, is a promising therapeutic tool to improve gait and cognitive control and ameliorate non-motor symptoms in people with Parkinson's. We conducted an unstructured search of the literature for any studies employing nVNS in PD as well as for studies examining the efficacy of nVNS on improving cognitive function and where nVNS has been applied to co-occurring conditions in PD. EXPERT OPINION Evidence of nVNS as a novel therapeutic to improve gait in PD is preliminary, but early signs indicate the possibility that nVNS may be useful to target dopa-resistant gait characteristics in early PD. The evidence for nVNS as a therapeutic tool is, however, limited and further studies are needed in both brain health and disease.
Collapse
Affiliation(s)
- Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael Raw
- Department of General Internal Medicine, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Heather Hunter
- Department of Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark R Baker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurophysiology, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurosciences, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Older People's Medicine, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
44
|
van Kersbergen J, Otte K, de Vries NM, Bloem BR, Röhling HM, Mansow-Model S, van der Kolk NM, Overeem S, Zinger S, van Gilst MM. Camera-based objective measures of Parkinson's disease gait features. BMC Res Notes 2021; 14:329. [PMID: 34446098 PMCID: PMC8393451 DOI: 10.1186/s13104-021-05744-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/16/2021] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE Parkinson's disease is a common, age-related, neurodegenerative disease, affecting gait and other motor functions. Technological developments in consumer imaging are starting to provide high-quality, affordable tools for home-based diagnosis and monitoring. This pilot study aims to investigate whether a consumer depth camera can capture changes in gait features of Parkinson's patients. The dataset consisted of 19 patients (tested in both a practically defined OFF phase and ON phase) and 8 controls, who performed the "Timed-Up-and-Go" test multiple times while being recorded with the Microsoft Kinect V2 sensor. Camera-derived features were step length, average walking speed and mediolateral sway. Motor signs were assessed clinically using the Movement Disorder Society Unified Parkinson's Disease Rating Scale. RESULTS We found significant group differences between patients and controls for step length and average walking speed, showing the ability to detect Parkinson's features. However, there were no differences between the ON and OFF medication state, so further developments are needed to allow for detection of small intra-individual changes in symptom severity.
Collapse
Affiliation(s)
| | - Karen Otte
- Motognosis GmbH, Schönhauser Allee 177, 10119, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nienke M de Vries
- Department of Neurology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Hanna M Röhling
- Motognosis GmbH, Schönhauser Allee 177, 10119, Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Nicolien M van der Kolk
- Department of Neurology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Sebastiaan Overeem
- Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Sleep Medicine Center Kempenhaeghe, Sterkselseweg 65, 5591 VE, Heeze, The Netherlands
| | - Svitlana Zinger
- Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Merel M van Gilst
- Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands. .,Sleep Medicine Center Kempenhaeghe, Sterkselseweg 65, 5591 VE, Heeze, The Netherlands.
| |
Collapse
|
45
|
Nonmotor symptoms and quality of life in Parkinson's disease with different motor subtypes. Z Gerontol Geriatr 2021; 55:496-501. [PMID: 34374861 DOI: 10.1007/s00391-021-01950-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the differences in the features and impact on quality of life (QOL) of nonmotor symptoms (NMS) of the tremor dominant (TD) and non-tremor dominant (NTD) subtypes of Parkinson's disease (PD) and elucidate the characteristic NMS and determinants of QOL for the subtypes. METHODS This cross-sectional study included 77 patients with PD. The NMS questionnaire was used to assess the range and prevalence of NMS. The modified Hoehn and Yahr staging and the unified PD rating scale (UPDRS) were used to assess symptom severity. Cognitive abilities were investigated using the mini-mental status examination (MMSE). Emotional state was assessed using the Hamilton depression scale (HAMD) and the Hamilton anxiety scale (HAMA) and QOL was evaluated using the Parkinson's disease questionnaire-39 (PDQ-39). RESULTS Overall, 39 (50.65%) patients were classified as the TD subtype, and 38 (49.35%) were classified as the NTD subtype. Patients with NTD subtype presented a significantly higher number of NMS total scores (P = 0.007) and significantly higher score in the cognition domain of PDQ-39 (P = 0.021) than patients with TD subtype. Patients with NTD subtype had significantly higher NMS prevalence than patients with TD subtype with constipation (P = 0.021), incomplete bowel emptying (P = 0.050), anxiety (P = 0.030), daytime sleepiness (P = 0.017) and intense vivid dreams (P = 0.016). The predictors for the NTD subtype were intense vivid dreams (P = 0.012), anxiety (P = 0.030) and constipation (P = 0.044). The UPDRS, NMS total, and MMSE scores were the determinants of QOL in patients with PD (P < 0.05). CONCLUSION The NMS is a prominent manifestation of PD. Patients with the NTD subtype had a higher prevalence of NMS than those with the TD subtype and intense vivid dreams, anxiety and constipation were characteristic of the NTD subtype. NMS is one of the important factors that determine the QOL of patients with PD especially those with the NTD subtype.
Collapse
|
46
|
Martini DN, Morris R, Madhyastha TM, Grabowski TJ, Oakley J, Hu SC, Zabetian CP, Edwards KL, Hiller A, Chung K, Ramsey K, Lapidus JA, Cholerton B, Montine TJ, Quinn JF, Horak FB. Relationships Between Sensorimotor Inhibition and Mobility in Older Adults With and Without Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 76:630-637. [PMID: 33252618 DOI: 10.1093/gerona/glaa300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Reduced cortical sensorimotor inhibition is associated with mobility and cognitive impairments in people with Parkinson's disease (PD) and older adults (OAs). However, there is a lack of clarity regarding the relationships among sensorimotor, cognitive, and mobility impairments. The purpose of this study was to determine how cortical sensorimotor inhibition relates to impairments in mobility and cognition in people with PD and OAs. METHOD Cortical sensorimotor inhibition was characterized with short-latency afferent inhibition (SAI) in 81 people with PD and 69 OAs. Six inertial sensors recorded single- and dual-task gait and postural sway characteristics during a 2-minute walk and a 1-minute quiet stance. Cognition was assessed across the memory, visuospatial, executive function, attention, and language domains. RESULTS SAI was significantly impaired in the PD compared to the OA group. The PD group preformed significantly worse across all gait and postural sway tasks. In PD, SAI significantly correlated with single-task foot strike angle and stride length variability, sway area, and jerkiness of sway in the coronal and sagittal planes. In OAs, SAI significantly related to single-task gait speed and stride length, dual-task stride length, and immediate recall (memory domain). No relationship among mobility, cognition, and SAI was observed. CONCLUSIONS Impaired SAI related to slower gait in OA and to increased gait variability and postural sway in people with PD, all of which have been shown to be related to increased fall risk.
Collapse
Affiliation(s)
- Douglas N Martini
- Department of Neurology, Oregon Health and Science University, Portland.,Department of Kinesiology, University of Massachusetts Amherst
| | - Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland
| | - Tara M Madhyastha
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - Thomas J Grabowski
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - John Oakley
- Department of Neurology, University of Washington School of Medicine, Seattle
| | - Shu-Ching Hu
- Department of Neurology, University of Washington School of Medicine, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Cyrus P Zabetian
- Department of Neurology, University of Washington School of Medicine, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Karen L Edwards
- Department of Epidemiology, University of California, Irvine
| | - Amie Hiller
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Kathryn Chung
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Katrina Ramsey
- Biostatistics & Design Program, Oregon Health and Science University, Portland
| | - Jodi A Lapidus
- Biostatistics & Design Program, Oregon Health and Science University, Portland.,School of Public Health, Oregon Health and Science University, Portland
| | - Brenna Cholerton
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| |
Collapse
|
47
|
Association between the inability to identify particular odors and physical performance, cognitive function, and/or brain atrophy in community-dwelling older adults from the Fukuoka Island City study. BMC Geriatr 2021; 21:421. [PMID: 34247577 PMCID: PMC8274001 DOI: 10.1186/s12877-021-02363-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Olfactory dysfunction is associated with severe brain atrophy and cognitive impairment in Parkinson’s disease. However, it remains unknown whether an inability to identify particular odors is associated with physical performance, cognitive function, and/or brain atrophy in community-dwelling older adults. Methods In this cross-sectional study, 44 community-dwelling older adults were included (14 males, 30 females; mean age: 72.4 ± 5.7 years, range: 63–85 years). The Odor Stick Identification Test for Japanese, consisting of 12 odors, was used to examine olfaction. Subjects also completed physical performance (lower limb function, balance, and gait speed) and cognitive function (global cognition, logical memory, and the Trail Making Tests). Additionally, magnetic resonance imaging was used to investigate brain atrophy in the bilateral medial temporal area (MTA) and whole gray matter using the voxel-based specific regional analysis system for Alzheimer’s disease. Results Total olfaction was not significantly associated with physical performance, cognitive function, or brain atrophy. However, MTA atrophy was associated with an inability to identify Japanese orange (B: − 0.293; β: − 0.347; p < .05) after adjusting for age and sex (R2: 0.328; adjusted R2: 0.277). Subjects who were unable to identify Japanese orange (n = 30) had worse MTA atrophy than those who were able to identify Japanese orange (n = 14), even after adjusting for covariates (p < .05). Conclusions Total olfaction was not associated with physical performance, cognitive function, or brain atrophy. However, an inability to identify Japanese orange odor was independently associated with mild MTA atrophy among community-dwelling older adults.
Collapse
|
48
|
Rahimpour S, Gaztanaga W, Yadav AP, Chang SJ, Krucoff MO, Cajigas I, Turner DA, Wang DD. Freezing of Gait in Parkinson's Disease: Invasive and Noninvasive Neuromodulation. Neuromodulation 2021; 24:829-842. [PMID: 33368872 PMCID: PMC8233405 DOI: 10.1111/ner.13347] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life. MATERIALS AND METHODS Clinical-anatomical correlations, electrophysiology, and functional imaging have generated several mechanistic hypotheses, ranging from the most distal (abnormal central pattern generators of the spinal cord) to the most proximal (frontal executive dysfunction). Here, we review the neuroanatomy and pathophysiology of gait initiation in the context of FoG, and we discuss targets of central nervous system neuromodulation and their outcomes so far. The PubMed database was searched using these key words: neuromodulation, freezing of gait, Parkinson's disease, and gait disorders. CONCLUSION Despite these investigations, the pathogenesis of this process remains poorly understood. The evidence presented in this review suggests FoG to be a heterogenous phenomenon without a single unifying pathologic target. Future studies rigorously assessing targets as well as multimodal approaches will be essential to define the next generation of therapeutic treatments.
Collapse
Affiliation(s)
- Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Wendy Gaztanaga
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amol P. Yadav
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephano J. Chang
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
- Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Doris D. Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Albin RL, Müller MLTM, Bohnen NI, Spino C, Sarter M, Koeppe RA, Szpara A, Kim K, Lustig C, Dauer WT. α4β2 * Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait-Balance Disorders. Ann Neurol 2021; 90:130-142. [PMID: 33977560 DOI: 10.1002/ana.26102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4β2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4β2* nAChR partial agonist varenicline. METHODS Nondemented PD participants with cholinergic deficits were identified with [18 F]fluoroethoxybenzovesamicol positron emission tomography (PET). α4β2* nAChR occupancy after subacute oral varenicline treatment was measured with [18 F]flubatine PET. With a dose selected from the nAChR occupancy experiment, varenicline effects on gait, balance, and cognition were assessed in a double-masked placebo-controlled crossover study. Primary endpoints were normal pace gait speed and a measure of postural stability. RESULTS Varenicline doses (0.25mg per day, 0.25mg twice daily [b.i.d.], 0.5mg b.i.d., and 1.0mg b.i.d.) produced 60 to 70% receptor occupancy. We selected 0.5mg orally b.i.d for the crossover study. Thirty-three participants completed the crossover study with excellent tolerability. Varenicline had no significant impact on the postural stability measure and caused slower normal pace gait speed. Varenicline narrowed the difference in normal pace gait speed between dual task and no dual task gait conditions, reduced dual task cost, and improved sustained attention test performance. We obtained identical conclusions in 28 participants with treatment compliance confirmed by plasma varenicline measurements. INTERPRETATION Varenicline occupied α4β2* nicotinic acetylcholine receptors, was tolerated well, enhanced attention, and altered gait performance. These results are consistent with target engagement. α4β2* agonists may be worth further evaluation for mitigation of gait and balance disorders in PD. ANN NEUROL 2021;90:130-142.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI
| | - Martijn L T M Müller
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Nicolaas I Bohnen
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Cathie Spino
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Martin Sarter
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Ashley Szpara
- Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Cindy Lustig
- University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - William T Dauer
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX.,Peter J. O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
50
|
Ruitenberg MFL, van Wouwe NC, Wylie SA, Abrahamse EL. The role of dopamine in action control: Insights from medication effects in Parkinson's disease. Neurosci Biobehav Rev 2021; 127:158-170. [PMID: 33905788 DOI: 10.1016/j.neubiorev.2021.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/26/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder associated primarily with overt motor symptoms. Several studies show that PD is additionally accompanied by impairments in covert cognitive processes underlying goal-directed motor functioning (e.g., action planning, conflict adaptation, inhibition), and that dopaminergic medication may modulate these action control components. In this review we aim to leverage findings from studies in this domain to elucidate the role of dopamine (DA) in action control. A qualitative review of studies that investigated the effects of medication status (on vs. off) on action control in PD suggests a component-specific role for DA in action control, although the expression of medication effects depends on characteristics of both the patients and experimental tasks used to measure action control. We discuss these results in the light of findings from other research lines examining the role of DA in action control (e.g., animal research, pharmacology), and recommend that future studies use multi-method, within-subject approaches to model DA effects on action control across different components as well as underlying striatal pathways (ventral vs. dorsal).
Collapse
Affiliation(s)
- M F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| | - N C van Wouwe
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - S A Wylie
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - E L Abrahamse
- Department of Communication and Cognition, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|